lesson 20: integration in polar coordinates

41
. . . . . . Section 12.4 Integration in Polar Coordinates Math 21a March 31, 2008 Announcements Office hours Tuesday, Wednesday 2–4pm SC 323 Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b . . Image: Flickr user duncan

Upload: matthew-leingang

Post on 08-Jul-2015

8.837 views

Category:

Education


0 download

DESCRIPTION

sometimes a region (or a function) is more concisely described in polar coordinates. This can make integrating it a much easier task.

TRANSCRIPT

Page 1: Lesson 20: Integration in Polar Coordinates

. . . . . .

Section 12.4Integration in Polar Coordinates

Math 21a

March 31, 2008

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

..Image: Flickr user duncan

Page 2: Lesson 20: Integration in Polar Coordinates

. . . . . .

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

Page 3: Lesson 20: Integration in Polar Coordinates

. . . . . .

Outline

Last Time

Polar geometrySectorsPolar Rectangles

Integration over polar regionsFact of the day

Worksheet

Next Time

Page 4: Lesson 20: Integration in Polar Coordinates

. . . . . .

FactIf D is a region of Type I:

D = { (x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x) }

Then for any “mostly” continuous function f∫∫D

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)f(x, y) dy dx

Page 5: Lesson 20: Integration in Polar Coordinates

. . . . . .

FactIf D is a region of Type II:

D = { (x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y) }

Then for any “mostly” continuous function f∫∫D

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)f(x, y) dx dy

Page 6: Lesson 20: Integration in Polar Coordinates

. . . . . .

This time

Can polar coordinates help in computing integrals?

Page 7: Lesson 20: Integration in Polar Coordinates

. . . . . .

Outline

Last Time

Polar geometrySectorsPolar Rectangles

Integration over polar regionsFact of the day

Worksheet

Next Time

Page 8: Lesson 20: Integration in Polar Coordinates

. . . . . .

Arc length and sector area

s = rθ

A =12

r2θ

(if θ is in radians).

.

.r

.s

Page 9: Lesson 20: Integration in Polar Coordinates

. . . . . .

Area of a polar rectangle

∆A =12

r22 (θ2 − θ1) −12

r21 (θ2 − θ1)

=12

(r22 − r21

)(θ2 − θ1)

=12

(r2 + r1) (r2 − r1) (θ2 − θ1)

= r̄ ∆r ∆θ.

.

..r1

..r2. .θ1

..θ2

.̄r

.∆θ

Page 10: Lesson 20: Integration in Polar Coordinates

. . . . . .

Outline

Last Time

Polar geometrySectorsPolar Rectangles

Integration over polar regionsFact of the day

Worksheet

Next Time

Page 11: Lesson 20: Integration in Polar Coordinates

. . . . . .

Polar slicing

.

Here the boundaries of x and yare complicated

.

Here the boundary r is afunction of θ

Page 12: Lesson 20: Integration in Polar Coordinates

. . . . . .

Fact of the day

FactIf f is continuous on a polar region of the form

D = { (r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ) }

then ∫∫D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)f(r cos θ, r sin θ) r dr dθ.

◮ Notice the “area element” is r dr dθ, not dr dθ!

Page 13: Lesson 20: Integration in Polar Coordinates

. . . . . .

Fact of the day

FactIf f is continuous on a polar region of the form

D = { (r, θ) | α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ) }

then ∫∫D

f(x, y) dA =

∫ β

α

∫ h2(θ)

h1(θ)f(r cos θ, r sin θ) r dr dθ.

◮ Notice the “area element” is r dr dθ, not dr dθ!

Page 14: Lesson 20: Integration in Polar Coordinates

. . . . . .

Example: area of a cardioid

Find the area enclosed by the curve r = 1 + sin θ.

SolutionWe can use the symmetry, findhalf the area, then double:

A = 2∫ π/2

−π/2

∫ 1+sin θ

0r dr dθ

=

∫ π/2

−π/2r2

∣∣∣r=1+sin θ

r=0dθ

=

∫ π/2

−π/2(1 + sin θ)2 dθ

=

∫ π/2

−π/2(1 + 2 sin θ + sin2 θ) dθ

.

.

Page 15: Lesson 20: Integration in Polar Coordinates

. . . . . .

Example: area of a cardioid

Find the area enclosed by the curve r = 1 + sin θ.

