let’s consider a disordered crystal · let’sconsider a disordered crystal long-range order but...

40
Disordered crystals Let’s consider a disordered crystal Long-range order but Unit cell content depends on R uvw Lattice of disordered A and B atoms =1 et =2 Bragg’s spot |()| 2 1 ère zone de Brillouin Occurrence of Speckles due to disorder ‘‘Speckle pattern’’ = ()e −∙ = ()e −∙ 2

Upload: others

Post on 25-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Disordered crystals

    Let’s consider a disordered crystal

    Long-range order butUnit cell content depends on Ruvw

    Lattice of disordered A and B atoms𝐹𝐴 = 1 et 𝐹𝐵 = 2

    Bragg’s spot|𝚺(𝒒)|2

    1ère zone de Brillouin

    Occurrence of Speckles

    due to disorder‘‘Speckle pattern’’

    𝐴 𝒒 =

    𝑢𝑣𝑤

    𝐹𝑢𝑣𝑤(𝒒)e−𝑖𝐪∙𝐑𝑢𝑣𝑤 =

    𝑛

    𝐹𝑛(𝒒)e−𝑖𝐪∙𝐑𝑛

    𝐹𝑛 ≠ 𝐹𝑛′

    𝐴 𝒒 2

  • Example of diffuse scattering

    Bragg reflexion+

    Diffuse scattering

    Precession photograph ofreciprocal plane h+k+l=0

    Crystal of C60 at 300 K

    Cours2.ppt#22. Désordre 1-Effet de la température

  • General expressionof scattered intensity

    Calculation of intensity

    Speckle term only visible in coherent diffraction conditions

    𝑨∗ 𝒒 𝑨 𝒒 =

    𝑛𝑛′

    𝐹𝑛∗𝐹𝑛′𝑒

    −𝑖𝒒∙(𝒓𝑛′−𝒓𝑛) =

    𝑛𝑚

    𝐹𝑛∗𝐹𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚

    =

    𝑚

    𝑁(𝑚)1

    𝑁(𝑚)

    𝑛

    𝐹𝑛∗𝐹𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚

    1

    𝑁(𝑚)

    𝑛

    𝐹𝑛∗𝐹𝑛+𝑚 = 𝐹𝑛

    ∗𝐹𝑛+𝑚 + Δ𝑚

    = Statistical average + fluctuations

    𝐼 𝒒 =1

    𝑣

    𝑚

    𝑉 𝒓𝑚 𝐹𝑛∗𝐹𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚 +1

    𝑣

    𝑚

    𝑉(𝑚)Δ𝑚 𝑒−𝑖𝒒∙𝒓𝑚

    𝑉 𝒓𝑚

    … 𝑆𝑡𝑎𝑡 = … 𝑡

    −𝒓𝑚

    Ergodic hypothesis:

  • How to measure speckle patterns?

    1. X-ray beam is coherent enough: 2. Disorder must be static during the time of measurement3. Detector good enough to measure speckles.

    - Distance on detector: 𝜆𝑑/𝑎

    If these conditiosn are not fulfilled, the speckles are smoothed

    Diffuse scattering

    𝐷

    T

    S

    Speckles in AuAgZn2F. Livet et al. 𝑎 < 𝜉𝑡 =

    𝜆𝐷

    𝜎et 𝛿 < 𝜉𝑙 =

    1

    2

    𝜆2

    ∆𝜆

    𝑎

    𝑑

    𝜆

    𝑎

  • Diffuse scattering

    𝐼𝐷(𝒒) :Diffraction

    𝐼𝐷𝐷(𝒒) : Diffuse scattering

    𝜙𝑛: deviation from average value Fn

    𝐹𝑛∗𝐹𝑛+𝑚 = 𝐹𝑛

    ∗ + 𝛷𝑛∗ 𝐹𝑛+𝑚 +𝛷𝑛+𝑚

    = 𝐹 2 + 𝛷𝑛∗𝛷𝑛+𝑚

    𝛷𝑛 = 𝐹𝑛 − 𝐹𝑛

    𝐼 𝒒 = 𝐹 2

    ℎ𝑘𝑙

    Σ(𝒒 − 𝑸ℎ𝑘𝑙2

    𝑣2+1

    𝑣

    𝑚

    𝑉(𝒓𝑚) 𝛷𝑛∗𝛷𝑛+𝑚 𝑒

    −𝑖𝐪∙𝐫𝑚

    Cours10_26_10_2011.pptx#1. 4

  • Disorder

    Diffuse scattering:Deviation from perfect order

    If very few correlations:

