lecture on numerical differentiation

Upload: murada7

Post on 07-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Lecture on Numerical Differentiation

    1/102

    6/3/2011 1

    Differentiation-Continuous

    Functions

  • 8/6/2019 Lecture on Numerical Differentiation

    2/102

    2

    Forward Difference Approximation

    x

    xfxxf

    x

    xf

    0

    lim

    p

    !d

    For a finite '' x

    x

    xfxxfxf(

    (}d

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    3/102

    3

    x x+x

    f(x)

    Figure 1 Graphical Representation of forward difference approximation of first derivative.

    Graphical Representation OfForward Difference

    Approximation

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    4/102

  • 8/6/2019 Lecture on Numerical Differentiation

    5/102

    5

    Example 1 Cont.

    Solution

    t

    ttta iii

    (

    }

    RR 1

    16!it

    2 !t

    18

    2161

    !

    !(! ttt ii

    2

    161816

    RR }a

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    6/102

    6

    Example 1 Cont.

    188.91821001014

    1014ln200018

    4

    4

    v

    v!R

    m/s02.453!

    168.91621001014

    1014ln200016

    4

    4

    v

    v!R

    m/s07.392!

    Hence

    2

    161816

    RR }a

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    7/102

    7

    Example 1 Cont.

    2

    07.39202.453 }

    2m/s474.30}

    The exact value of 16a can be calculated by differentiating

    tt

    t 8.921001014

    1014ln2000

    4

    4

    v

    v!R

    as

    ? Atdt

    dta !

    b)

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    8/102

    8

    Example 1 Cont.

    Knowing that

    ? At

    t

    dt

    d 1ln ! and 2

    11

    ttdt

    d!

    8.921001014

    1014

    1014

    210010142000

    4

    4

    4

    4

    v

    v

    v

    v!

    tdt

    dtta

    8.9210021001014

    101411014

    21001014200024

    4

    4

    4

    vv

    vv!

    t

    t

    t

    t

    3200

    4.294040

    !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    9/102

    9

    Example 1 Cont.

    163200164.294040

    16

    !a

    2

    m/s674.29!

    The absolute relative true error is

    100

    ValueTrue

    ValueeApproximat-ValueTruext !

    100674.29

    474.30674.29x

    !

    %6967.2!6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    10/102

    10

    Backward Difference Approximation of the

    First Derivative

    We know

    x

    xfxxf

    xxf

    0

    lim

    p

    !d

    For a finite '' x ,

    x

    xfxxfxf

    (

    (}d

    If '' x is chosen as a negative number,

    x

    xfxxfxf

    (

    (}d

    x

    xxfxf

    !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    11/102

    11

    Backward Difference Approximation of the

    First Derivative Cont.

    This is a backward difference approximation as you are taking a point backward from x. To find the value of xfd at ixx ! , we may choose anotherpoint '' x behind as

    1

    !i

    xx . This gives

    x

    xfxfxf iii

    (

    }d 1

    1

    1

    !

    ii

    ii

    xx

    xfxf

    where

    1 ! ii xxx

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    12/102

    12

    xx-x

    x

    f(x)

    Figure 2 Graphical Representation of backward differenceapproximation of first derivative

    Backward Difference Approximation of the

    First Derivative Cont.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    13/102

    13

    Example 2

    The velocity of a rocket is given by

    300,8.9210010141014

    ln2000 4

    4

    ee

    v

    v

    ! ttttR

    where '' is given in m/s and ''t is given in seconds.

    a) Use backward difference approximation of the first derivative ofto calculate the acceleration at . Use a step size of .

    b) Find the absolute relative true error for part (a).

    ts16!t st 2 !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    14/102

    14

    Example 2 Cont.Solution

    t

    ttta ii

    (

    } 1

    RR

    16!it

    2 !t

    14216

    1

    !

    !(! ttt ii

    2

    141616

    RR }a

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    15/102

    15

    Example 2 Cont.

    168.91621001014

    1014ln200016

    4

    4

    v

    v!R

    m/s07.392!

    148.91421001014

    1014ln200014

    4

    4

    v

    v!R

    m/s24.334!

    2

    141616

    RR }a

    2

    24.33407.392 !