SolutionWe can use the symmetry, findhalf the area, then double:

A = 2∫ π/2

−π/2

∫ 1+sin θ

0r dr dθ

=

∫ π/2

−π/2r2

∣∣∣r=1+sin θ

r=0dθ

=

∫ π/2

−π/2(1 + sin θ)2 dθ

=

∫ π/2

−π/2(1 + 2 sin θ + sin2 θ) dθ

.

.

Page 16: Lesson 20: Integration in Polar Coordinates

. . . . . .

Example: area of a cardioid

Find the area enclosed by the curve r = 1 + sin θ.

SolutionWe can use the symmetry, findhalf the area, then double:

A = 2∫ π/2

−π/2

∫ 1+sin θ

0r dr dθ

=

∫ π/2

−π/2r2

∣∣∣r=1+sin θ

r=0dθ

=

∫ π/2

−π/2(1 + sin θ)2 dθ

=

∫ π/2

−π/2(1 + 2 sin θ + sin2 θ) dθ

.

.

Page 17: Lesson 20: Integration in Polar Coordinates

. . . . . .

The computation

∫ π/2

−π/21 dθ = π∫ π/2

−π/22 sin θ dθ = −2 cos θ|θ=π/2

θ=−π/2 = 0∫ π/2

−π/2sin2 θ dθ =

12

∫ π/2

−π/2(1 − cos 2θ) dθ =

12

[θ − 1

2sin 2θ

]θ=π/2

θ=−π/2

2

So

A =3π

2

Page 18: Lesson 20: Integration in Polar Coordinates

. . . . . .

ExampleFind the average value of the distance from the origin over the unitdisk.

Page 19: Lesson 20: Integration in Polar Coordinates

. . . . . .

Cartesian Solution I

Recall that the average value of a function over a region D is given by

f̄ =1

A(D)

∫∫D

f(x, y) dA

So we are looking for the value of

∫∫D

√x2 + y2 dA,

Page 20: Lesson 20: Integration in Polar Coordinates

. . . . . .

Cartesian Solution II

where D is the unit disk x2 + y2 ≤ 1. We can do this Cartesian-like:

∫∫D

√x2 + y2 dA =

∫ 1

−1

∫ √1+x2

−√

1−x2

√x2 + y2 dy dx.

To do the inner integral, we use the trigonometric substitution

y = x tan θ. Then√

x2 + y2 = x sec θ, and dy = x sec2 θ dθ.

Page 21: Lesson 20: Integration in Polar Coordinates

. . . . . .

Cartesian Solution III

Moreover, if tan θ =

√1 − x2

x, we have x = cos θ. So

∫ 1

−1

∫ √1+x2

−√

1−x2

√x2 + y2 dy dx =

∫ 1

−1

∫ arccos(x)

− arccos(x)x2 sec3 θ dθ dx.

OK,∫

sec3 θ dθ is one of those nasty trigonometric integrals.

There’s gotta be a better way!

Page 22: Lesson 20: Integration in Polar Coordinates

. . . . . .

Polar Solution

Switch to polar coordinates and

∫∫D

r dA =1π

∫ 2π

0

∫ 1

0r r dr dθ

=1π

∫ 2π

0

[r3

3

]r=1

r=0dθ

=1π

∫ 2π

0

13

=1π

3

]θ=2π

θ=0=

23.

Page 23: Lesson 20: Integration in Polar Coordinates

. . . . . .

Outline

Last Time

Polar geometrySectorsPolar Rectangles

Integration over polar regionsFact of the day

Worksheet

Next Time

Page 24: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #1

ProblemEvaluate

∫∫R

cos(x2 + y2) dA, where R is the region that lies above the

x-axis and within the circle x2 + y2 = 9.

Solution

∫∫R

cos(x2 + y2) dA =

∫ π

0

∫ 3

0cos(r2)r dr dθ

=

∫ π

0

12

sin(r2)

∣∣∣∣r=3

r=0dθ

=

∫ π

0

12

sin(9) dθ =π

2sin(9)

Page 25: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #1

ProblemEvaluate

∫∫R

cos(x2 + y2) dA, where R is the region that lies above the

x-axis and within the circle x2 + y2 = 9.

