led - electrical design

Upload: vodanh152001

Post on 04-Apr-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/29/2019 LED - Electrical Design

    1/30

    Basic Electrical Design

    Linear Forward Voltage ModelingLinear Forward Voltage Modeling

    Series and Parallel Drive CircuitsSeries and Parallel Drive Circuits PWM and DimmingPWM and Dimming

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    2/30

    LZ Series Typical VF Characteristics

    1250

    1500Typical AlInGaP

    VF Curve

    Typical InGaN

    VF Curve

    1000

    urrent(m

    A)

    RD = VF /IF(Red 0.6

    RD = VF /IF(Blue 0.5

    500

    750

    -Fo

    rwardC

    0

    250

    IF

    AlInGaP

    Cutin Voltage

    InGaN

    Cutin Voltage

    0 1 2 3 4 5

    VF - Forward Voltage (V)

    LedEngin ConfidentialLedEngin, Inc.

    dVf/dTj = 24mV/C

  • 7/29/2019 LED - Electrical Design

    3/30

    Derivation of Linear Model

    EquationV = V + I

    ProcedureMeasure VFversus IF

    rap a a on a near sca eDraw straight line tangent to actual data through

    points (VF1, IF1) and (VF2, IF2) F O

    Note: Model worksover a limited ran e

    ( )( )12

    1221

    FF

    FFFFO

    II

    IVIVV

    =

    of forward current( )( )12

    12

    FF

    FFS

    II

    VVR

    =

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    4/30

    Linear Forward Voltage modeling

    TTjj = 25= 25CC

    VVff = V= V00 ++ RRss * I* Iff==

    300

    350

    400

    Rs=d

    Vf-typ for Vf bin a)

    ss

    VV00 = Threshold Voltage= Threshold VoltageRRss typtyp == dVdVff // dIdIffRR may vary from part to partmay vary from part to part 150

    200

    250

    urrent(mA

    )

    /dI

    =0.3V/0.25

    -

    TTjj > 25> 25C:C: 50

    100

    Forward

    A=1.2

    VVff = V= V00 + (+ (RRss * I* Iff)+ ()+ (dVf/dTdVf/dTjj * (* (TTjj -- 2525C))C))

    Example for Red and Amber (Example for Red and Amber (AlInGaPAlInGaP):):

    ** **

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Forward Voltage (V)

    = . .= . . .. -- --VfVf=2.58V+0.42V=2.58V+0.42V--0.19V=2.81V0.19V=2.81V

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    5/30

    Pros and Cons of Linear Model

    ProsPros ConsCons

    qua on can e so ve orqua on can e so ve or

    IIFF == ff((VVFF)) Can be substituted intoCan be substituted into

    m e ynam c rangem e ynam c range

    (

  • 7/29/2019 LED - Electrical Design

    6/30

    Paralleled LEDs

    +

    +

    IF

    VF IF1 IF2LED1 LED2 VF

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    7/30

    Ex Vf M hin f r LZ- ri Pr

    3.4

    2.8

    3.0

    3.2

    2.2

    2.4

    2.6

    F

    Ra

    tio

    1.6

    1.8

    2.0I

    1.0

    1.2

    1.4

    0.10 0.15 0.20 0.25 0.30 0.3

    LedEngin ConfidentialLedEngin, Inc.

    Design Current (Amps)

  • 7/29/2019 LED - Electrical Design

    8/30

    Improving Matching of Paralleled LEDs

    us ng a anc ng es s ors

    IF

    R R

    VF IF1

    IF2LED1 LED2 VF

    +

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    9/30

    Effect of Balancing Resistor

    Expected matching for paralleled 1%-tile and 99%-tile white Luxe

    with 0.75 ohm external series resistor for each LED

    3.4

    2.8

    3.0

    3.2

    2.0

    2.2

    2.4

    .

    IF

    ratio

    1.2

    1.4

    1.6

    1.8

    1.0

    LED drive current

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    10/30

    Series String Drive Circuits

    IF

    Resistor R = Current Limiting Device

    R R R R

    +V+

    V-F

    -

    Series String Series String Series String Series String

    2 LED 3 LED 4 LED 5 LED

    F

    FS

    IR

    =

    RI FSF

    =

    More sensitive to var in Vs Hi her s stem efficienc

    LedEngin ConfidentialLedEngin, Inc.