    Diffusion scattering ~ N

    Diffraction ~ N2 is much stronger

    𝐼𝐷𝐷 𝒒 =1

    𝑣

    𝑚

    𝑉(𝒓𝑚) Φ𝑛∗Φ𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚

    lim𝑚→∞

    Φ𝑛∗Φ𝑛+𝑚 = 0, and then 𝑉(𝒓𝑚) ≅ 𝑉

    𝐼𝐷𝐷 𝒒 = 𝑁

    𝑚

    Φ𝑛∗Φ𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚

  • Two types of disorder

    Displacementdisorder

    Substitution disorder

  • Displacement disorder:phonons

    N: number of unit cellsM: atomic mass𝒌: wave vector of the phonon modeeak: polarisation of the modeqak: normal coordinates

    𝑟𝑛(𝑡) = 𝑟𝑛 + 𝑢𝑛(𝑡)

    Harmonic theory• Interaction potential 𝑈, elastic constant 𝐶

    Atomic displacements

    𝑈 = 𝑈0 +𝐶

    2

    𝑛

    (𝒖𝑛+1 − 𝒖𝑛)2

    𝒖𝑛 𝑡 =1

    𝑁𝑀

    𝛼,𝒌

    𝜺𝛼𝒌𝑞𝛼𝒌(𝑡)𝑒𝑖𝒌∙𝒓𝑛

    𝑞𝛼𝒌𝑞𝛼−𝒌 =ℏ

    2𝜔𝛼(𝒌)coth

    ℏ𝜔𝛼(𝒌)

    2𝑘𝐵𝑇 𝑘𝐵𝑇≫ℏ𝜔𝛼

    𝑘𝐵𝑇

    𝜔𝛼2(𝒌)

  • Phonons

    k

    𝜔(𝒌)

    p/a-p/a

    optical

    acoustic

    Longitudinal

    LO

    Transverse

    TO X 2

    LA

    TA X 2

    10 Thz

    Harmonic theoryDebye approx:𝑉𝑘𝐷

    3 = 6𝜋2

    ℏ𝑘𝐷𝑣𝑠 = 𝑘𝐵𝑇𝐷T at which highest mode excited

  • Debye-Waller factor

    One atom:

    Harmonic crystal

    Intensity decreased by factor 𝑒−2𝑊

    is the Debye-Waller factorRe

    Im

    Re

    N

    𝑇 and 𝑞 large ⇒ 𝜃 large

    𝐹𝑛(𝐪) = 𝑓 𝑒−𝑖𝐪⋅𝐮𝒏

    𝑒−𝑖𝐪⋅𝐮𝒏 = 𝑒−1/2 𝐪⋅𝐮𝒏2= 𝑒−𝑊

    𝐼 𝐪 = 𝑁2 𝐹𝑛(𝐪)2 = 𝑁2𝑓2𝑒−2𝑊

    𝑒−𝑊

    𝜃

  • Debye-Waller factor 2

    Unit cell with n atoms in rj

    Isotropic vibrations

    Diffraction allows one to measure:

    ID e -2W 𝐹𝑛(𝐪) =

    𝑗

    𝑓𝑗𝑒−𝑊𝑗𝑒−𝑖𝐪⋅𝐫𝑗

    𝑊𝑗 =1

    2𝐪 ⋅ 𝒖𝑗

    2=1

    2𝑞2 𝑢𝑗𝑞

    2

    𝑢𝑗2 = 𝑢𝑥𝑗

    2 + 𝑢𝑦𝑗2 + 𝑢𝑧𝑗

    2 = 3 𝑢𝑗𝑞2

    𝑊𝑗 =1

    6

    4𝜋 sin 𝜃

    𝜆

    2

    𝑢𝑗2 ≡ 𝐵𝑗,𝑇,𝑖𝑠𝑜

    sin 𝜃

    𝜆

    2

    𝐵𝑗,𝑇,𝑖𝑠𝑜 =8𝜋2

    3𝑢𝑗2

  • Calculation of 𝑊

    Equipartition theorem

    Slow vibrations have large amplitude

    𝑊 =𝑞2

    𝑁

    𝐤

    𝑘𝐵𝑇

    2𝑀𝜔2(𝐤)

