lecture1_p1

Upload: huey-bio-ryon

Post on 12-Oct-2015

19 views

Category:

Documents


0 download

TRANSCRIPT

  • Physics 1: Mechanics Phan Bao Ngoc

    office: 413, email: [email protected]

    HCMIU, Vietnam National University

    website:

    http://www.hcmiu.edu.vn/webdirectory/Home/profile/pbngoc.aspx

  • No of credits: 02 (30 teaching hours)

    Text: Halliday/Resnick/Walker (2005) entitled

    Fundamentals of Physics, 7th edition, John Willey &

    Sons, Inc.

    References:

    Alonso M. and Finn E.J. (1992). Physics. Addison-

    Wesley Publishing Company

    Hecht, E. (2000). Physics. Calculus. Second

    Edition. Brooks/Cole

    Faughn/Serway (2006). Serways College Physics.

    Thomson Brooks/Cole

  • Course Requirements

    Attendance + Discussion + Homework: 15%

    Assignment: 15%

    Mid-term exam: 30%

    Final: 40%

  • Preparation for each class

    Read text ahead of time

    Finish homework

  • Part A Dynamics of Mass Point Chapter 1 Bases of Kinematics Chapter 2 Force and Motion (Newtons Laws)

    Part B Laws of Conservation Chapter 3 Work and Mechanical Energy Midterm exam after Lecture 6 Chapter 4 Linear Momentum and Collisions

    Part C Dynamics and Statics of Rigid Body Chapter 5 Rotation of a Rigid Body About a Fixed Axis Assignment given in Lecture 11 Chapter 6 Equilibrium and Elasticity Chapter 7 Gravitation Final exam after Lecture 12

  • Part A Dynamics of Mass Point Chapter 1 Bases of Kinematics 1. 1. Motion in One Dimension

    1.1.1. Position, Velocity, and Acceleration

    1.1.2. One-Dimensional Motion with Constant Acceleration

    1.1.3. Freely Falling Objects

    1. 2. Motion in Two Dimensions

    1.2.1. The Position, Velocity, and Acceleration Vectors

    1.2.2. Two-Dimensional Motion with Constant Acceleration.

    Projectile Motion

    1.2.3. Circular Motion. Tangential and Radial Acceleration

    1.2.4. Relative Velocity and Relative Acceleration

  • Measurements

    Use laws of Physics to describe our understanding of

    nature

    Test laws by experiments

    Need Units to measure physical quantities

    Three SI Base Quantities:

    Length meter [m]

    Mass kilogram [kg]

    Time second [s]

    Systems:

    SI: Systme International [m kg s]

    CGS: [cm gram second]

  • 1.1. Motion in one dimension

    Kinematics

    Kinematics describes motion

    Dynamics concerns causes of motion

    To describe motion, we need to measure:

    Displacement: x = xt x0 (measured in m or cm)

    Time interval: t = t t0 (measured in s)

    amF

    dynamics kinematics

  • 1.1.1. Position, Velocity and Acceleration

    A. Position: determined in

    a reference frame

    Motion of an armadillo

    Space vs. time graph

    t=0 s: x=-5 m t=3 s: x=0 m x=0-(-5)=5 m Two features of displacement: - its direction (a vector) - its magnitude

  • B. Velocity: (describing how fast an object moves)

    Unit: m/s or cm/s

    B.1. Average velocity:

    Theavg of the armadillo:

    2m/s3s

    6mavgv

    B.2. Average speed:

    t

    distancetotalsavg

    Note: average speed does not include direction

  • If a motorcycle travels 20 m in 2 s,

    then its average velocity is:

    If an antique car travels 45 km in 3 h, then its average velocity is:

  • Sample Problem 2-1

    8.4 km

    2 km

    0.8

    (km/h)11.10.500.500.122.02.08.4savg

    Vavg?

    (km/h)7.50.500.500.12

    8.4Vavg

    Savg?

  • B.3. Instantaneous Velocity and Speed

    The average velocity at a given instant (t 0), which

    approaches a limiting value, is the velocity:

    Speed is the magnitude of velocity, ex: v=40 km/h, so

    s=40 km/h

    dt

    dx(t)

    t

    x(t)limv(t)

    0t

    x

    0 t ti

    xi

    Tangent line

  • Sample Problem 2-3: The position of an object described by:

    x = 4-12t+3t2 (x: meters; t: seconds)

    (1) What is its velocity at t =1 s?

    (2) Is it moving in the positive or negative direction of x just then?

    (3) What is its speed just then?

    (4) Is the speed increasing or decreasing just then?

