lecture3-network matrices, the y-bus matrix; tap changing transformers

13
Power Systems I The Bus Admittance Matrix l The matrix equation for relating the nodal voltages to the currents that flow into and out of a network using the admittance values of circuit branches l Used to form the network model of an interconnected power system u Nodes represent substation bus bars u Branches represent transmission lines and transformers u Injected currents are the flows from generator and loads node bus inj V Y I = Network I k V k

Upload: leo232

Post on 14-Apr-2015

50 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Th

e B

us

Ad

mit

tan

ce M

atri

x

lT

he

mat

rix

equ

atio

n f

or

rela

tin

g t

he

no

dal

vo

ltag

es t

o t

he

curr

ents

th

at f

low

into

an

d o

ut

of

a n

etw

ork

usi

ng

th

ead

mit

tan

ce v

alu

es o

f ci

rcu

it b

ran

ches

lU

sed

to

fo

rm t

he

net

wo

rk m

od

el o

f an

inte

rco

nn

ecte

dp

ow

er s

yste

mu

Nod

es r

epre

sent

sub

stat

ion

bus

bars

uB

ranc

hes

repr

esen

t tra

nsm

issi

on li

nes

and

tran

sfor

mer

su

Inje

cted

cur

rent

s ar

e th

e flo

ws

from

gen

erat

or a

nd lo

ads

node

bus

inj

VY

I⋅

=N

etw

ork

I k

Vk

Page 2: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Th

e B

us

Ad

mit

tan

ce M

atri

x

lC

on

stru

ctin

g t

he

Bu

s A

dm

itta

nce

Mat

rix

(or

the

Y b

us

mat

rix)

ufo

rm th

e no

dal s

olut

ion

base

d up

on K

irchh

off’s

cur

rent

law

uim

peda

nces

are

con

vert

ed to

adm

ittan

ces

ijij

ijij

xj

rz

y+

==

11

()

()

()

nk

knk

kk

kk

kin

jk

VV

yV

Vy

VV

yV

yI

−+

+−

+−

+=

−K

22

11

0

Page 3: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mat

rix

Fo

rmat

ion

Exa

mp

le

j1.0

j0.8

j0.4

j0.2

j0.2

j0.0

8

4

312

Impe

danc

e D

iagr

am

gene

rato

r 1

z =

j1.0

line

12z

= j0

.4

line

13z

= j0

.2lin

e 23

z =

j0.2

line

34z

= j0

.08

43

12

Net

wor

k D

iagr

am

gene

rato

r 2

z =

j0.8

V2

V1

Page 4: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mat

rix

Fo

rmat

ion

Exa

mp

le

y 10=

-j1

.0

y 20=

-j1

.25

y 12

= -

j2.5

y 13=

-j5

y 23=

-j5

y 34

= -

j12.

5

12

Adm

ittan

ce D

iagr

am

I 2I 1

4

3

()

()

()

()

()

()

()

()

34

43

43

342

332

13

31

32

231

221

220

2

31

132

112

110

1 00

VV

y

VV

yV

Vy

VV

y

VV

yV

Vy

Vy

I

VV

yV

Vy

Vy

I

−=

−+

−+

−=

−+

−+

=−

+−

+=

KC

L E

quat

ions

Page 5: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mat

rix

Fo

rmat

ion

Exa

mp

le

()

()

()

443

343

434

334

3231

232

131

323

223

2120

121

2

313

212

113

1210

1 00

Vy

Vy

Vy

Vy

yy

Vy

Vy

Vy

Vy

yy

Vy

I

Vy

Vy

Vy

yy

I

+−

=−

++

+−

−=

−+

++

−=

−−

++

=Rea

rran

ging

the

KC

L E

quat

ions

()

()

()

−−

++

−−

−+

+−

−−

++

=

4321

4343

3434

3231

3231

2323

2120

21

1312

1312

10

21

00

00

00

VVVV

yy

yy

yy

yy

yy

yy

y

yy

yy

y

II

Mat

rix

For

mat

ion

of th

e E

quat

ions

Page 6: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mat

rix

Fo

rmat

ion

Exa

mp

le

()

()

()