    𝑊 =1

    2𝑞2 𝑢𝑛

    2𝑢𝑛2 =

    1

    𝑁

    𝑛

    𝑢𝑛2 =

    1

    𝑁

    𝑘

    𝑢𝑘2

    1

    2𝑀𝜔2(𝒌) 𝑢𝒌

    2 =1

    2𝑘𝐵𝑇

    Einstein model 𝜔 = 𝜔𝑒

    ∝ 𝑞2𝑘𝐵𝑇

    2𝑀𝜔𝑒2

  • Debye

    Debye approximation

    Si T >> TD Classical

    1

    1

    0.5

    0.5

    with

    𝑊 =sin𝜃

    𝜆

    26ℎ2𝑇

    𝑀𝑘𝐵𝑇𝐷2

    𝐼 ∝ 𝑒−2𝑊 ⇒ ln 𝐼 ∝ −𝑇

    𝑊 =sin𝜃

    𝜆

    26ℎ2

    𝑀𝑘𝐵𝑇𝐷

    1

    4+𝑇

    𝑇𝐷Φ(𝑇𝐷𝑇)

    élément C Al Cu Mo Ag Pb

    TD (K) 3000 390 320 380 226 90

    Φ𝑇𝐷𝑇

    =𝑇

    𝑇𝐷න0

    𝑇𝐷𝑇 𝑦

    𝑒𝑦 − 1𝑑𝑦

  • Example 1:Determination of TD

    R.M. Nicklow and R.A. Young, Phys. Rev. 152, 591–596 (1966)

    Intensity of Al (h00) reflexions

    TD ~ 400±5K

    Deviation due tozero-point vibrations

    http://cornell.mirror.aps.org/abstract/PR/v152/i2/p591_1

  • Example 2: Lindemann criterion

    Solide melts when:

    Aluminiumf.c.c.

    a=4.04 Å

    Melting

    𝑢2 = 10% 𝑑1𝑠𝑡 neigh

  • Example 3:

    Simple etals:

    Organic compounds:

    Anisotropic B:𝑢2 depends

    on the directions

    𝑃𝐹6

    𝐵𝑗,𝑇,𝑖𝑠𝑜 =8𝜋2

    3𝑢𝑗2

    𝑊𝑗 = 𝐵𝑗,𝑇,𝑖𝑠𝑜sin 𝜃

    𝜆

    2

    𝑢2 = 0,05 − 0,2 Å

    𝑢2 = 0,5 Å

    Thermal ellipsoids

  • Influence of dimensionality

    Integral is governed by divergence of:

    Debye, isotropic

    Harmonic theory

    𝑊 = 𝑎𝐷𝑞2න𝑘

  • Influence of dimensionality-2

    D=1

    𝐿

    𝑊 = 𝐴1න𝐿−1

    𝑘𝐷 𝑑𝑘

    𝑘2= 𝐴1(𝐿 − 𝑘𝐷

    −1)𝑊 = 𝐴1න

    𝐿−1

    𝑘𝐷 𝑑𝑘

    𝑘2

    𝑊 = 𝐴2න𝐿−1

    𝑘𝐷 2𝜋𝑘𝑑𝑘

    𝑘2= 2𝜋𝐴2ln(𝐿𝑘𝐷)

    𝑊 = 𝐴3න𝐿−1

    𝑘𝐷 4𝜋𝑘2𝑑𝑘

    𝑘2= 4𝜋𝐴3(𝑘𝐷 − 𝐿

    −1)

    𝑊 =1

    2𝑞2 𝑢2 Si 𝐷 ≤ 2 𝑢2

    𝐿→∞∞

    D=3

    D=2

    𝑢2

  • Influence of dimensionality-3

    No long-range order if D 2

    If 𝐷 ≤ 2 𝑊𝐿→∞

    D=1

    D=3

    D=2

    𝑒−𝑊~𝑒−𝐴1𝐿

    𝑒−𝑊~𝐿−2𝜋𝐴2

    𝑒−𝑊~exp −2sin2 𝜃

    𝜆26ℎ2𝑇

    𝑀𝑘𝐵𝑇𝐷2

  • Thermal Diffuse Scattering

    Si 300 K

    XRay //

    XRay //

    Experiment Simulation

    M. Holt, Phys. Rev. Lett 83, 3317 (1999)

    False colors,Log scale.

