lefschetz algebras and eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · basic definitions...

39
logo Lefschetz algebras and Eulerian numbers Martina Kubitzke Fachbereich Mathematik und Informatik Philipps-Universit ¨ at Marburg April 1, 2008

Upload: others

Post on 27-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Lefschetz algebrasand Eulerian numbers

Martina Kubitzke

Fachbereich Mathematik und InformatikPhilipps-Universitat Marburg

April 1, 2008

Page 2: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Outline

1 Basic definitions and background

2 Combinatorial g-Theorems: Classical and new results

3 Inequalities for the refined Eulerian statistics onpermutations

Page 3: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Outline

1 Basic definitions and background

2 Combinatorial g-Theorems: Classical and new results

3 Inequalities for the refined Eulerian statistics onpermutations

Page 4: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Simplicial Complexes

A simplicial complex ∆ on vertex set Ω is a collection of subsetsof Ω such thatF ∈ ∆, G ⊆ F ⇒ G ∈ ∆.

The elements of ∆ are called faces of ∆ and for a face F ∈ ∆dim(F ) := #F − 1 is the dimension of F .

dim ∆ := max dim(F ) | F ∈ ∆ is the dimension of ∆.

Page 5: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Simplicial Complexes

A simplicial complex ∆ on vertex set Ω is a collection of subsetsof Ω such thatF ∈ ∆, G ⊆ F ⇒ G ∈ ∆.

The elements of ∆ are called faces of ∆ and for a face F ∈ ∆dim(F ) := #F − 1 is the dimension of F .

dim ∆ := max dim(F ) | F ∈ ∆ is the dimension of ∆.

Page 6: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Simplicial Complexes

A simplicial complex ∆ on vertex set Ω is a collection of subsetsof Ω such thatF ∈ ∆, G ⊆ F ⇒ G ∈ ∆.

The elements of ∆ are called faces of ∆ and for a face F ∈ ∆dim(F ) := #F − 1 is the dimension of F .

dim ∆ := max dim(F ) | F ∈ ∆ is the dimension of ∆.

Page 7: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Simplicial Complexes

A simplicial complex ∆ on vertex set Ω is a collection of subsetsof Ω such thatF ∈ ∆, G ⊆ F ⇒ G ∈ ∆.

The elements of ∆ are called faces of ∆ and for a face F ∈ ∆dim(F ) := #F − 1 is the dimension of F .

dim ∆ := max dim(F ) | F ∈ ∆ is the dimension of ∆.

Page 8: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Combinatorial invariants for simplicial complexes

The vector f∆ =(f ∆−1, f ∆

0 , . . . , f ∆dim ∆

),

where f ∆i = # F ∈ ∆ | dim(F ) = i, is called the f-vector of ∆.

The h-vector of ∆ is the vector h∆ = (h∆0 , h∆

1 , . . . , h∆dim ∆+1),

where∑0≤i≤dim ∆+1 h∆

i xdim ∆+1−i =∑

0≤i≤d f ∆i−1(x − 1)dim ∆+1−i .

We call g∆ := (g∆0 , g∆

1 , . . . , g∆b dim ∆+1

2 c) the g-vector of ∆, where

g∆0 = 1 and g∆

i = h∆i − h∆

i−1 for 1 ≤ i ≤ bdim ∆+12 c.

Page 9: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Combinatorial invariants for simplicial complexes

The vector f∆ =(f ∆−1, f ∆

0 , . . . , f ∆dim ∆

),

where f ∆i = # F ∈ ∆ | dim(F ) = i, is called the f-vector of ∆.

The h-vector of ∆ is the vector h∆ = (h∆0 , h∆

1 , . . . , h∆dim ∆+1),

where∑0≤i≤dim ∆+1 h∆

i xdim ∆+1−i =∑

0≤i≤d f ∆i−1(x − 1)dim ∆+1−i .

We call g∆ := (g∆0 , g∆

1 , . . . , g∆b dim ∆+1

2 c) the g-vector of ∆, where

g∆0 = 1 and g∆

i = h∆i − h∆

i−1 for 1 ≤ i ≤ bdim ∆+12 c.

Page 10: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Combinatorial invariants for simplicial complexes

The vector f∆ =(f ∆−1, f ∆

0 , . . . , f ∆dim ∆

),

where f ∆i = # F ∈ ∆ | dim(F ) = i, is called the f-vector of ∆.

The h-vector of ∆ is the vector h∆ = (h∆0 , h∆

1 , . . . , h∆dim ∆+1),

where∑0≤i≤dim ∆+1 h∆

i xdim ∆+1−i =∑

0≤i≤d f ∆i−1(x − 1)dim ∆+1−i .