    Less sensitive to varying Vs; Lower system efficiency

  • 7/29/2019 LED - Electrical Design

    11/30

    Typical Circuit Configurations

    +R

    X strings

    +

    X strings

    VIN Y LEDlamps per

    strin

    Y LED

    lamps per

    VIN

    X strings

    Paralleled strings

    Configuration B

    Series-connected strings

    Configuration A

    +

    Z LED lamps per rung.

    Note z = 1,2Y LED

    R

    IN (z = 1 is illustrated)

    string

    LedEngin ConfidentialLedEngin, Inc.

    -Configuration C

  • 7/29/2019 LED - Electrical Design

    12/30

    Dimming Using Pulse Width Modulation

    Duty Factor (%) = ton/(ton+toff)*100

    If

    time ms

    DF=10%

    If DF=50% t t

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 time(ms)

    IfDF=100%

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    13/30

    Dimming Operation

    Disadvantages of DC driveDisadvantages of DC drive

    Light output matching is worse at low currentsLight output matching is worse at low currents Low current operation of paralleled strings ofLow current operation of paralleled strings of

    variationsvariations

    Benefits of PWM operationBenefits of PWM operation r ve amps at same pea current ut at owr ve amps at same pea current ut at ow

    duty cycleduty cycle

    Eliminates matchin roblems caused b drivinEliminates matchin roblems caused b drivin

    at low currentsat low currents

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    14/30

    Electrical Design Summary

    Key PointsKey Points

    Forward characteristics of LEDs can be modeled.Forward characteristics of LEDs can be modeled.

    LEDs can be driven with either a current source orLEDs can be driven with either a current source or

    series with the LED. LEDs should NOT be drivenseries with the LED. LEDs should NOT be driven

    directly from a voltage source.directly from a voltage source. LEDs can be connected in parallel, only if theLEDs can be connected in parallel, only if the

    LEDs are from the same VLEDs are from the same VFF Bin and driven atBin and driven at

    current).current).

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    15/30

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    16/30

    Content

    DC/DC Circuit ApproachesDC/DC Circuit Approaches

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    17/30

    Basic DC Circuit Approaches

    Resistor Voltage Regulator + Resistor Current Source

    Fixed current

    RR

    Voltageregulator

    Current

    source

    dcsource

    (variable)

    dcsource

    (variable)

    csource

    (variable)

    R

    VVI FINF

    = R

    VVI FREGF

    = constantIF

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    18/30

    Resistor Circuit Design Example

    Example for VF = 12V, IF = 1000mA, R j-air = 50C/W, VF/T = -3mV/C

    R

    Vf Bin Bin Range

    [V]

    Resistor

    [ ]

    R (5% tol)

    [ ]

    P_resistor

    [W]F 3.2 3.44 8.80 9.1 9.1

    G 3.44 3.68 8.56 9.1 9.1

    IN

    dc input

    voltage

    F 3.68 3.92 8.32 8.2 8.2

    G 3.92 4.16 8.08 8.2 8.2

    F 4.16 4.4 7.84 7.5 7.5

    nVV

    FI=

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    19/30

    Pros/Cons of Resistor Circuit

    ProsPros ConsCons

    eas expens ve c rcueas expens ve c rcu

    Electrical transientsElectrical transientsgenerally do not damagegenerally do not damage

    equ res res s or se ec onequ res res s or se ec on

    for each LED Vfor each LED VFF categorycategory Forward current throughForward current through

    c rcu u may armc rcu u may arm ss s no regu a e we ors no regu a e we orchanging input voltagechanging input voltage

    Power inefficientPower inefficient

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    20/30

    Pros/Cons Voltage Regulator/Resistor Circuit

    ProsPros

    Re ulates forwardRe ulates forward

    ConsCons

    More expensive than resistorMore expensive than resistor

    current throughcurrent through LEDsLEDsdue to input voltagedue to input voltagevariationsvariations

    Requires resistor selection for each LEDRequires resistor selection for each LEDVVFF categorycategory