    2

    m/s915.28}6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    16/102

    16

    Example 2 Cont.

    The absolute relative true error is

    100674.29

    915.28674.29xt

    !

    %5584.2!

    The exact value of the acceleration at from Example 1 is

    2m/s674.2916 !a

    s16!t

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    17/102

    17

    Derive the forward difference approximation

    from Taylor series

    Taylors theorem says that if you know the value of a function '' f at a point

    ix and all its derivatives at that point, provided the derivatives are

    continuous between ix and 1ix , then

    -dd

    d! 2

    111!2

    iii

    iiiii xxxf

    xxxfxfxf

    Substituting for convenienceii xxx ! 1

    -ddd!2

    1 !2

    xxfxxfxfxf iiii

    -(dd

    (

    !d x

    xf

    x

    xfxfxf iiii

    !2

    1

    xx

    xfxfxf iii (

    (

    !d 01

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    18/102

    18

    Derive the forward difference approximation

    from Taylor series Cont.

    The x(0 term shows that the error in the approximation is of the order

    of x Can you now derive from Taylor series the formula for backward

    divided difference approximation of the first derivative?

    As shown above, both forward and backward divided difference

    approximation of the first derivative are accurate on the order of x(0

    Can we get better approximations? Yes, another method to approximate

    the first derivative is called the Central difference approximationof

    the first derivative.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    19/102

    19

    Derive the forward difference approximation

    from Taylor series Cont.

    From Taylor series

    -ddd

    dd

    d!32

    1 !3

    !2

    xxf

    xxf

    xxfxfxf iiiii

    -ddd

    dd

    d!32

    1 !3

    !2

    xxf

    xxf

    xxfxfxf iiiii

    Subtracting equation (2) from equation (1)

    -ddd

    d! 3

    11 !3

    22 xxfxxfxfxf iiii

    -(ddd

    (

    !d

    211

    !32x

    xf

    x

    xfxfxf iiii

    211 0

    2

    x

    x

    xfxfxf iii (

    (

    !d

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    20/102

    20

    Central Divided Difference

    Hence showing that we have obtained a more accurate formula as the

    error is of the order of . 20 x

    x

    f(x)

    x-x x x+x

    Figure 3 Graphical Representation of central difference approximation offirst derivative6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    21/102

    21

    Example 3

    The velocity of a rocket is given by

    300,8.9210010141014

    ln2000 4

    4

    ee

    v

    v!

    ttttR

    where '' is given in m/s and ''t is given in seconds.

    (a) Use central divided difference approximation of the first derivative ofto calculate the acceleration at . Use a step size of .

    (b) Find the absolute relative true error for part (a).

    tst 16! st 2 !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    22/102

    22

    Example 3 cont.

    Solution

    t

    ttta iii

    (

    }

    2

    11 RR

    16!it

    18216

    1

    !!

    (! ttt ii

    142161

    !!(! ttt

    ii

    221418

    16RR

    }a

    4

    1418 RR }

    2!(t

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    23/102

    23

    Example 3 cont.

    188.91821001014

    1014ln200018

    4

    4

    v

    v!R

    m/s02.453!

    148.91421001014

    1014ln200014

    4

    4

    v

    v!R

    m/s24.334!

    4

    141816 RR }a

    4

    24.33402.453 }

    2m/s694.29}6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    24/102

    24

    Example 3 cont.

    The absolute relative true error is

    100674.29

    694.29674.29v

    !t

    %069157.0!

    The exact value of the acceleration at from Example 1 is

    2m/s674.2916 !as16!t

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    25/102

    25

    Comparision of FDD, BDD, CDD

    The results from the three difference approximations are given in Table 1.

    Type of Difference

    Approximation

    ForwardBackward

    Central

    30.47528.915

    29.695

    2.69672.5584

    0.069157

    Table 1 Summary of a (16) using different divided difference approximations

    16a

    2/sm%t

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    26/102

    26

    Finding the value of the derivative

    within a prespecified tolerance

    In real life, one would not know the exact value of the derivative so how

    would one know how accurately they have found the value of the derivative.