Solution

∫∫R

cos(x2 + y2) dA =

∫ π

0

∫ 3

0cos(r2)r dr dθ

=

∫ π

0

12

sin(r2)

∣∣∣∣r=3

r=0dθ

=

∫ π

0

12

sin(9) dθ =π

2sin(9)

Page 26: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #2

ProblemEvaluate

∫∫R

arctan(y/x) dA, where

R ={

(x, y)∣∣∣ 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}

Solution

I =

∫ π/4

0

∫ 2

1θr dr dθ

=

(∫ π/4

0θ dθ

)(∫ 2

1r dr

)

=

[θ2

2

]π/4

0

[r2

2

]2

1=

(π/4)2

2· 3

2=

3π2

64

.

.

.1 .2

Page 27: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #2

ProblemEvaluate

∫∫R

arctan(y/x) dA, where

R ={

(x, y)∣∣∣ 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}

Solution

I =

∫ π/4

0

∫ 2

1θr dr dθ

=

(∫ π/4

0θ dθ

)(∫ 2

1r dr

)

=

[θ2

2

]π/4

0

[r2

2

]2

1=

(π/4)2

2· 3

2=

3π2

64

.

.

.1 .2

Page 28: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #2

ProblemEvaluate

∫∫R

arctan(y/x) dA, where

R ={

(x, y)∣∣∣ 1 ≤ x2 + y2 ≤ 4, 0 ≤ y ≤ x

}Solution

I =

∫ π/4

0

∫ 2

1θr dr dθ

=

(∫ π/4

0θ dθ

)(∫ 2

1r dr

)

=

[θ2

2

]π/4

0

[r2

2

]2

1=

(π/4)2

2· 3

2=

3π2

64

.

.

.1 .2

Page 29: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #3

ProblemIn each of the regions R below,decide whether to use polarcoordinates or rectangularcoordinates and write∫∫

R

f(x, y) dA as an iterated

integral, where f is an arbitrarycontinuous function on R.

SolutionRegions 1, 4, 5, and 6 are allgood regions for polarcoordinates.

Exercises

856 M CHAPIIR 12 MUI.TIPLT IilTEGRAI-S

l-6 m A region R is shown. Decide whether to use polar coor_dinates or rectangular coordinates and write lJ* f @, y) dAas an iterated integral, where / is an arbitrary continuous func_

21.

22.

5.

^ ln/2 f4cos|6 . | | rdrd?JO JO

t2'II*'Rwhere

:I!. lJ^ atcrwhere

14. ![^ye'enclosr

l5-2t r tsolid.

15. Under Ix ' + y t

16. Below rxy-plan

17. A spher18. Inside tl

cylinder

ffi Above tx ' + y z

20. Bounderplane z ,

Inside b,o : ' * :

(a) A cythrorume

(b) Exprof thrnot o

23-24 I Us,f,ii,, one loop

:n':"*:u25-28 r Evrcoordinates.

(3 r,F', , . ) - r )o

26. f: l' -

7-8and

7.

ffi Sketch the region whose area is given by the integralevaluate the integral.t2r f7| | rd rd9

J n J 4

9-14 m Evaluate the given integral by changing to polarcoordinates

9. li^ xv dA.

Page 30: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #3

ProblemIn each of the regions R below,decide whether to use polarcoordinates or rectangularcoordinates and write∫∫

R

f(x, y) dA as an iterated

integral, where f is an arbitrarycontinuous function on R.

SolutionRegions 1, 4, 5, and 6 are allgood regions for polarcoordinates.

Exercises

856 M CHAPIIR 12 MUI.TIPLT IilTEGRAI-S

l-6 m A region R is shown. Decide whether to use polar coor_dinates or rectangular coordinates and write lJ* f @, y) dAas an iterated integral, where / is an arbitrary continuous func_

21.

22.

5.

^ ln/2 f4cos|6 . | | rdrd?JO JO

t2'II*'Rwhere

:I!. lJ^ atcrwhere

14. ![^ye'enclosr

l5-2t r tsolid.

15. Under Ix ' + y t

16. Below rxy-plan

17. A spher18. Inside tl

cylinder

ffi Above tx ' + y z

20. Bounderplane z ,

Inside b,o : ' * :

(a) A cythrorume

(b) Exprof thrnot o

23-24 I Us,f,ii,, one loop

:n':"*:u25-28 r Evrcoordinates.

