leeor kronik department of materials & interfaces, weizmann institute of science excitation gaps...

30
Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally-Tuned Range-Separated Hybrid Functionals: 5 th Benasque TDDFT Workshop, January 2012

Upload: gerald-parmiter

Post on 30-Mar-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Leeor KronikDepartment of Materials & Interfaces,

Weizmann Institute of Science

Excitation gaps of finite-sized systems from Optimally-Tuned Range-Separated Hybrid Functionals:

5th Benasque TDDFT Workshop, January 2012

Page 2: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

The Group

Funding European Research CouncilIsrael Science Foundation

Germany-Israel FoundationUS-Israel Binational Science Foundation

Lise Meitner Center for Computational ChemistryAlternative Energy Research Initiative

Tami Zelovich

Ido Azuri Ariel BillerBaruch

FeldmanEli

Kraisler

Sivan Abramson

Andreas Karolewski(visiting)

Ofer Sinai

Anna Hirsch

Page 3: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

The people

Tamar Stein

(Hebrew U)

Roi Baer

Sivan Refaely-Abramson

Natalia Kuritz

(Weizmann Inst.)

Kronik, Stein, Refaely-Abramson, Baer, J. Chem. Theo. Comp. (Perspectives Article), to be published

Page 4: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Fundamental and optical gap – the quasi-particle picture

derivative discontinuity!IP

EA

Evac

(a) (b)

Eg Eopt

See, e.g., Onida, Reining, Rubio, RMP ‘02; Kümmel & Kronik, RMP ‘08

Page 5: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Mind the gapThe Kohn-Sham gap underestimates the real gap

xcHOMOKS

LUMOKSg AIE

Perdew and Levy, PRL 1983;

Sham and Schlüter, PRL 1983

derivative discontinuity!

Kohn-Sham eigenvalues do not mimic the quasi-particle picture

even in principle!

Page 6: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

H2TPPEn

ergy

[eV] -2.9

-4.7

-2.5

-5.2

-1.4

-6.2

-1.5

-6.2

-1.7

-6.4

2.11.92.12.24.71.8 2.7 4.8 4.7

GGA B3LYP OT-BNL GW-BSE EXP

2.0

-IP, -EA Eopt

TD TD TD

Page 7: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Wiggle room: Generalized Kohn-Sham theory

Seidl, Goerling, Vogl, Majevski, Levy, Phys. Rev. B 53, 3764 (1996).Kümmel & Kronik, Rev. Mod. Phys. 80, 3 (2008)Baer et al., Ann. Rev. Phys. Chem. 61, 85 (2010).

- Derivative discontinuity problem possibly mitigated by non-local operator!!

- Map to a partially interacting electron gas that is represented by a single Slater determinant.

- Seek Slater determinant that minimizes an energy functional S[{φi}] while yielding the original density

- Type of mapping determines the functional form

)()()];([)(}][{ˆ rrrnvrVO iiiRionjS

Page 8: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Hybrid functionals are a special case of Generalized Kohn-Sham theory!

)()()];([)];([)1(ˆ)];([)(2

1 2 rrrnvrnvaVarnVrV iiislc

slxFHion

Does a conventional hybrid functional solve the gap problem?

Page 9: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

H2TPPEn

ergy

[eV] -2.9

-4.7

-2.5

-5.2

-1.4

-6.2

-1.5

-6.2

-1.7

-6.4

2.11.92.12.24.71.8 2.7 4.8 4.7

GGA B3LYP OT-BNL GW-BSE EXP

2.0

-IP, -EA Eopt

TD TD TD

Page 10: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Need correct asymptotic potential!

Can’t work without full exact exchange!

But then, what about correlation?

How to have your cake and eat it too?

Page 11: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Range-separated hybrid functionalsCoulomb operator decomposition:

)(erf)(erfc 111 rrrrr

Short Range Long Range

Emphasize long-range exchange, short-range exchange correlation!

See, e.g.: Leininger et al., Chem. Phys. Lett. 275, 151 (1997)Iikura et al., J. Chem. Phys. 115, 3540 (2001) Yanai et al., Chem. Phys. Lett. 393, 51 (2004)

Kümmel & Kronik, Rev. Mod. Phys. 80, 3 (2008).

But how to balance??

)()()];([)];([ˆ)];([)(2

1 ,,2 rrrnvrnvVrnVrV iiislc

srx

lrFHion

Page 12: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

How to choose ?

);();1(HOMO NENE gsgs “Koopmans’ theorem”

Need both IP(D), EA(A) choose to best obey “Koopmans’ theorem” for both neutral donor and charged acceptor:

,0

2, ));();1(()(i

ii

iii

HOMO NENEJgsgs

Minimize

Tune, don’t fit, the range-separation parameter!

Page 13: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Tuning the range-separation parameter

)1()1()()()( NIPNNIPNJ HH

)(min)( JJ opt

Neutral molecule (IP)

Anion (EA)

Page 14: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

H2TPPEn

ergy

[eV] -2.9

-4.7

-2.5

-5.2

-1.4

-6.2

-1.5

-6.2

-1.7

-6.4

2.11.92.12.24.71.8 2.7 4.8 4.7

GGA B3LYP OT-BNL GW-BSE EXP

2.0

-IP, -EA Eopt

TD TD TD

Page 15: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Gaps of atoms

Stein, Eisenberg, Kronik, Baer, Phys. Rev. Lett., 105, 266802 (2010).

Page 16: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Fundamental gaps of acenes

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7

Gap

(eV

)

n

Ref

BNL* orb. gap

0.31

0.28

0.25

0.22

0.20

0.19

Stein, Eisenberg, Kronik, Baer, Phys. Rev. Lett., 105, 266802 (2010).