    A simple way would be to start with a step size and keep on halving the step

    size and keep on halving the step size until the absolute relative approximate

    error is within a pre-specified tolerance.

    Take the example of finding for tvd t

    tt 8.9

    21001014

    1014ln2000

    4

    4

    v

    v!R

    at using the backward divided difference scheme.16!t6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    27/102

    2

    1

    0.5

    0.25

    0.125

    28.91529.289

    29.480

    29.577

    29.625

    1.2792

    0.64787

    0.32604

    0.16355

    27

    Finding the value of the derivative

    within a prespecified tolerance Cont.

    Given in Table 2 are the values obtained using the backward differenceapproximation method and the corresponding absolute relativeapproximate errors.

    t( tvd %a

    Table 2 First derivative approximations and relative errors fordifferentt values of backward difference scheme

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    28/102

    28

    Finding the value of the derivative

    within a prespecified tolerance Cont.

    From the above table, one can see that the absolute relative

    approximate error decreases as the step size is reduced. At 125.0!(t

    the absolute relative approximate error is0.16355%

    , meaning thatat least2 significant digits are correct in the answer.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    29/102

    29

    Finite Difference Approximation of

    Higher Derivatives

    One can use Taylor series to approximate a higher order derivative.

    For example, to approximate xfdd , the Taylor series for

    -ddd

    dd

    d!32

    2 2!3

    2!2

    2 xxf

    xxf

    xxfxfxf iiiii

    where

    xxx ii 22 !

    -321!3!2

    xxf

    xxf

    xxfxfxf iiiii (ddd(dd(d!

    where

    xxx ii 1 !6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    30/102

    30

    Finite Difference Approximation of

    Higher Derivatives Cont.

    Subtracting 2 times equation (4) from equation (3) gives

    -3212 2 xxfxxfxfxfxf iiiii ddddd!

    -ddd

    !dd xxf

    x

    xfxfxfxf i

    iii

    i

    22

    12

    x

    x

    xfxfxfxf iiii 0

    22

    12

    $dd (5)

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    31/102

    31

    Example 4

    The velocity of a rocket is given by

    300,8.9210010141014

    ln2000 4

    4

    ee

    v

    v

    ! ttttR

    Use forward difference approximation of the second derivative

    of to calculate the jerk at . Use a step size of .

    tst 16! st 2 !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    32/102

  • 8/6/2019 Lecture on Numerical Differentiation

    33/102

    33

    Example 4 Cont.

    208.92021001014

    1014ln200020

    4

    4

    v

    v!R

    m/s35.517!

    188.91821001014

    1014ln200018

    4

    4

    v

    v!R

    s/02.453!

    168.91621001014

    1014ln200016

    4

    4

    v

    v!R

    m/s07.392!6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    34/102

    34

    Example 4 Cont.

    4

    07.39202.453235.51716

    }j

    3m/s84515.0}

    The exact value of 16j can be calculated by differentiating

    tt

    t 8.921001014

    1014ln2000

    4

    4

    v

    v!R

    twice as

    ? Atdt

    dta ! and ? Ata

    dt

    dtj !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    35/102

    35

    Example 4 Cont.

    Knowing that

    ? At

    t

    dt

    d 1ln ! and

    2

    11

    ttdt

    d!

    8.921001014

    1014

    1014

    210010142000

    4

    4

    4

    4

    v

    v

    v

    v!

    tdt

    dtta

    t

    t

    3200

    4.294040

    !

    8.92100210010141014

    11014

    210010142000 24

    4

    4

    4

    v

    v

    v

    v

    ! t

    t

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    36/102

    36

    Example 4 Cont.

    ? A

    2)3200(

    18000t

    tadt

    dtj

    !

    !

    3

    2

    m/s77909.0

    )]16(3200[

    1800016

    !

    !j

    The absolute relative true error is

    10077909.0

    84515.077909.0v

    !t

    %4797.8!

    Similarly it can be shown that

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    37/102

    37

    Higher order accuracy of higher

    order derivatives

    The formula given by equation (5) is a forward difference approximation of

    the second derivative and has the error of the order of x . Can we get

    a formula that has a better accuracy? We can get the central difference

    approximation of the second derivative.