  • 𝐼𝐷𝐷 𝒒 = 𝑁

    𝑚

    Φ𝑛∗Φ𝑛+𝑚 𝑒

    −𝑖𝒒∙𝒓𝑚

    TDS calculation-1

    One atom per cell

    Harmonic theory:

    At first order,

    displacement-displacement correlations

    Φ𝑛∗Φ𝑛+𝑚 = 𝐹𝑛

    ∗𝐹𝑛+𝑚 − 𝐹2

    Φ𝑛∗Φ𝑛+𝑚 = 𝑓

    2 𝑒−𝑖𝒒∙(𝒖𝑛+𝑚−𝒖𝑛) − 𝑒−2𝑊

    𝑒−𝑖𝒒∙(𝒖𝑛+𝑚−𝒖𝑛) = 𝑒−1/2 (𝒒∙(𝒖𝑛+𝑚−𝒖𝑛))2= 𝑒−2𝑊𝑒 (𝒒∙𝒖𝑛+𝑚)(𝒒∙𝒖𝑛)

    Φ𝑛∗Φ𝑛+𝑚 = 𝑓

    2𝑒−2𝑊 (𝒒 ∙ 𝒖𝑛+𝑚)(𝒒 ∙ 𝒖𝑛)

  • TDS calculation-3

    +k-k

    Qhkl Qhkl q

    ~1/𝑘2

    • ~𝑁: diffuse scattering• 𝑘𝐵𝑇: thermal scattering• (𝒒 ∙ 𝒖)2: geometrical factor, (mode selection)• All a modes contribute to the same k

    𝐼𝐷𝐷 𝒒 = 𝑸ℎ𝑘𝑙 + 𝒌 = 𝑁𝑓2𝑒−2𝑊𝑘𝐵𝑇

    𝛼

    (𝒒 ∙ 𝒖𝛼𝒌)2

    𝐼𝐷𝐷~(𝒒 ∙ 𝒖𝛼𝒌)2

    ~1

    𝜔𝛼2(𝒌)

  • Example of TDS

    ComparisonX (-)-neutrons(o)

    M. Holt, Phys. Rev. Lett 83, 3317 (1999)

    Harmonic theory:Born-von Karman model using

    constant forcesup to 6th neighbours

    Si 300 K

    𝐼𝐷𝐷(𝒒) = 𝑁𝑓2𝑒−2𝑊𝑘𝐵𝑇

    𝛼

    (𝒒 ∙ 𝜺𝛼𝒌)2

    𝑀𝜔𝛼2(𝒌)

  • Substitution disorder

    Alloy or solid solution AxB1-x

    No information on correlations

    • Case of total disorder

    Laue scattering:

    𝑓 = 𝑥𝑓𝐴 + (1 − 𝑥)𝑓𝐵

    𝐼𝐷(𝒒) = 𝑁2 𝑥𝑓𝐴 + 1 − 𝑥 𝑓𝐵

    2

    𝐼𝐷𝐷 𝒒 = 𝑁 Φ02 = 𝑁 𝑓2 − 𝑓 2

    𝐼𝐷𝐷 𝒒 = 𝑁𝑥(1 − 𝑥) 𝑓𝐴 − 𝑓𝐵2

  • 𝐼 𝒒 = 𝑁𝑥(1 − 𝑥)(𝑓𝐴−𝑓𝐵)2

    𝑚

    (1 −𝑝𝐴 𝑚

    𝑥)𝑒−𝑖𝒒∙𝒓𝑚

    Correlations

    𝑝𝐴(𝑚) A

    B

    Short-range order:

    Conditional probabilities𝑝𝐴(𝑚): probability of having A in 𝒓𝑚 given B at 0𝑝𝐵(𝑚): probability of having B in 𝒓𝑚 given A at 0

    AB pairs = BA pairs

    Warren-Cowley parameters

    ⟹ 𝑥𝑝𝐵 𝑚 = (1 − 𝑥)𝑝𝐴(𝑚)

