lecture «robot dynamics»

23
| | 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE H303 Friday 12.15 13.00 Marco Hutter, Roland Siegwart, and Thomas Stastny 20.12.2016 Robot Dynamics - Summary Kinematics and Dynamics 1 Lecture «Robot Dynamics»: Summary

Upload: vuongnguyet

Post on 10-Feb-2017

242 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Lecture «Robot Dynamics»

||

151-0851-00 V

lecture: CAB G11 Tuesday 10:15 – 12:00, every week

exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

office hour: LEE H303 Friday 12.15 – 13.00

Marco Hutter, Roland Siegwart, and Thomas Stastny

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 1

Lecture «Robot Dynamics»: Summary

Page 2: Lecture «Robot Dynamics»

||

Topic Title20.09.2016 Intro and Outline L1 Course Introduction; Recapitulation Position, Linear Velocity, Transformation

27.09.2016 Kinematics 1 L2 Rotation Representation; Introduction to Multi-body Kinematics

28.09.2016 Exercise 1a E1a Kinematics Modeling the ABB arm

04.10.2016 Kinematics 2 L3 Kinematics of Systems of Bodies; Jacobians

05.10.2016 Exercise 1b L3 Differential Kinematics and Jacobians of the ABB Arm

11.10.2016 Kinematics 3 L4 Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation

Error; Multi-task Control

12.10.2016 Exercise 1c E1b Kinematic Control of the ABB Arm

18.10.2016 Dynamics L1 L5 Multi-body Dynamics

19.10.2016 Exercise 2a E2a Dynamic Modeling of the ABB Arm

25.10.2016 Dynamics L2 L6 Dynamic Model Based Control Methods

26.10.2016 Exercise 2b E2b Dynamic Control Methods Applied to the ABB arm

01.11.2016 Legged Robots L7 Case Study and Application of Control Methods

08.11.2016 Rotorcraft 1 L8 Dynamic Modeling of Rotorcraft I

15.11.2016 Rotorcraft 2 L9 Dynamic Modeling of Rotorcraft II & Control

16.11.2016 Exercise 3 E3 Modeling and Control of Multicopter

22.11.2016 Case Studies 2 L10 Rotor Craft Case Study

29.11.2016 Fixed-wing 1 L11 Flight Dynamics; Basics of Aerodynamics; Modeling of Fixed-wing Aircraft

30.11.2016 Exercise 4 E4 Aircraft Aerodynamics / Flight performance / Model derivation

06.12.2016 Fixed-wing 2 L12 Stability, Control and Derivation of a Dynamic Model

07.12.2016 Exercise 5 E5 Fixed-wing Control and Simulation

13.12.2016 Case Studies 3 L13 Fixed-wing Case Study

20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam 20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 2

Page 3: Lecture «Robot Dynamics»

||

Position

Different parameterizations, e.g.

Cartesian coordinates

Position vector

Cylindrical coordinates

Position vector

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 3

Position

, reference frames

Page 4: Lecture «Robot Dynamics»

||

Rotation

Rotation matrix

Different parameterizations, e.g.

Euler angles

Quaternions

Relation to rotation matrix:

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 4

Rotation

Introduction to algebra with quaternions, e.g.

Page 5: Lecture «Robot Dynamics»

||

Linear velocity

Representation

Angular velocity

Representation

e.g. quaternions

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 5

Velocity

e.g. cylindrical coordinates

Page 6: Lecture «Robot Dynamics»

||

Generalized coordinates

End-effector position and orientation paramterized by

Forward kinematics

Forward differential kinematics

Analytic

Geometric

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 6

Kinematics of Systems of Bodies

with

Depending on

parameterization!!