    Ma be susce tible to electricalMa be susce tible to electrical More power efficientMore power efficient

    than resistor alone atthan resistor alone at

    high input voltageshigh input voltages

    transients/ reverse voltagestransients/ reverse voltages

    Forward current will vary overForward current will vary over

    tem erature due totem erature due to VV //T of LEDsT of LEDs

    Requires higher minimum input voltageRequires higher minimum input voltagethan resistor due to minimum voltagethan resistor due to minimum voltagedro across re ulatordro across re ulator

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    21/30

    Pros/Cons of Current Source Circuit

    ProsPros ConsCons

    egu a es orwar currenegu a es orwar curren

    through LEDs due to boththrough LEDs due to bothinput voltage variations asinput voltage variations as

    oug y same cos asoug y same cos as

    voltage regulator plusvoltage regulator plusresistor circuit.resistor circuit.

    FF Forward current isForward current is

    unaffected by LED Vunaffected by LED VFF

    ay e suscep e oay e suscep e oelectrical transients/ reverseelectrical transients/ reverse

    voltagesvoltages FF of LEDsof LEDs

    Roughly same powerRoughly same power

    ay ave g er m n mumay ave g er m n muminput voltage requirementinput voltage requirementthan voltage regulator plusthan voltage regulator plus

    regulator plus resistor circuitregulator plus resistor circuitat high input voltagesat high input voltages

    across sense resistoracross sense resistor

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    22/30

    Simple Current Source

    +

    n

    RSENSE

    VREF

    +input

    voltage

    ( )( )VV BEREF

    Note: VBE varies by ~ -2mV/C, so current will change over temperature, unless temperature

    ( )1RSENSEF +

    LedEngin ConfidentialLedEngin, Inc.

    .Note: Minimum input voltage is approximately VREF + nVF.

  • 7/29/2019 LED - Electrical Design

    23/30

    DC/DC Converter Circuits

    Most useful topologies for LED drivers are Boost, Buck, BuckMost useful topologies for LED drivers are Boost, Buck, Buck--,, -- ..

    Some topologies can generate a regulated output voltageSome topologies can generate a regulated output voltagegreater than input voltage.greater than input voltage.

    os an comp ex y muc g er an o er es gns.os an comp ex y muc g er an o er es gns.

    Generally offer power efficiencies from 60 to 90%.Generally offer power efficiencies from 60 to 90%.

    May generate electrical transients that could damageMay generate electrical transients that could damage LEDsLEDs May generate electrical noise that could interfere with otherMay generate electrical noise that could interfere with other

    electronics.electronics.

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    24/30

    Boost Topology DC/DC Converter

    +

    Switch closed

    VIN LOADI

    _

    +

    VIN LOAD

    LedEngin ConfidentialLedEngin, Inc.

    INote: VIN < VLOAD

    _

  • 7/29/2019 LED - Electrical Design

    25/30

    Boost DC/DC Converter

    VOUT

    VBATT

    Control

    OUT BATT

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    26/30

    Buck Topology DC/DC Converter

    +

    ISwitch closed

    VIN LOAD

    _

    I

    +

    Switch open

    VIN LOADI

    LedEngin ConfidentialLedEngin, Inc.

    _

    Note: VIN > VLOAD

  • 7/29/2019 LED - Electrical Design

    27/30

    Buck DC/DC Converter

    VOUT

    BATT

    Control

    Note: VOUT < VBATT

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    28/30

    Cascaded DC/DC Converters

    Cascaded Buck Boost DC/DC Converter

    Buck BoostVBATT VOUT

    LedEngin ConfidentialLedEngin, Inc.

    van age: OUT < > BATT

  • 7/29/2019 LED - Electrical Design

    29/30

    Charge-Pump DC/DC converters

    V V

    + Cs COUTCIN

    Note: This circuit called a 1X, 2X converter because output

    LedEngin ConfidentialLedEngin, Inc.

  • 7/29/2019 LED - Electrical Design

    30/30

    1X, 1.5X, 2X Charge-Pump DC/DC Converter

    BATT OUT

    CS1COUT

    CS2

    Note: 1X Mode, CS1 and CS2 are both charged to VBATT, then connected to COUT

    1.5X Mode, CS1 and CS2 are connected in series, so they each charge to VBATT,then added to VBATT when connected to COUT

    LedEngin ConfidentialLedEngin, Inc.

    2X Mode, CS1 and CS2 are both charged to VBATT, then added to VBATT when connected toCOUT