−−

−−

=

−=

=−

=+

+=

=−

==

=−

==

−=

++

==

−=

==

−=

=−

=+

+=

4321

21

3444

2321

2022

3443

3413

3113

3432

3133

1221

12

2332

2313

1210

11

50.12

50.12

00

50.12

50.22

00.500.5

000.5

75.850.2

000.5

50.250.8

00

50.12

75.8

50.12

00.5

50.22

50.2

00.550.8

VVVV

jj

jj

jj

jj

j

jj

j

II

jy

Yj

yy

yY

jy

YY

jy

YY

jy

yy

Yj

yY

Y

jy

YY

jy

yy

Y

Com

plet

ed M

atri

x E

quat

ion

Page 7: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Y-B

us

Mat

rix

Bu

ildin

g R

ule

s

lS

qu

are

mat

rix

wit

h d

imen

sio

ns

equ

al t

o t

he

nu

mb

er o

fb

use

sl

Co

nve

rt a

ll n

etw

ork

imp

edan

ces

into

ad

mit

tan

ces

lD

iag

on

al e

lem

ents

:

lO

ff-d

iag

on

al e

lem

ents

:

lM

atri

x is

sym

met

rica

l alo

ng

th

e le

adin

g d

iag

on

al

ij

yY

n jij

ii≠

=∑ =0

ijji

ijy

YY

−=

=

Page 8: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Exa

mp

le

Sys

tem

Dat

aL

ine

Sta

rtE

nd

X v

alu

eg

11

01.

00g

25

01.

25L

11

20.

40L

21

30.

50L

32

30.

25L

42

50.

20L

53

40.

125

L6

45

0.50

Page 9: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Tap

-Ch

ang

ing

Tra

nsf

orm

ers

lT

he

tap

-ch

ang

ing

tra

nsf

orm

giv

es s

om

e co

ntr

ol o

f th

ep

ow

er n

etw

ork

by

chan

gin

g t

he

volt

ages

an

d c

urr

ent

mag

nit

ud

es a

nd

an

gle

s b

y sm

all a

mo

un

tsu

The

flow

of r

eal p

ower

alo

ng a

net

wor

k br

anch

is c

ontr

olle

d by

the

angu

lar

diffe

renc

e of

the

term

inal

vol

tage

su

The

flow

of r

eact

ive

pow

er a

long

a n

etw

ork

bran

ch is

con

trol

led

by th

e m

agni

tude

diff

eren

ce o

f the

term

inal

vol

tage

su

Rea

l and

rea

ctiv

e po

wer

s ca

n be

adj

uste

d by

vol

tage

-reg

ulat

ing

tran

sfor

mer

s an

d by

pha

se-s

hifti

ng tr

ansf

orm

ers

bus

i1:

abu

s j

a ca

n be

a

com

plex

num

ber

Page 10: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mo

del

ing

of

Tap

-Ch

ang

ers

uth

e of

f-no

min

al ta

p ra

tio is

giv

en a

s 1:

a

uth

e no

min

al tu

rns-

ratio

(N

1/N

2) w

as a

ddre

ssed

with

the

conv

ersi

on o

f the

net

wor

k to

per

uni

tu

the

tran

sfor

mer

is m

odel

ed a

s tw

o el

emen

ts jo

ined

toge

ther

at a

fictit

ious

bus

x

uba

sic

circ

uit e

quat

ions

:

Vi

I iV

xy t

Vj

I j

1:a

()

xi

ti

ji

ja

xV

Vy

II

aI

VV

−=

⋅−

==

*1

Page 11: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Mo

del

ing

of

Tap

-Ch

ang

ers

lM

akin

g s

ub

stit

uti

on

s

()

()

()

jt

it

ja

it

j

ia

j

ji

ja

it

i

xi

ti

ja

x

Vay

Vay

VV

ayI

II

Ia

I

VV

yI

VV

yI

VV

2*

1*

1*

1

1

*

+−

=−

−=

−=

⋅−

=

−=

−=

=

Page 12: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

YB

us

Fo

rmat

ion

of

Tap

-Ch

ang

ers

lM

atri

x fo

rmat

ion

{}

−−

=

+

=

+=

ji

tt

tt

ji

jt

it

j

jt

it

i

VV

ay

ay

ay

y

II

Vay

Vay

I

Vay

Vy

I

2*

2*

Page 13: Lecture3-Network Matrices, The Y-Bus Matrix; Tap Changing Transformers

Po

wer

Sys

tem

s I

Pi-

Cir

cuit

Mo

del

of

Tap

-Ch

ang

ers

lV

alid

fo

r re

al v

alu

es o

f a

lT

akin

g t

he

y-b

us

form

atio

n, b

reak

th

e d

iag

on

al e

lem

ents

into

tw

o c

om

po

nen

tsu

the

off-

diag

onal

ele

men

t rep

rese

nt th

e im

peda

nce

acro

ss th

e tw

obu

ses

uth

e re

mai

nder

form

the

shun

t ele

men

t

no

n-t

ap s

ide

tap

sid

ey t

/ a

(1 -

a)

y t /

a2(a

- 1

) y t

/ a

ji