lecture notes in earth sciences 118 · lecture notes in earth sciences 118 editors: j. reitner,...

30
Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ ottingen M. H. Trauth, Potsdam K. St¨ uwe, Graz D. Yuen, USA Founding Editors: G. M. Friedman, Brooklyn and Troy A. Seilacher, T¨ ubingen and Yale

Upload: others

Post on 08-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Lecture Notes in Earth Sciences 118Editors:

J. Reitner, GottingenM. H. Trauth, PotsdamK. Stuwe, GrazD. Yuen, USA

Founding Editors:

G. M. Friedman, Brooklyn and TroyA. Seilacher, Tubingen and Yale

Page 2: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

M.A. Levitan · Yu. A. Lavrushin

SedimentationHistory in theArctic Ocean andSubarctic Seas forthe Last 130 kyr

123

Page 3: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Dr. M. A. LevitanRussian Academy of SciencesVernadsky Inst. GeochemistryAnalytical ChemistryKosygina Str. 19MoscowRussia [email protected]

Dr. Yu. A. LavrushinRussian Academy of SciencesInst. GeologyPyzhevsky per. 7MoscowRussia [email protected]

ISSN 0930-0317ISBN 978-3-642-00287-8 e-ISBN 978-3-642-00288-5DOI 10.1007/978-3-642-00288-5Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926693

c© Springer-Verlag Berlin Heidelberg 2009This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violationsare liable to prosecution under the German Copyright Law.The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protectivelaws and regulations and therefore free for general use.

Cover design: Bauer, Thomas

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 4: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Contents

Part I Geological and Paleoecological Events of the Late Pleistocene andHolocene in Northern Eurasia

1 Geological and Paleoecological Events of the Late Pleistocene alongEurasian Coastal Areas of the Arctic Ocean . . . . . . . . . . . . . . . . . . . . . . . 3General Upper Pleistocene Stratigraphic Scheme for Northern Eurasia . . . 3Duration of the Mikulino Interglaciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Correlation of the Natural Events Correlative with MIS 5d–5ain Northern West Europe and Northwestern Russia . . . . . . . . . . . . . . . . . . . . 6

2 Late Pleistocene Geologic-Paleoecological Events in the North ofEuropean Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Relationship between Land and Sea Areas during the MikulinoInterglacial in Northern Eurasia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Genetic Types of Continental Sediments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Marine Sediments of the Boreal Transgression in the North of EuropeanRussia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Main Geologic-Paleoecological Eventsof the Late Pleistocene in the Northof Western Siberia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Geologic-Paleoecological Events of the Late Pleistocene in theNorthern-Siberian Lowland and Taimyr Peninsula . . . . . . . . . . . . . . . . . 37

5 The Late Glacial Time and Holoceneof Northern Eurasia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Outlines of the Late Pleistocene and Holocene History of the EastArctic Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 The Deglaciation Time and Holocene of Northern Eurasia . . . . . . . . . . 57

v

Page 5: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

vi Contents

Part II Marine Sedimentation in the Arctic Ocean and Subarctic Seas

8 The Seas of West Subarctic Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Geologic and Oceanographic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61History of Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

History of Sedimentation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68History of Sedimentation on the Vøring Plateau During the Last 25 ka 88History of Sedimentation at the Continental Margin of Easternand South-Eastern Greenland During the Last 130 ka . . . . . . . . . . . . . . . 107

9 The Arctic Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Recent Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Morphostructure, Oceanographic and Sea-Ice Setting, RecentSediments and Their Mineral Composition . . . . . . . . . . . . . . . . . . . . . . . 113Facies Variations of Holocene Sediments on the Yermak Plateau(According to Study Data of >63 mkm Fraction) . . . . . . . . . . . . . . . . . . 124

History of Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136History of Sedimentation Rates During the Last 130 ka . . . . . . . . . . . . . 136History of Sedimentation on the Yermak Plateau Duringthe Last 190 ka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Organic-Geochemical Sediment Studies of the Eastern Partof the Central Arctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10 The Western Arctic Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Recent Sedimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