(3 r,F', , . ) - r )o

26. f: l' -

7-8and

7.

ffi Sketch the region whose area is given by the integralevaluate the integral.t2r f7| | rd rd9

J n J 4

9-14 m Evaluate the given integral by changing to polarcoordinates

9. li^ xv dA.

Page 31: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #4

ProblemSketch the region whose area is given by the integral∫ 2π

π

∫ 7

4r dr dθ

Evaluate this integral.

Solution

A =

∫ 2π

π

∫ 7

4r dr dθ

=

[r2

2

]r=7

r=4[θ]θ=2π

θ=0

=49 − 16

2· π =

33π

2

.

.

.4 .7

Page 32: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #4

ProblemSketch the region whose area is given by the integral∫ 2π

π

∫ 7

4r dr dθ

Evaluate this integral.

Solution

A =

∫ 2π

π

∫ 7

4r dr dθ

=

[r2

2

]r=7

r=4[θ]θ=2π

θ=0

=49 − 16

2· π =

33π

2

.

.

.4 .7

Page 33: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #4

ProblemSketch the region whose area is given by the integral∫ 2π

π

∫ 7

4r dr dθ

Evaluate this integral.

Solution

A =

∫ 2π

π

∫ 7

4r dr dθ

=

[r2

2

]r=7

r=4[θ]θ=2π

θ=0

=49 − 16

2· π =

33π

2

.

.

.4 .7

Page 34: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #5

ProblemUse polar coordinates to find the volume above the cone z =

√x2 + y2

and below the sphere x2 + y2 + z2 = 1.

SolutionConverting to polar coordinates,we get

V =

∫ 2π

0

∫ √2/2

0

(√1 − r2 − r

)r dr dθ

= 2π

∫ √2/2

0

(r√

1 − r2 − r2)

dr

3

(2 −

√2) -0.5

0.0

0.5

-0.50.0

0.5

0.0

0.5

1.0

Page 35: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #5

ProblemUse polar coordinates to find the volume above the cone z =

√x2 + y2

and below the sphere x2 + y2 + z2 = 1.

SolutionConverting to polar coordinates,we get

V =

∫ 2π

0

∫ √2/2

0

(√1 − r2 − r

)r dr dθ

= 2π

∫ √2/2

0

(r√

1 − r2 − r2)

dr

3

(2 −

√2)

-0.5

0.0

0.5

-0.50.0

0.5

0.0

0.5

1.0

Page 36: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #5

ProblemUse polar coordinates to find the volume above the cone z =

√x2 + y2

and below the sphere x2 + y2 + z2 = 1.

SolutionConverting to polar coordinates,we get

V =

∫ 2π

0

∫ √2/2

0

(√1 − r2 − r

)r dr dθ

= 2π

∫ √2/2

0

(r√

1 − r2 − r2)

dr

3

(2 −

√2) -0.5

0.0

0.5

-0.50.0

0.5

0.0

0.5

1.0

Page 37: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #6

ProblemEvaluate ∫ 3

−3

∫ √9−x2

0sin(x2 + y2) dy dx.

SolutionRewrite the integral in polarcoordinates:

I =

∫ π

0

∫ 3

0sin(r2)r dr dθ

2(1 − cos(9)) .

.

.−3 .3

Page 38: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #6

ProblemEvaluate ∫ 3

−3

∫ √9−x2

0sin(x2 + y2) dy dx.

SolutionRewrite the integral in polarcoordinates:

I =

∫ π

0

∫ 3

0sin(r2)r dr dθ

2(1 − cos(9))

.

.

.−3 .3

Page 39: Lesson 20: Integration in Polar Coordinates

. . . . . .

Worksheet #6

ProblemEvaluate ∫ 3

−3

∫ √9−x2

0sin(x2 + y2) dy dx.

SolutionRewrite the integral in polarcoordinates:

I =

∫ π

0

∫ 3

0sin(r2)r dr dθ

2(1 − cos(9)) .

.

.−3 .3

Page 40: Lesson 20: Integration in Polar Coordinates

. . . . . .

Outline

Last Time

Polar geometrySectorsPolar Rectangles

Integration over polar regionsFact of the day

Worksheet

Next Time

Page 41: Lesson 20: Integration in Polar Coordinates

. . . . . .

Next time:Surface area