    AA ∶ 𝑥 1 − 𝑝𝐵 𝑚 → 𝑓𝐴2

    AB ∶ 𝑥𝑝𝐵 𝑚 → 𝑓𝐴𝑓𝐵AB ∶ (1 − 𝑥)𝑝𝐴 𝑚 → 𝑓𝐵𝑓𝐴BB ∶ (1 − 𝑥) 1 − 𝑝𝐴 𝑚 → 𝑓𝐵

    2

    𝐹𝑛∗𝐹𝑛+𝑚 =

    𝑥 1 − 𝑝𝐵 𝑚 𝑓𝐴2 + 𝑥𝑝𝐵 𝑚 𝑓𝐴𝑓𝐵 + 1 − 𝑥 𝑝𝐴 𝑚 𝑓𝐵𝑓𝐴 + (1 − 𝑥) 1 − 𝑝𝐴 𝑚 𝑓𝐵

    2

  • Example

    Local order such thatAB pairs are favoredpA(m) A

    B

    ℎ0 1 2 3

    1

    1/2

    𝑆(𝒒)

    Tendency to doubleperiodicity

    𝐼 𝒒 = 𝑁𝑥(1 − 𝑥)(𝑓𝐴−𝑓𝐵)2 1 + 2(1 −

    𝑝𝐴 1

    𝑥) cos(2𝜋ℎ)

    𝑝𝐴 1 > 𝑥

  • Conclusion

    • Substitution disorder:

    𝐼𝐷𝐷 ~ (𝑓𝐴 − 𝑓𝐵)2

    • Visible at small angles• Only electron density contrast at small angles

    • Displacement disorder:

    𝐼𝐷𝐷 ~ (𝒒. 𝒖)2

    • Invisible at small angles𝒒. 𝒖 is too small for interferences to occur

  • Structural phase transitions Order parameter definition:

    𝜂𝒌𝑐𝑒𝑖𝜑: order parameter

    𝒌𝑐: critical wave vectorbelongs to the 1st BZ

    Displacive Order-desorder

    Order parmater 𝑈𝒌𝑐:

    Displacement amplitude:

    Order parameter :

    Site probabilityIsing (pseudo-)spins

    𝜂𝑛 = 𝜂𝒌𝑐 cos(𝒌𝑐 ∙ 𝒓𝑛 + 𝜑)

    𝑼𝑛 = 𝜺𝒌𝑐𝑈𝒌𝑐 cos(𝒌𝑐 ∙ 𝒓𝑛 + 𝜑)

  • 𝑇𝐶

    ExamplesDisplacive transitions:

    Order-disorder : • Alloy A0.5B0.5

    TC

    Critical wave vectors (1/4,0)

    • FerroelectricZone center

    Not a special point

    • Displacive modulation (Peierls)

    ab

    Zone boundary

    𝑇𝐶

    𝒌𝐶 = 0 𝒌𝐶 =𝒂∗

    2+𝒃∗

    2

    𝑼𝑛 = 𝜺𝒌𝑐𝑈𝒌𝑐 cos(𝒌𝑐 ∙ 𝒓𝑛 + 𝜑)

    𝜺𝒌𝑐 = 𝒂

    𝑆𝑛 = 𝑆𝒌𝑐 cos(𝒌𝑐 ∙ 𝒓𝑛 + 𝜑)

    𝒌𝐶 =𝒂∗

    4

    Cours7.ppt#17. BaTiO3Cours7.ppt#17. BaTiO3

  • Displacive transition

    Ordre parameter fluctuations

    Susceptibility associated to order parameter

    𝑢𝛼𝑘𝑐: composante principale

    𝜒(𝒌𝒄) diverges at the transition temperature

    𝐼𝐷𝐷 𝒒 = 𝑸ℎ𝑘𝑙 + 𝒌 = 𝑁𝑓2𝑒−2𝑊(𝒒 ∙ 𝜺𝒌)

    2 𝑢𝒌𝑢−𝒌

    𝑼𝑛 = 𝜺𝒌𝑐𝑈𝒌𝑐 cos(𝒌𝑐 ∙ 𝒓𝑛 + 𝜑)

    𝒖𝑛 =1

    𝑁

    𝛼𝒌

    𝜺𝛼𝒌𝑢𝛼𝒌𝒆𝒊𝒌⋅𝒓𝑛

    𝒖𝒌 = 𝜒(𝒌)𝒉−𝒌

  • Fluctuation-dissipation

    Example of phonons:

    Par le théorème d’équipartition de l’énergie

    𝒖𝒌𝒖−𝒌 − 𝒖𝒌 𝒖−𝒌 = 𝑘𝐵𝑇𝜒(𝒌)

    1

    2𝑀𝜔2(𝒌) 𝑢𝒌

    2 =1

    2𝑘𝐵𝑇

    𝜒 𝒌 =1

    𝑀𝜔2(𝒌)