    (5) Is there ever an instant when the velocity is zero? If so, give the time t; if not answer no.

    (6) Is there a time after t= 3 s when the object is moving in the negative direction of x? if so, give t; if not, answer no.

    v=dx/dt=-12+6t=-6 (m/s)

    negative

    S=6 (m/s)

    0

  • C. Acceleration:

    C1. Average acceleration:

    The rate of change of velocity:

    Unit: m/s2 (SI) or cm/s2 (CGS)

    C2. Instantaneous acceleration:

    At any instant:

    The derivative of the velocity (or the second one of the position) with respect to time.

    12

    12avg

    tt

    vv

    t

    va

    2

    2

    0t dt

    xd

    dt

    dx

    dt

    d

    dt

    dv(t)

    t

    v(t)lima(t)

  • 1.1.2. Constant acceleration:

    If t0=0: (1)

    If t0=0: (2)

    )]dtta(t[vxvdtxx 0

    t

    t00

    t

    t0

    00

    constadt

    dva

    t

    t0

    0 adtvv

    dt

    dxv

    )ta(tvv 00

    2

    )ta(t)t(tvxx

    20

    000

    200

    2

    1tvxx at

    atvv 0

  • Specialized equations:

    From Equations (1) & (2):

    )x-2a(xv-v 020

    2

    tvv )(2

    1xx 00

    20

    2

    1vtxx at

  • Problem 21:

    An electron has a=3.2 m/s2

    At t (s): v=9.6 m/s

    Question: v at t1=t-2.5 (s) and t2=t+2.5 (s)?

    Key equation: v = v0+at (v0 is the velocity at 0 s)

    At time t: v = v0+at

    At t1: v1=v0+at1 v1=v+a(t1-t)=9.6+3.2x(-2.5) =1.6 (m/s)

    At t2: v2=v0+at2 v2=v+a(t2-t)=9.6+3.2(2.5)=17.6 (m/s)

  • 1.1.3. Freely falling objects: Free-fall is the state of an

    object moving solely under the influence of gravity.

    The acceleration of gravity near the Earths surface is a constant, g=9.8 m/s2 toward the center of the Earth.

    Free-fall on the Moon

    Free-fall in vacuum

  • Example: A ball is initially thrown upward along a y axis, with a velocity of 20.0 m/s at the edge of a 50-meters high building. (1) How long does the ball reach its maximum height? (2) What is the balls maximum height? (3) How long does the ball take to return to its release point? And its velocity at that point? (4) What are the velocity and position of the ball at t=5 s? (5) How long does the ball take to hit the ground? and what is its velocity when it strikes the ground?

    y

    Using two equations: atvv 0

    200 at

    2

    1tvyy

  • v0 = 20.0 m/s, y0 = 0, a = -9.8 m/s2

    We choose the positive direction is upward (1) How long does the ball reach its maximum height? At its maximum height, v = 0:

    (2) What is the balls maximum height?

    y

    gtvatvv 00

    (s) 04.28.9

    20vt 0

    g

    200 at

    2

    1tvyy

    2max 4)(-9.8)(2.0

    2

    12.04200y

    (m) 4.20ymax

  • We can use: At the balls maximum height:

    (3) How long does the ball take to return to its release point? And its velocity at that point? At the release point: y = 0 So:

    y

    )(2 02 yya 20vv

    max2 8.9200 y2

    (m) 4.20max y

    200 at

    2

    1tvyy

    29.8t2

    120t00

    (s) or 08.40 t t(s) 08.4t

  • You can also use: (4) What are the velocity and position of the ball at t=5 s?

    y gtvatvv 00

    (m/s) 209.8(4.08)20v

    )(2 02 yya 20vv

    downwardvvvv 20 :02

    (m/s) 0.2959.8-20gtvv 0

    (m) 5.229.8t2

    120ty 2

  • (5) How long does the ball take to hit the ground? and what is its velocity when it strikes the ground? When the ball strikes the ground, y = -50 m so

    y

    (m/s) 1.37(5.83)9.8-20gtvv 0

    509.8t2

    120ty 2

    (s) (s); 75.183.5 tt

    (s) 83.5t

  • Keywords of the lecture: 1. Displacement (m): measuring the change in position of an object in a reference frame

    x = xt x0 (one dimension) 2. Velocity (m/s): describing how fast an object moves

    v = x/t 3. Acceleration (m/s2): measuring the rate of change of velocity

    a = v/t

  • Homework:

    (1) Read Sec. 2-10.

    (2) From page 30: Problems 1-7, 14, 23, 27-29, 38,

    40, 45