    The Taylor series for

    -4321!4!3!2

    xxf

    xxf

    xxf

    xxfxfxf iiiiii (dddd

    (ddd

    (dd

    (d!

    where

    xxx ii 1 !

    (6)

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    38/102

    38

    Higher order accuracy of higher

    order derivatives Cont.

    -4321!4!3!2

    xxf

    xxf

    xxf

    xxfxfxf iiiiii (dddd

    (ddd

    (dd

    (d!

    where

    xxx ii 1 !

    (7)

    Adding equations (6) and (7), gives

    12

    2

    42

    11

    xxfxxfxfxfxf iiiii ddddd!

    12

    22

    2

    11 xxf

    x

    xfxfxfxf iiiii

    dddd

    !dd

    22

    11 0

    2x

    x

    xfxfxfxf iiii

    !dd

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    39/102

    39

    Example 5

    The velocity of a rocket is given by

    300,8.921001014

    1014ln2000

    4

    4

    ee

    v

    v! tt

    ttR

    Use central difference approximation of second derivative of tocalculate the jerk at . Use a step size of .

    tst 16! st 2 !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    40/102

  • 8/6/2019 Lecture on Numerical Differentiation

    41/102

    41

    Example 5 Cont.

    188.91821001014

    1014ln200018

    4

    4

    v

    v!R

    m/s02.453!

    168.91621001014

    1014ln200016

    4

    4

    v

    v!R

    m/s07.392!

    148.91421001014

    1014ln200014

    4

    4

    v

    v!R

    m/s24.334!

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    42/102

    42

    Example 5 Cont.

    221416218

    16RRR

    }j

    424.33407.392202.453

    }

    The absolute relative true error is

    10077908.0

    78.077908.0 v!t

    3m/s77969.0}

    %077992.0!

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    43/102

  • 8/6/2019 Lecture on Numerical Differentiation

    44/102

    44

    Forward Difference Approximation

    x

    xfxxf

    x

    xf

    0

    lim

    p

    !d

    For a finite '' x

    x

    xfxxfxf(

    (}d

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    45/102

    45

    x x+x

    f(x)

    Figure 1 Graphical Representation of forward difference approximation of first derivative.

    Graphical Representation OfForward Difference

    Approximation

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    46/102

    46

    Example 1The upward velocity of a rocket is given as a function of time inTable 1.

    Using forward divided difference, find the acceleration of the

    rocket at .

    t v(t)

    s m/s

    0 0

    10 227.04

    15 362.78

    20 517.3522.5 602.97

    30 901.67

    Table 1 elocity as a function of time

    s16!t6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    47/102

    47

    Example 1 Cont.

    t

    ttta iii

    (

    }

    RR 1

    15!it

    5

    15201

    !!!( ii ttt

    To find the acceleration at , we need to choose thetwo values closest to , that also bracket to

    evaluate it. The two points are and .

    s16!ts16!t

    s20!ts15!t

    201 !it

    s16!t

    Solution

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    48/102

    48

    Example 1 Cont.

    2m/s914.30

    5

    78.36235.5175

    152016

    }

    }

    }

    RRa

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    49/102

    49

    Direct Fit Polynomials

    '1' n nn

    yxyxyxyx ,,,,,,,, 221100 -

    thn

    nn

    n

    nnxaxaxaaxP !

    1

    110 --

    12121 12)(

    !!dn

    n

    n

    n

    n

    nxnaxanxaa

    dx

    xdPxP --

    In this method, given data points

    one can fit a order polynomial given by

    To find the first derivative,

    Similarly other derivatives can be found.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    50/102

    50

    Example 2-Direct Fit Polynomials

    The upward velocity of a rocket is given as a function of time inTable 2.

    Using the third order polynomial interpolant for velocity,find the acceleration of the rocket at .

    t v(t)

    s m/s

    0 0

    10 227.04

    15 362.78

    20 517.3522.5 602.97

    30 901.67

    Table 2 elocity as a function of time

    s16!t6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    51/102

    51

    Example 2-Direct Fit Polynomials cont.

    For the third order polynomial (also called cubic interpolation), we choose the velocity given by

    332

    210 tatataatv !