The Barents Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177The Kara Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Surface Sediments of the Pechora Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Surface Sediments of St. Anna Trough . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Facies Zonality of Surface Sediments in the EasternKara Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

History of Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Late- and Post-Glacial History of Sedimentation in the Eastern Partof the Barents Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Holocene Sedimentation History in the Southern NovayaZemlya Trough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224History of Sedimentation in the Pechora Sea During the LatePleistocene and Holocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Light Fraction Mineralogy of the Upper Quaternary Sediments fromthe Saint Anna Trough and Its Paleoceanographic Interpretation . . . . . 247Holocene History of Yenisei River Discharge . . . . . . . . . . . . . . . . . . . . . 256Holocene History of Ob River Discharge . . . . . . . . . . . . . . . . . . . . . . . . . 272

Page 6: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Contents vii

11 Eastern Arctic Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289Recent Sedimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

The Laptev Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289The East Siberian Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290The Chukchi Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

History of Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291History of Sedimentation in the Laptev Sea During the LateWeichselian to Holocene by Geophysical and Geochemical Data . . . . . 292Holocene History of the Lena and Other Rivers Dischargein the Laptev Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295Organic Geochemical Data About Sedimentation History Alongthe Continental Slope of the East Siberian Sea During the LastClimatic Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297Preliminary Data About Accumulation of Diatom-Bearing ClayeySilts at the Chukchi Sea Shelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

12 Seas of the Eastern Subarctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Recent Sedimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301History of Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

History of Sedimentation in the Deep-Water Part of the ShirshovRidge (Bering Sea) During the Last Three Marine-Isotope Stages . . . . 307History of Sedimentation in the Northern Sea of Okhotsk During theLast 1.1 Ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Part III The Late Pleistocene Paleogeographic Events of Northern Eurasiaand History of Sedimentation in the Subarctic Seas and the Arctic Ocean inRelation to the Northern Hemisphere Glaciation during the Last ClimaticCycle

13 Characteristic Features of the Mikulino Landscapes . . . . . . . . . . . . . . . . 333

14 Results of Paleoclimate Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

15 Particularities of Sedimentation Processes Within the ContinentalBlocks and Marine Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345Deglaciation Peculiarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345Facies Variability during Glaciations, Deglaciations, Interglacials . . . . . . . 349Geological History of the Arctic Ocean Sea Ice during the Last 60 ka . . . . 350Intercoupling of Atmo-, Hydro-, Cryo-, Bio-, and Lithospheres . . . . . . . . . 353

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381Index . . . .

Page 7: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures

1.1 Oxygen-isotope records of the lower parts of the GRIP and GISP 2Greenland ice cores (Johnsen et al., 1995) . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Climatostratigraphic scheme of main natural events of theLate Pleistocene (by Yu A. Lavrushin, based on (Behre, 1989;Spiridonova, 1983; Mangerud, 1989). Palynological, geological andgeomorphological data are used qualitatively . . . . . . . . . . . . . . . . . . . . . 7

2.1 Schematic distribution map of the Karelian Interglacial sea (Biske,1959). 1 – coast lines; 2 – sea; 3 – locations of interglacialsedimentary sections with paleontological characteristics;4 – locations of interglacial sedimentary sections withoutpaleontological characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Distribution of the interglacial boreal transgression (Lavrovaand Troitsky, 1960). 1 – marine boreal transgression waters;2 – freshened bays; 3 – waters of Eemian transgression . . . . . . . . . . . . . 13