Independent of

parameterization

Page 7: Lecture «Robot Dynamics»

||

Linear velocity

Angular velocity

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 7

Geometric Jacobian Derivation

Page 8: Lecture «Robot Dynamics»

||

Analytical Jacobian

Relates time-derivatives of config. parameters

to generalized velocities

Depending on selected parameterization

(mainly rotation) in 3D

Note: there exist no “rotation angle”

Mainly used for numeric algorithms

Geometric (or basic) Jacobian

Relates end-effector velocity

to generalized velocities

Unique for every robot

Used in most cases

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 8

Analytical and Kinematic Jacobian

χ q

Page 9: Lecture «Robot Dynamics»

||

Kinematics (mapping of changes from joint to task space)

Inverse kinematics control

Resolve redundancy problems

Express contact constraints

Statics (and later also dynamics)

Principle of virtual work

Variations in work must cancel for all virtual displacement

Internal forces of ideal joint don’t contribute

Dual problem from principle of virtual work

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 9

Importance of Jacobian

0

TT

i i E E

i

TT

E

W

f x τ q F x

τ q F J q q

FE

1

2

3

T

qx

J

J

Page 10: Lecture «Robot Dynamics»

||

Differential kinematics

Inverse differential kinematics

Singularity: minimizing

Redundancy: null-space projection matrix

Multi-task control:

Equal priority

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 10

Inverse Differential Kinematics

Multi-task with prioritization

Page 11: Lecture «Robot Dynamics»

||

Numerical approach

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 11

Inverse Kinematics

Page 12: Lecture «Robot Dynamics»

||

Position error

Trajectory control with position-error feedback

Rotation error

Trajectory control with rotation-error feedback

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 12

Position/Rotation Errors and Trajectory Control

Page 13: Lecture «Robot Dynamics»

||

Describe system by base and joint coordinates

Base coordinates: rotation and position of base

Contact constraints:

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 13

Floating Base Kinematics

Page 14: Lecture «Robot Dynamics»

||

We learned how to get the equation of motion in joint space

Newton-Euler

Projected Newton-Euler

Lagrange II

Started from the principle for virtual work

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 14

Multi-body Dynamics

, T

c c M q q b q q g q J F τ

Generalized accelerations

Mass matrix

, Centrifugal and Coriolis forces

Gravity forces

Generalized forces

External forces

Contact Jacobian

c

c

q

M q

b q q

g q

τ

F

J

d external forces acting on element

acceleration of element

mass of element

virtual displacement of element

ext i

i

dm i

i

F

r

r

Page 15: Lecture «Robot Dynamics»

||

Use the following definitions

Conservation of impulse and angular momentum

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 15

Impulse and angular momentum

External forces and moments

Change in impulse and angular momentum

Newton

Euler

A free body can move

In all directions

Page 16: Lecture «Robot Dynamics»

||

Consider only directions the system can move (c.f. generalized coordinates)

Resulting in

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 16

Projected Newton Euler

M q ,b q q g q

0 W= T q q

Page 17: Lecture «Robot Dynamics»

||

Get equation of motion from

Kinetic energy

Potential energy

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 17

Lagrange II

d

dt

τ

q q q

T T U

Page 18: Lecture «Robot Dynamics»

||

Joint impedance control

Inverse dynamics control

Generalized motion and force control

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 18

Dynamic Control Methods

Page 19: Lecture «Robot Dynamics»

||

Torque as function of position and velocity error

Closed loop behavior

Static offset due to gravity

Impedance control and gravity compensation

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 19

Joint Impedance Control

Estimated gravity term

Page 20: Lecture «Robot Dynamics»

||

Compensate for system dynamics

In case of no modeling errors,

the desired dynamics can be perfectly prescribed

PD-control law

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 20

Inverse Dynamics Control

Page 21: Lecture «Robot Dynamics»

||

Joint-space dynamics

Determine the corresponding joint torque

Extend end-effector dynamics in contact with contact force

Introduce selection matrices to separate motion force directions

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 21

Operational Space Control

Generalized framework to control motion and force

End-effector dynamics

eF

ew

cF

c F

Page 22: Lecture «Robot Dynamics»

||

Equation of motion of floating base systems

Support-consistent

Inverse-dynamics

Multiple solutions

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 22

Inverse Dynamics of Floating Base Systems

Page 23: Lecture «Robot Dynamics»

||

We search for a solution that fulfills the equation of motion

Motion tasks:

Force tasks:

Torque min:

20.12.2016Robot Dynamics - Summary Kinematics and Dynamics 23

Operational Space Control as Quadratic Program

A general problem

2min τ