    Since we want to find the velocity at , and we are using third order polynomial, we needto choose the four points closest to and that also bracket to evaluate it.

    The four points are

    04.227,10 !! oo tvt

    78.362,15 11 !! tvt

    35.517,20 22 !! tvt

    97.602,5.22 33 !! tvt

    Solution

    s16!ts16!t s16!t

    .5.22and,20,15,10 321 !!!! tttto

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    52/102

    52

    Example 2-Direct Fit Polynomials cont.

    such that

    Writing the four equations in matrix form, we have

    332

    210 10101004.22710 aaaav !!

    33

    2

    210

    15151578.36215 aaaav !!

    332

    210 20202035.51720 aaaav !!

    332

    210 5.225.225.2297.6025.22 aaaav !!

    !

    97.602

    35.517

    78.362

    04.227

    1139125.5065.221

    8000400201

    3375225151

    1000100101

    3

    2

    1

    0

    a

    a

    a

    a

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    53/102

    53

    Example 2-Direct Fit Polynomials cont.

    Solving the above four equations gives

    3810.40 !a

    289.211 !a

    13065.02 !a

    0054606.03 !aHence

    5.2210,0054606.013065.0289.213810.4 32

    3

    3

    2

    210

    ee!

    !

    tttt

    tatataatv

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    54/102

    54

    Example 2-Direct Fit Polynomials cont.

    Figure 1 Graph of upward velocity of the rocket vs. time.6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    55/102

  • 8/6/2019 Lecture on Numerical Differentiation

    56/102

    56

    Lagrange Polynomial

    nn

    yxyx ,,,, 11 - th

    n 1In this method, given , one can fit a order Lagrangian polynomialgiven by

    !

    !n

    i

    iin xfxLxf0

    )()()(

    where n in )(xfn stands for the thn order polynomial that approximates the function

    )(xfy ! given at )1( n data points as nnnn yxyxyxyx ,,,,......,,,, 111100 , and

    {!

    !

    n

    ijj ji

    j

    i

    xx

    xxx

    0

    )(

    )(xi a weighting function that includes a product of )1( n terms with terms of

    ij ! omitted.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    57/102

    57

    Then to find the first derivative, one can differentiate xfn

    for other derivatives.

    For example, the second order Lagrange polynomial passing through

    221100 ,,,,, yxyxyx is

    21202

    10

    12101

    20

    02010

    21

    2

    xfxxxx

    xxxxxf

    xxxx

    xxxxxf

    xxxx

    xxxxxf

    !

    Differentiating equation (2) gives

    once, and so on

    Lagrange Polynomial Cont.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    58/102

    58

    21202

    1

    2101

    0

    2010

    2

    222xf

    xxxxxf

    xxxxxf

    xxxxxf

    !dd

    2

    1202

    101

    2101

    200

    2010

    212

    222xf

    xxxx

    xxxxf

    xxxx

    xxxxf

    xxxx

    xxxxf

    !

    d

    Differentiating again would give the second derivative as

    Lagrange Polynomial Cont.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    59/102

    59

    Example 3

    Determine the value of the acceleration at usingthe second order Lagrangian polynomial interpolation for

    velocity.

    t v(t)

    s m/s

    0 0

    10 227.04

    15 362.78

    20 517.3522.5 602.97

    30 901.67

    Table 3 elocity as a function of time

    s16!t

    The upward velocity of a rocket is given as a function of time inTable 3.

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    60/102

    60

    Solution

    Example 3 Cont.

    )()()()( 212

    1

    02

    0

    1

    21

    2

    01

    0

    0

    20

    2

    10

    1 tvtt

    tt

    tt

    tttv

    tt

    tt

    tt

    tttv

    tt

    tt

    tt

    tttv

    !

    0

    2010

    212 ttttt

    tttta R

    !

    12101

    202 ttttt

    tttR

    2

    1202

    102 ttttt

    ttt

    04.22720101510

    201516216

    !a

    78.36220151015

    2010162

    35.517

    15201020

    1510162

    35.51714.078.36208.004.22706.0 !

    2m/s784.29!