2.3 Boreal sea on the Russian North (according to S.L. Troitsky(1964)). 1 – territories covered by boreal sea during themaximal transgression; 2 – Baltic Basin during the transgressionmaximum; 3 – freshened areas; 4–8 – boundaries of distributionof zoogeographic groups and individual species of mollusks andbarnacles: 4 – Lusitanian (south-boreal) species; 5 – Mactraelliptica, 6 – Cardium edule, 7 – Pholas crispatus, 8 – Cyprina rinaislandica; 9 – basins (I – White Sea, II – Pechora, III – West Siberia,IV – Taimyr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Extension of the Late Valday Ice Sheet during the deglaciation(Lavrov and Potapenko, 2005), simplified. A – Barents Sea-NovayaZemlya-Kara Sea Ice Sheet. I–IX – lobes: I – Kozhvinskaya;II – Lyzhskaya; III – Laisko-Izhemskaya; IV – Pechorskaya;V – Kolvinskaya; VI – Malozemel’skaya; VII – Bol’shezemel’skaya;VIII – Kuloisko-Mezenskaya; IX – Choshskaya. B – ScandinavianIce Sheet. I–V – lobes: I – Verkhnemezenskaya; II – Vashskaya;III – Pinezhskaya; IV – Severodvinskaya; V – Vazhskaya . . . . . . . . . . . 28

3.1 Paleogeographic scheme of glaciation and marine transgressionboundaries in northern West Siberia and the North Siberian Lowland

ix

Page 8: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

x List of Figures

during the Late Pleistocene (Arkhipov, 2000). 1 – KazantzevSea (MIS 5e); 2 – Kargin Sea (MIS 3.1 and 3.3); 3 – locationof sediments: a – well studied Kazantzev sediments; b – Karginsediments; 4 – boundary of Sartan Glaciation (MIS 2); 5 –Lokhpodgort motions (MIS 3.2); 6 – boundary of Yermak Glaciation(MIS 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Main elements of the Taimyr glacial morpho-sculpture (Anthropogenof Taimyr, 1982). (Muruktinian Glaciation, North Siberian Stage):1 – moraine swells: a – pressure moraines; b – bulkloadmoraines; 2–3 – deglaciation time for Muructinian Ice Cover:2 – fracture-kame swells and elevated massifs; 3 – kame terraces;Severokokorskaya Stage: 4 – pressure-bulkload marginal features;5 – sag-and-swell topography of the “dead” ice fields; 6 – kameterraces; 7 – rises of interlobe massifs; 8 – inter-tongue massifs;9–12 – Sartanian Glaciation, Karaulian Phase: 9 – pressure-bulkloadmarginal features; 10 – rises of interlobe massifs; 11 – inter-tonguemassifs; 12 – kame terraces; 13 – N’yapanskaya Phase: a – marginalpressure-bulkload and bulkload features, b – intertongue massifs;14 – Noril’skaya Phase: bulkload marginal features in the foothillof Putoran Plateau; 15–21 – elements of glacial morpho-sculpturedeciphered at radiolocation images on the Northern Taimyr:15 – proposed marginal glacial features on the north of Taimyr;16 – crests of proposed end-moraine swells; 17 – areas of hillytopography; 18 – areas covered by thick sequence of questionableglacial deposits; 19 – areas with traces of glacial exaration, partlycovered by questionable glacial deposits; 20 – areas not covered byloose deposits but with clear traces of exaration treatment; 21 – areaswithout clear exaration traces but with erratics on the surface;22 – crests of end-moraine swells; 23 – troughs; 24 – rises of NorthSiberian Lowland composed from hard rock and possibly were notcovered by ice; 25 – north-western Taimyr with only valley-netglaciation in the Late Pleistocene; 26 – bottom of glacial depressionswith marine, lacustrine and partially fluvial sediments; 27 – profilelines; 28 – glacier swells: I – Urdakhskaya; II – Sakshsinskaya;III – Severokokorskaya; IV – Dzhangodskaya; V – Syntabul’skaya;VI – Bai-kuranerskaya; VII – Mokorittskie; VIII – Upper Taimyr;IX – North Taimyr; X – N’yapanskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Marginal glacial features and source petrographic provinces(Anthropogen of Taimyr, 1982). 1 – boundaries of pre-Cenozoicpetrographic provinces; 2–9 – petrographic provinces: 2 – NorthTaimyr (Proterozoic and Archean granites, gneisses, greenstoneshales, limestones, dolomites), 3 – Byrranga (Upper Paleozoicsandstones, siltstones (P) and limestones (C), 4 – Yenisei-Khatanga(Mesozoic sands and sandstones (K), 5 – Putoran-Vilyui(Mesozoic trapps), 6 – Kotui (Cambrian-Silurian limestones and