We call g∆ := (g∆0 , g∆

1 , . . . , g∆b dim ∆+1

2 c) the g-vector of ∆, where

g∆0 = 1 and g∆

i = h∆i − h∆

i−1 for 1 ≤ i ≤ bdim ∆+12 c.

Page 11: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The barycentric subdivision

The barycentric subdivision sd(∆) of a simplicial complex ∆ isthe simplicial complex on vertex set ∆ := ∆ \ ∅ whosesimplices are flags

A0 ( A1 ( . . . ( At

of elements Aj ∈ ∆ for 0 ≤ j ≤ t .

Page 12: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

M-sequence

Given an integer d > 0 any a ∈ N can uniquely be written in theform

a =

(kd

d

)+

(kd−1

d − 1

)+ · · ·+

(kj

j

),

where kd > kd−1 > · · · > kj ≥ j ≥ 1.

We define a<d> :=(kd+1

d+1

)+

(kd−1+1d

)+ · · ·+

(kj+1j+1

)and set

0<d> = 0.

A sequence (a0, . . . , at) ∈ Nt+1 is called an M-sequence ifa0 = 1 and ai+1 ≤ a<i>

i for 1 ≤ i ≤ t − 1.

Page 13: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

M-sequence

Given an integer d > 0 any a ∈ N can uniquely be written in theform

a =

(kd

d

)+

(kd−1

d − 1

)+ · · ·+

(kj

j

),

where kd > kd−1 > · · · > kj ≥ j ≥ 1.

We define a<d> :=(kd+1

d+1

)+

(kd−1+1d

)+ · · ·+

(kj+1j+1

)and set

0<d> = 0.

A sequence (a0, . . . , at) ∈ Nt+1 is called an M-sequence ifa0 = 1 and ai+1 ≤ a<i>

i for 1 ≤ i ≤ t − 1.

Page 14: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

M-sequence

Given an integer d > 0 any a ∈ N can uniquely be written in theform

a =

(kd

d

)+

(kd−1

d − 1

)+ · · ·+

(kj

j

),

where kd > kd−1 > · · · > kj ≥ j ≥ 1.

We define a<d> :=(kd+1

d+1

)+

(kd−1+1d

)+ · · ·+

(kj+1j+1

)and set

0<d> = 0.

A sequence (a0, . . . , at) ∈ Nt+1 is called an M-sequence ifa0 = 1 and ai+1 ≤ a<i>

i for 1 ≤ i ≤ t − 1.

Page 15: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Outline

1 Basic definitions and background

2 Combinatorial g-Theorems: Classical and new results

3 Inequalities for the refined Eulerian statistics onpermutations

Page 16: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)(h0, . . . , hd) is the h-vector of a d-dimensional simplicialpolytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,h0 ≤ h1 ≤ · · · ≤ hb d

2 cand the vector

(h0, h1 − h0, h2 − h1, . . . , hb d2 c− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)Let ∆ be a simplicial sphere. Then its g-vector is anM-sequence.

Page 17: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)(h0, . . . , hd) is the h-vector of a d-dimensional simplicialpolytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,h0 ≤ h1 ≤ · · · ≤ hb d

2 cand the vector

(h0, h1 − h0, h2 − h1, . . . , hb d2 c− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)Let ∆ be a simplicial sphere. Then its g-vector is anM-sequence.

Page 18: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)(h0, . . . , hd) is the h-vector of a d-dimensional simplicialpolytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,h0 ≤ h1 ≤ · · · ≤ hb d

2 cand the vector

(h0, h1 − h0, h2 − h1, . . . , hb d2 c− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)Let ∆ be a simplicial sphere. Then its g-vector is anM-sequence.

Page 19: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The classical g-theorem and the g-conjecture

Theorem (Stanley, Billera, Lee)(h0, . . . , hd) is the h-vector of a d-dimensional simplicialpolytope if and only if hi = hd−i for all 0 ≤ i ≤ d ,h0 ≤ h1 ≤ · · · ≤ hb d

2 cand the vector

(h0, h1 − h0, h2 − h1, . . . , hb d2 c− hb d

2 c−1) is an M-sequence.

Conjecture (McMullen)Let ∆ be a simplicial sphere. Then its g-vector is anM-sequence.

Page 20: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions ofcertain classes of simplicial complexes

Theorem (K., Nevo)Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicialcomplex. Then the g-vector of its barycentric subdivision sd(∆)is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisionsof simplicial spheres, of homology spheres and of doublyCohen-Macaulay complexes.

Furthermore, hsd(∆)i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−22 c.

Page 21: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions ofcertain classes of simplicial complexes

Theorem (K., Nevo)Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicialcomplex. Then the g-vector of its barycentric subdivision sd(∆)is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisionsof simplicial spheres, of homology spheres and of doublyCohen-Macaulay complexes.

Furthermore, hsd(∆)i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−22 c.