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    61/102

    Backward DividedDifference

    6/3/2011 61

  • 8/6/2019 Lecture on Numerical Differentiation

    62/102

    62

    Definition

    ix

    ix

    .

    x

    xxfxf

    x

    xf

    (

    (

    p(!d

    0

    lim

    Slope at

    f(x)

    y

    x

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    63/102

    63

    Backward Divided Difference

    xx (xx

    x

    xxfxfxf

    (

    ($d

    x

    xxfxfxf iii

    (

    ($d

    )(xf

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    64/102

    64

    Example

    Example:

    The velocity of a rocket is given by

    300,8.9210010141014

    ln2000 4

    4

    ee

    v

    v

    ! ttttR

    whereR given in m/s and t is given in seconds. Use backward difference approximation

    Of the first derivative of t to calculate the acceleration at .16st! Use a step size of.2st!(

    t

    ttta iii

    (

    $ 1

    RRSolution:

    16!it6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    65/102

    65

    2 !t

    ttt ii (!1 14216 !!

    2

    141616

    RR !a

    168.91621001014

    1014ln200016

    4

    4

    v

    v!R s/07.392!

    148.91421001014

    1014ln200014

    4

    4

    v

    v!R s/24.334!

    Example (contd.)

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    66/102

    66

    Hence

    The exact value of 16a can be calculated by differentiating

    tt

    t 8.921001014

    1014ln2000

    4

    4

    v

    v!R

    as

    Example (contd.)

    2/915.2824.33407.3922

    )14()16(16 sma !!

    !

    RR

    ? A

    2/674.29)16(

    3200

    4.294040)()(

    sa

    t

    tt

    dt

    dta

    !

    !! R

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    67/102

    67

    The absolute relative true error is

    Example (contd.)

    100v

    !TrueValue

    eValueApproximatTrueValuetI

    %557.2

    100674.29

    915.28674.29

    !

    v

    !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    68/102

    68

    Effect Of Step Size

    xexf 49)( !

    Value of )2.0('f Using backward Divided difference method.

    h )2.0('

    f aE aI % S g f digits

    tE

    tI %

    0.05 72.61598 7.50 49 9. 65 77

    0.025 76.24 76 .627777 4.758129 1 .87571 4.8 7418

    0.0125 78.14946 1.905697 2.4 8529 1 1.97002 2.458849

    0.00625 79.12627 0.976817 1.2 4504 1 0.99 20 1.2 9648

    0.00 125 79.62081 0.4945 0.62111 1 0.49867 0.622404

    0.00156 79.86962 0.248814 0. 11525 2 0.24985 0. 1185

    0.000781 79.99442 0.124796 0.156006 2 0.12506 0.156087

    0.000 91 80.05691 0.062496 0.078064 2 0.06256 0.078084

    0.000195 80.08818 0.0 1272 0.0 9047 0.0 129 0.0 9052

    9.77E-05 80.10 8 0.015642 0.019527 0.01565 0.019529

    4.88E-05 80.11165 0.00782 0.009765 0.00782 0.0097656/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    69/102

    69

    Effect of Step Size in Backward

    Divided Difference Method

    8

    9

    1 3 9 11

    Number of times the step size is halved, n

    f'(0.

    2

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    70/102

    70

    Effect of Step Size on Approximate

    Error

    0

    4

    5 7

    Number of steps involved, n

    Ea

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    71/102

    Effect of Step Size on Least

  • 8/6/2019 Lecture on Numerical Differentiation

    72/102

    72

    Effect of Step Size on Least

    Number of Significant Digits

    Correct

    2

    2.

    .

    2 7

    Number of steps involved, n

    Least

    numberofsignif

    ican

    digitscorrect

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    73/102

    73

    Effect of Step Size on True Error

    2

    3

    7

    2 6 2

    Number of steps involved, n

    Et

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    74/102

  • 8/6/2019 Lecture on Numerical Differentiation

    75/102

    6/3/2011 75

    Central Divided Difference

  • 8/6/2019 Lecture on Numerical Differentiation

    76/102

    76

    Definition

    ix

    .

    x

    xxfxf

    x

    xf(

    (

    p(!d

    0

    lim

    f(x)

    Slope at

    x

    y

    ix6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    77/102

  • 8/6/2019 Lecture on Numerical Differentiation

    78/102

    78

    Example

    Example:

    The velocity of a rocket is given by

    300,8.9210010141014

    ln2000 4

    4

    ee

    v

    v!

    ttttR

    where R given in m/s and t is given in seconds. Use central difference approximation of

    the first derivative of t to calculate the acceleration at .16st! Use a step size of.2st!(

    t

    ttta iii

    (

    $

    2

    11 RR

    Solution:

    16!it6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    79/102

    79

    2 !t

    ttt ii 1 ! 18216 !!