Page 17: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Fundamental gaps of hydrogenated Si

nanocrystals

GW: Tiago & Chelikowsky, Phys. Rev. B 73, 2006

DFT: Stein, Eisenberg, Kronik, Baer, PRL 105, 266802 (2010).

s.

0

2

4

6

8

10

12

14

0 5 10 15

En

erg

y (

eV

)

Diameter (Å)

-LumoGW EA-HOMOSeries4Exp IP

0.140.13

0.12

0.240.33

0.41

Page 18: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

6 6.5 7 7.5 8 8.5 9 9.5 10 10.55

6

7

8

9

10

11

Experimental ionization energy [eV]

-H

OM

O

Ionization Energy

[eV

]

EXP

GW

OT-BNL

B3LYP

GW data: Blasé et al., PRB 83, 115103 (2011)

S. Refaely-Abramson, R. Baer, and L. Kronik, Phys.Rev. B 84 ,075144 (2011) [Editor’s choice].

Page 19: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Optical gaps with Time-dependent DFTTDDFT: BNL results as accurate

as those of B3LYP

a – thiopheneb – thiadiazolec – benzothiadiazoled – benzothiazolee – flourenef – PTCDAg – C60

h – H2Pi – H2TPPj – H2Pc S. Refaely-Abramson, R. Baer, and L. Kronik, Phys.Rev. B 84 ,075144 (2011)

Page 20: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

The charge transfer excitation problem

Liao et al., J. Comp. Chem. 24, 623 (2003).

Time-dependent density functional theory (TDDFT), usingeither semi-local or standard hybrid functionals, can

seriously underestimate charge transfer excitation energies!Biphenylene – tetracyanoethylene:

B3LYP: 0.77 eV

Experiment: 2 eV

zincbacteriochlorin-phenylene-bacteriochlorin:

GGA (BLYP): 1.33 eV

CIS: 3.75 eV

Druew and Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).

Page 21: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

The Mulliken limitIn the limit of well-separated donor and acceptor:

Neither the gap nor the ~1/r dependence obtained for standard functionals!

Both obtained with the optimally-tuned range-separated hybrid!

Coulomb attraction

RAEADIPh /1)()(CT

Page 22: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Results – gas phase Ar-TCNE

Stein, Kronik, Baer, J. Am. Chem. Soc. (Comm.) 131, 2818 (2009).

Donor TD-PBE

TD-B3LYP

TD-BNL =0.5

TD-BNL

Best

Exp G0W0-BSE

GW-BSE(psc)

benzene1.6 2.1 4.4 3.8 3.59 3.2 3.6

toluene1.4 1.8 4.0 3.4 3.36 2.8 3.3

o-xylene1.0 1.5 3.7 3.0 3.15 2.7 2.9

Naphthalene 0.4 0.9 3.3 2.7 2.60 2.4 2.6

MAE2.1 1.7 0. 8 0.1 --- 0.4 0.1

Thygesen

PRL ‘11Blase

APL ‘11

Page 23: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Partial Charge Transfer: Coumarin dyes

Page 24: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Sensitivity to the LR parameter

Wong, B. M.; Cordaro, J. G., J. Chem. Phys. 129, 214703 (2008).

Page 25: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Instead of fitting: tuning

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C343 NKX 2388 s-tran

s

NKX 2388 s-cis

NKX 2311

s-trans

NKX 2311 s-cis

NKX 2586 s-tran

s

NKX 2586 s-cis

NKX 2677

Mean MAD

Fit to CC2 -0.08 0.02 0.05 0.02 0.02 0 0 -0.04 0.00 0.03

BNL* 1 0.01 0.09 0.11 0.03 0 -0.05 -0.05 -0.02 0.02 0.05

BNL* 2 or 3 -0.08 -0.06 -0.01 -0.1 -0.11 -0.17 -0.17 -0.23 -0.12 0.12

Dif

fere

nce

fro

m C

C2

(eV

)

Stein, T.; Kronik, L.; Baer, R., J. Chem. Phys. 131, 244119 (2009).

Page 26: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Optical excitations: Fixing the La, Lb problem of oligoacenes

Kuritz, Stein, Baer, Kronik, J. Chem. Theo. Comp. 7, 2408 (2011).

2 3 4 5 61.10

1.60

2.10

2.60

3.10

3.60

4.10

4.60

5.10 LaCC2

B3LYP

BNL (Tuned)

BP86*

N – number of benzene rings

exci

tatio

n en

ergy

[eV

]

2 3 4 5 61.10

1.60

2.10

2.60

3.10

3.60

4.10

4.60

5.10Lb CC2

B3LYPBNL (Tuned)BP86*

N-number of benzene rings

exci

tatio

n en

ergy

[eV

]

Page 27: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

HOMO-1

HOMO

LUMO

LUMO +1Energy LUMO

HOMO

1Lb excitation La excitation

Where’s the charge transfer?

Page 28: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

KEY: Mixing HOMO-LUMO“Charge-transfer-like” excitation

HOMO LUMO

LUMO-HOMO

LUMO+HOMO N. Kuritz, T. Stein, R. Baer, L. Kronik, JCTC 7, 2408

(2011).

Page 29: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Conclusions

Kohn-Sham quasi-particle Optical

GW GW+BSE

RSH TD-RSH

Kronik, Stein, Refaely-Abramson, Baer, J. Chem. Theo. Comp. (Perspectives Article), to be published

Page 30: Leeor Kronik Department of Materials & Interfaces, Weizmann Institute of Science Excitation gaps of finite-sized systems from Optimally- Tuned Range-Separated

Two different paradigms for functional development and applications

Tuning is NOT fitting! Tuning is NOT semi-empirical!

From To

Choose the right tool (=range parameter) for the right reason (=Koopmans’ theorem)