Page 22: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions ofcertain classes of simplicial complexes

Theorem (K., Nevo)Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicialcomplex. Then the g-vector of its barycentric subdivision sd(∆)is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisionsof simplicial spheres, of homology spheres and of doublyCohen-Macaulay complexes.

Furthermore, hsd(∆)i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−22 c.

Page 23: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions ofcertain classes of simplicial complexes

Theorem (K., Nevo)Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicialcomplex. Then the g-vector of its barycentric subdivision sd(∆)is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisionsof simplicial spheres, of homology spheres and of doublyCohen-Macaulay complexes.

Furthermore, hsd(∆)i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−22 c.

Page 24: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

g-Theorems for barycentric subdivisions ofcertain classes of simplicial complexes

Theorem (K., Nevo)Let ∆ be a (d − 1)-dimensional Cohen-Macaulay simplicialcomplex. Then the g-vector of its barycentric subdivision sd(∆)is an M-sequence.

In particular, the g-conjecture holds for barycentric subdivisionsof simplicial spheres, of homology spheres and of doublyCohen-Macaulay complexes.

Furthermore, hsd(∆)i ≤ hsd(∆)

d−1−i for any 0 ≤ i ≤ bd−22 c.

Page 25: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Outline

1 Basic definitions and background

2 Combinatorial g-Theorems: Classical and new results

3 Inequalities for the refined Eulerian statistics onpermutations

Page 26: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The refined Eulerian statistics on permutations

Let Sd be the symmetric group on 1, . . . , d.For σ ∈ Sd let D(σ) := i ∈ [d − 1] | σ(i) > σ(i + 1) be thedescent set of σ and set des(σ) := #D(σ).

For d ≥ 1, 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ d we set

A(d , i , j) := # σ ∈ Sd | des(σ) = i , σ(1) = j.

Page 27: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

The refined Eulerian statistics on permutations

Let Sd be the symmetric group on 1, . . . , d.For σ ∈ Sd let D(σ) := i ∈ [d − 1] | σ(i) > σ(i + 1) be thedescent set of σ and set des(σ) := #D(σ).

For d ≥ 1, 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ d we set

A(d , i , j) := # σ ∈ Sd | des(σ) = i , σ(1) = j.

Page 28: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (1)

Corollary(i) A(d , j , r) ≤ A(d , d − 2 − j , r)

for d ≥ 1, 1 ≤ r ≤ d and 0 ≤ j ≤ b d−32 c.

(ii) A(d , 0, r) ≤ A(d , 1, r) ≤ . . . ≤ A(d , bd−12 c, r)

and

A(d , d − 1, r) ≤ A(d , d − 2, r) ≤ . . . ≤ A(d , dd−12 e, r)

for d ≥ 2 and 1 ≤ r ≤ d .

For d even, A(d , bd−12 c, r) may be larger or smaller than

A(d , dd−12 e, r).

Page 29: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (1)

Corollary(i) A(d , j , r) ≤ A(d , d − 2 − j , r)

for d ≥ 1, 1 ≤ r ≤ d and 0 ≤ j ≤ b d−32 c.

(ii) A(d , 0, r) ≤ A(d , 1, r) ≤ . . . ≤ A(d , bd−12 c, r)

and

A(d , d − 1, r) ≤ A(d , d − 2, r) ≤ . . . ≤ A(d , dd−12 e, r)

for d ≥ 2 and 1 ≤ r ≤ d .

For d even, A(d , bd−12 c, r) may be larger or smaller than

A(d , dd−12 e, r).

Page 30: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (1)

Corollary(i) A(d , j , r) ≤ A(d , d − 2 − j , r)

for d ≥ 1, 1 ≤ r ≤ d and 0 ≤ j ≤ b d−32 c.

(ii) A(d , 0, r) ≤ A(d , 1, r) ≤ . . . ≤ A(d , bd−12 c, r)

and

A(d , d − 1, r) ≤ A(d , d − 2, r) ≤ . . . ≤ A(d , dd−12 e, r)

for d ≥ 2 and 1 ≤ r ≤ d .

For d even, A(d , bd−12 c, r) may be larger or smaller than

A(d , dd−12 e, r).

Page 31: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (1)

Corollary(i) A(d , j , r) ≤ A(d , d − 2 − j , r)

for d ≥ 1, 1 ≤ r ≤ d and 0 ≤ j ≤ b d−32 c.

(ii) A(d , 0, r) ≤ A(d , 1, r) ≤ . . . ≤ A(d , bd−12 c, r)

and

A(d , d − 1, r) ≤ A(d , d − 2, r) ≤ . . . ≤ A(d , dd−12 e, r)

for d ≥ 2 and 1 ≤ r ≤ d .

For d even, A(d , bd−12 c, r) may be larger or smaller than

A(d , dd−12 e, r).