    4

    1418

    )2(2

    141816

    RRRR !

    !a

    188.91821001014

    1014ln2000184

    4

    v

    v!R s/02.453!

    148.91421001014

    1014ln200014

    4

    4

    v

    v!R sm /24.334!

    Example (contd.)

    ttt ii (!1 14216 !!

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    80/102

    80

    Hence

    The exact value of 16a can be calculated by differentiating

    tt

    t 8.921001014

    1014ln2000

    4

    4

    v

    v!R

    as

    Example (contd.)

    2/695.2924.33402.453

    4

    )14()18(16 sma !!

    !

    RR

    ? A

    2/674.29)16(

    3200

    4.294040)()(

    sa

    t

    tt

    dt

    dta

    !

    !! R

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    81/102

    81

    The absolute relative true error is

    Example (contd.)

    100v

    !True alue

    e aluepproxi atTrue aluetI

    %070769.0

    100674.29

    695.29674.29

    !

    v

    !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    82/102

    82

    Effect Of Step Size

    xexf 49)( !

    Value of )2.0('f Using Central Divided Difference difference method.

    h )(

    f aE aI % Sig ifica tdigits

    tE

    tI %

    0.05 80.65467 -0.5 520 0.668001

    0.025 80.25 07 -0.4016 0.500417 1 -0.1 60 0.16675

    0.0125 80.15286 -0.100212 0.125026 2 -0.0 9 0.041672

    0.00625 80.12782 -0.025041 0.0 1252 -0.008 5 0.010417

    0.00 125 80.12156 -0.00626 0.00781 -0.00209 0.0026040.00156 80.12000 -0.001565 0.00195 4 -0.00052 0.000651

    0.000781 80.11960 -0.000 91 0.000488 5 -0.0001 0.00016

    0.000 91 80.11951 -9.78 -05 0.000122 5 -0.0000 4.07 -05

    0.000195 80.11948 -2.45 -05 .05 -05 6 -0.00001 1.02 -05

    9.77 -05 80.11948 -6.11 -06 7.6 -06 6 0.00000 2.54 -06

    4.88 -05 80.11947 -1.5 -06 1.91 -06 7 0.00000 6. 6 -076/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    83/102

    Effect of Step Size on Approximate

  • 8/6/2019 Lecture on Numerical Differentiation

    84/102

    84

    Effect of Step Size on Approximate

    Error

    Number of steps involved, n

    E(a)

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Absolute

  • 8/6/2019 Lecture on Numerical Differentiation

    85/102

    85

    Effect of Step Size on Absolute

    Relative Approximate Error

    5

    5 8

    Number eps involved, n

    |E(a)|,

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Least

  • 8/6/2019 Lecture on Numerical Differentiation

    86/102

    86

    Effect of Step Size on Least

    Number of Significant Digits

    Correct

    6

    8

    6 8

    Number of s teps involved, n

    Least

    numberofsignificantdigits

    correct

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    87/102

    87

    Effect of Step Size on True Error

    8

    Number of steps involved, n

    E(t)

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    88/102

  • 8/6/2019 Lecture on Numerical Differentiation

    89/102

    6/3/2011 89

    Forward Divided Difference

  • 8/6/2019 Lecture on Numerical Differentiation

    90/102

    90

    Definition

    ix

    .

    x

    xfxxf

    xxf

    0

    lim

    p!d

    f(x)

    Slope at

    x

    y

    ix6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    91/102

    91

    Forward Divided Difference

    xx ( xx

    x

    xfxxfxf

    (

    ($d

    x

    xfxxfxf iii

    (

    ($d

    )(xf

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    92/102

    92

    Example

    Example:

    The velocity of a rocket is given by

    300,8.921001014

    1014ln2000

    4

    4

    ee

    v

    v! tt

    ttR

    whereR given in m/s and t is given in seconds. Use forward difference approximation of

    the first derivative of t to calculate the acceleration at .16st! Use a step size of.2st!(

    t

    ttta iii

    1 $ Solution:

    16!it6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    93/102

    93

    2 !t

    ttt ii 1 ! 18216 !!