  • Calculation of the intensity

    Fluctuation-dissipation

    𝑇 > 𝑇𝑐

    𝑇 < 𝑇𝑐

    𝐼𝐷 𝒒 = 𝑸ℎ𝑘𝑙 + 𝒌 = 𝑁𝑓2𝑒−2𝑊(𝒒 ∙ 𝜺𝒌)

    2(𝑘𝐵𝑇𝜒 𝒌 − 𝑢𝒌 𝑢−𝒌 )

    𝐼𝐷𝐷 𝒒 = 𝑁𝑓2𝑒−2𝑊(𝒒 ∙ 𝜺𝒌)

    2𝑘𝐵𝑇𝜒 𝒌

    𝑢𝒌 = 0

    𝐼𝐷𝐷 𝒒 = 𝑁𝑓2𝑒−2𝑊(𝒒 ∙ 𝜺𝒌)

    2𝑘𝐵𝑇𝜒 𝒌

    +𝑁2𝑓2𝑒−2𝑊(𝒒 ∙ 𝜺𝒌)2 𝑈𝒌𝑐

    2𝛿𝐾(𝒌 = ±𝒌𝑐)

    𝑢𝒌𝐶 = 𝑁𝑈𝒌𝑐

  • Qhkl

    Ornstein-Zernike

    Lorentzian shape

    x : correlation length

    T>Tc

    Qhkl

    +𝒌𝑐−𝒌𝑐

    T

  • Critical exponents

    Temperature behavior of:

    TTc• Susceptibility: 𝜒(𝑘𝑐) ~ 𝑇 −𝑇𝑐

    −𝜸

    • Correlation lengths: 𝜉 ~ 𝑇 −𝑇𝑐−𝝂 SRO

    QLRO

    LRO

  • Example : Order-disorder in AuAgZn2

    T< 351.1°C T> 351.1°C

    Au/Ag

    Zn

    Cubicf.c.c.

    F. Livet et al. Phys. Rev. B 66, 134108 (2002)

    2nd order pahse transition

    𝒌𝐶 =𝒂∗

    2+𝒃∗

    2+𝒄∗

    2

  • FluctuationsDiffuse scattering (1/2,1/2,1/2)

    Ising 3Dg =1,24

    n = 0,63

    h = 0,04

    h = 0,03

    c(q)~ q-2+h

    c~(T-Tc)-g

    c-1/g ~(T-Tc)

    g =1,242

    x ~(T-Tc)-n

    x-1/ n~(T-Tc)

    n = 0,709

    TC+4°C TC+0,13°C

    TC+4°C

    TC+0,08°C

  • Example:‘‘Blue bronze’’ K0.3MoO3

    b

    Octahedra MoO6

    Potassium

    (Rubidium)

    E. Bervas, thesis (1984)

    Tp=183 K

    c

    a

  • Blue bronze

    𝑋𝑌 3𝐷𝛾 = 1,316𝜈 = 0,669𝛽 = 0,346

    At T=183 K: appareance of sattelite reflexionsat the critical wave vector:

    𝜒~(𝑇 − 𝑇𝑐)−𝛾

    𝛾 = 1,33(4) 𝜈 = 0,68(5)

    𝛽 = 0,31(5)

    𝒌𝐶 = 0,748 𝒃∗ + 0,5 𝒄∗

    𝜉~(𝑇 − 𝑇𝑐)−𝜈

    𝐼~(𝑇𝑐 − 𝑇)𝛽

  • Determination of interatomic potential

    Ex: Ising model

    Within mean field appr.the susceptibility is:

    Fit of 𝜒(𝒌) gives the 𝐽′𝑠

    𝐻 = −𝑖𝑗𝐽𝑖𝑗 𝜎𝑖𝜎𝑗

    𝜒(𝒌) =𝛽

    1 + 𝛽𝐽(𝒌)

    With,𝐽 𝒌 = 2𝐽𝑎 cos 𝒌 ∙ 𝒂 + 2𝐽𝑏 cos 𝒌 ∙ 𝒃 + 2𝐽𝑐 cos 𝒌 ∙ 𝒄

  • ExampleBragg

    Diffuse scattering

    IsotropeJi=Jj

    Anisotrope (1D)100xJi=Jj

    Local order

    Difficultto see

    in real space