Page 32: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (2)

Corollary(i) A(d , j , 1) ≤ A(d , j , 2) ≤ . . . ≤ A(d , j , d)

for d d2 e = b d+1

2 c ≤ j ≤ d − 1.

(ii) A(d , j , 1) ≥ A(d , j , 2) ≥ . . . ≥ A(d , j , d)

for 0 ≤ j ≤ b d−22 c.

(iii) A(d , d−12 , 1) ≤ A(d , d−1

2 , 2) ≤ . . . ≤ A(d , d−12 , d−1

2 + 1)

≥ A(d , d−12 , d−1

2 + 2) ≥ . . . ≥ A(d , d−12 , d)

if d is odd.

(iv) A(d , j , 1) = A(d , j + 1, d)

for 0 ≤ j ≤ d − 2.

Page 33: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (2)

Corollary(i) A(d , j , 1) ≤ A(d , j , 2) ≤ . . . ≤ A(d , j , d)

for d d2 e = b d+1

2 c ≤ j ≤ d − 1.

(ii) A(d , j , 1) ≥ A(d , j , 2) ≥ . . . ≥ A(d , j , d)

for 0 ≤ j ≤ b d−22 c.

(iii) A(d , d−12 , 1) ≤ A(d , d−1

2 , 2) ≤ . . . ≤ A(d , d−12 , d−1

2 + 1)

≥ A(d , d−12 , d−1

2 + 2) ≥ . . . ≥ A(d , d−12 , d)

if d is odd.

(iv) A(d , j , 1) = A(d , j + 1, d)

for 0 ≤ j ≤ d − 2.

Page 34: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (2)

Corollary(i) A(d , j , 1) ≤ A(d , j , 2) ≤ . . . ≤ A(d , j , d)

for d d2 e = b d+1

2 c ≤ j ≤ d − 1.

(ii) A(d , j , 1) ≥ A(d , j , 2) ≥ . . . ≥ A(d , j , d)

for 0 ≤ j ≤ b d−22 c.

(iii) A(d , d−12 , 1) ≤ A(d , d−1

2 , 2) ≤ . . . ≤ A(d , d−12 , d−1

2 + 1)

≥ A(d , d−12 , d−1

2 + 2) ≥ . . . ≥ A(d , d−12 , d)

if d is odd.

(iv) A(d , j , 1) = A(d , j + 1, d)

for 0 ≤ j ≤ d − 2.

Page 35: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

New Inequalities forthe refined Eulerian statistics (2)

Corollary(i) A(d , j , 1) ≤ A(d , j , 2) ≤ . . . ≤ A(d , j , d)

for d d2 e = b d+1

2 c ≤ j ≤ d − 1.

(ii) A(d , j , 1) ≥ A(d , j , 2) ≥ . . . ≥ A(d , j , d)

for 0 ≤ j ≤ b d−22 c.

(iii) A(d , d−12 , 1) ≤ A(d , d−1

2 , 2) ≤ . . . ≤ A(d , d−12 , d−1

2 + 1)

≥ A(d , d−12 , d−1

2 + 2) ≥ . . . ≥ A(d , d−12 , d)

if d is odd.

(iv) A(d , j , 1) = A(d , j + 1, d)

for 0 ≤ j ≤ d − 2.

Page 36: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

What the proof essentially relies on

Theorem (Brenti, Welker):Let ∆ be a (d − 1)-dimensional simplicial complex and letsd(∆) be its barycentric subdivision. Then

hsd(∆)j =

d∑r=0

A(d + 1, j , r + 1)h∆r

for 0 ≤ j ≤ d .algebraical ’version’ of the combinatorial g-theorem for thebarycentric subdivisions of (d − 1)-dimensional simplicialcomplexes

Page 37: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

What the proof essentially relies on

Theorem (Brenti, Welker):Let ∆ be a (d − 1)-dimensional simplicial complex and letsd(∆) be its barycentric subdivision. Then

hsd(∆)j =

d∑r=0

A(d + 1, j , r + 1)h∆r

for 0 ≤ j ≤ d .algebraical ’version’ of the combinatorial g-theorem for thebarycentric subdivisions of (d − 1)-dimensional simplicialcomplexes

Page 38: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Example for the refined Eulerian numbers

d = 6:

1 0 0 0 0 026 16 8 4 2 166 66 60 48 36 2626 36 48 60 66 661 2 4 8 16 260 0 0 0 0 1

Page 39: Lefschetz algebras and Eulerian numbersslc/wpapers/s60vortrag/kubitzke.pdf · Basic definitions and background Combinatorial g-Theorems Eulerian Numbers Simplicial Complexes A simplicial

logo

Basic definitions and background Combinatorial g-Theorems Eulerian Numbers

Thank you for your attention!

Questions?