    2

    161816 RR !a

    188.91821001014

    1014ln200018

    4

    4

    v

    v!R s/02.453!

    168.91621001014

    1014ln200016

    4

    4

    vv!R s/07.392!

    Example (contd.)

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    94/102

    94

    Hence

    The exact value of 16a can be calculated by differentiating

    tt

    t 8.921001014

    1014ln2000

    4

    4

    v

    v!R

    as

    Example (contd.)

    2/475.3007.39202.453

    2

    )16()18(16 sma !!

    !

    RR

    ? A

    2/674.29)16(

    3200

    4.294040)()(

    sa

    t

    tt

    dt

    dta

    !

    !! R

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    95/102

    95

    The absolute relative true error is

    Example (contd.)

    100v

    !TrueValue

    eValueApproximatTrueValuetI

    %6993.2

    100674.29

    475.30674.29

    !

    v

    !

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    96/102

    96

    Effect Of Step Size

    xexf 49)( !

    Value of )2.0('f Using forward difference method.

    h )(

    f aE aI % Sig ifica tdigits

    tE

    tI %

    0.05 88.69 6 -8.57 89 10.701 8

    0.025 84.262 9 -4.4 0976 5.258546 0 -4.14291 5.170918

    0.0125 82.15626 -2.106121 2.56 555 1 -2.0 679 2.54219

    0.00625 81.129 7 -1.0269 1.265756 1 -1.00989 1.260482

    0.00 125 80.622 1 -0.507052 0.62892 1 -0.50284 0.627612

    0.00156 80. 70 7 -0.251944 0. 1 479 2 -0.25090 0. 1 152

    0.000781 80.24479 -0.125579 0.156494 2 -0.125 2 0.15641

    0.000 91 80.18210 -0.062691 0.078186 2 -0.0626 0.078166

    0.000195 80.15078 -0.0 1 21 0.0 9078 -0.0 1 0 0.0 907

    9.77 -05 80.1 512 -0.015654 0.0195 5 -0.01565 0.0195 4

    4.88 -05 80.127 0 -0.007826 0.009767 -0.00782 0.0097666/3/2011

    Effect of Step Size in Forward

  • 8/6/2019 Lecture on Numerical Differentiation

    97/102

    97

    Effect of Step Size in Forward

    Divided Difference Method

    7

    9

    7 9

    Number of times s tep size halved, n

    f'(0.

    2)

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Approximate

  • 8/6/2019 Lecture on Numerical Differentiation

    98/102

    98

    Effect of Step Size on Approximate

    Error

    8

    Number of times step size halved, n

    Ea

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Absolute

  • 8/6/2019 Lecture on Numerical Differentiation

    99/102

    99

    Effect of Step Size on Absolute

    Relative Approximate Error

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6 7 8 9 10 11 12

    Nu be f t es step ze a e n

    |Ea|%

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Least

  • 8/6/2019 Lecture on Numerical Differentiation

    100/102

    100

    Number of Significant Digits

    Correct

    0

    1

    1 10 11

    Number of times s tep size halved, n

    Least

    numberofsignific

    antdigits

    correct

    Initial step size=0.05

    6/3/2011

  • 8/6/2019 Lecture on Numerical Differentiation

    101/102

    101

    Effect of Step Size on True Error

    Initial step size=0.05

    00 10 1

    Number mes step size halved, n

    Et

    Initial step size=0.05

    6/3/2011

    Effect of Step Size on Absolute

  • 8/6/2019 Lecture on Numerical Differentiation

    102/102

    Effect of Step Size on Absolute

    Relative True Error

    0

    2

    1 0

    1 2

    1 2 10 1 1

    Number oft mes step size halved, n

    |Et|

    %

    Initial step size=0.05