Page 9: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures xi

dolomites), 7, 8 – Anabar: 7 – Archean granitoids, 8 – proterozoicquartz-feldspar sandstones of Mukun Serie, 9 – intrusions ofsubalcaline basaltoids; 10, 11 – large features of glacial topographyof marginal accumulation zone: 10 – sag-and-swell and swelltopography, swells and massifs, 11 – small terminal moraineswells; 12–13 – boundaries: 12 – maximal development of ZyryanGlaciation, 13 – the studie area of composition of glacial deposits,clastic matter and products of its rewashing . . . . . . . . . . . . . . . . . . . . . . . 40

8.1 Scheme of the Nordic Seas bottom topography (Vogt, 1986) . . . . . . . . 628.2 Surface water masses, main surface currents, and sea-ice margins in

the Nordic Seas (Hald, 2001). 1–4 – surface waters: 1 – Coastal,2 – Arctic, 3 – Atlantic, 4 – Polar; 5, 6 – sea-ice margins: 5 – insummer, 6 – in winter; 7, 8 – surface currents: 7 – warm, 8 – cold . . . . 63

8.3 Lithology of surface sediments in the Nordic Seas (Vogt, 1986).1 – marly mud without IRD; 2 – sandy clay; 3 – clayey mud . . . . . . . . 64

8.4 Amount of IRD (a), size of its largest fragments (b), and itslithological variability (c) in the Holocene and Upper Pleistocenesediments of the Nordic Seas (Bischof, 2000) . . . . . . . . . . . . . . . . . . . . . 66

8.5 Maps of smectite distribution in the surface sediments of the NordicSeas (compiled by M.A. Levitan, based on data from (Berner,1991)). 1 – bottom currents, 2 – surface currents . . . . . . . . . . . . . . . . . . 67

8.6 Location of sediment cores with established stratigraphy in theNordic Seas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.7 Recent sedimentation rates (SR) in the Nordic Seas (cm/ky) (Paetschet al., 1992), modified by M.A. Levitan . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.8 MIS 1 sedimentation rates (SR) in the Nordic Seas (cm/ky) (for datasource see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.9 MIS 2 sedimentation rates (SR) in the Nordic Seas (cm/ky) (for datasource see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.10 MIS 3 sedimentation rates (SR) in the Nordic Seas (cm/ky) (for datasource see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.11 MIS 4 sedimentation rates (SR) in the Nordic Seas (cm/ky) (for datasource see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.12 MIS 5 sedimentation rates (SR) in the Nordic Seas (cm/ky) (for datasource see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.13 MIS 5a-d sedimentation rates (SR) in the Nordic Seas (cm/ky) (fordata source see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.14 MIS 5e sedimentation rates (SR) in the Nordic Seas (cm/ky) (fordata source see text) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.15 Ratio of ice volume in the Northern Hemisphere (dark) (Loutre,Berger, 2003) and average sedimentation rates in the Nordic Seas(light) for the last five MIS (conventional units) (Levitan et al., 2007a) 86

8.16 Location of studied sediment cores in the Vøring Plateau area(Levitan et al., 2005b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Page 10: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xii List of Figures

8.17 Water-mass stratification in the Vøring Plateau area (Levitan et al.,2005b). 1 – Bottom Water; 2 – Deep Water; 3 – Atlantic Water;4 – Norwegian Coastal Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.18 Lithology, TOC and CaCO3 amount, and grain-size distribution insediment core ASV 1372 (Levitan et al., 2005b). 1–8 – lithology:1 – clayey mud, 2 – hardground, 3 – sandy-silty clay, 4 – silty clay,5 – sandy-silty-clayey mictite, 6 – marly mud (10–30% CaCO3),7 – fragments of dense clay, 8 – IRD; 9 – erosion boundary;10–16 – color: 10 – brown, 11 – brownish-gray, 12 – olive-gray,13 – greenish-gray, 14 – light gray, 15 – dark gray, 16 – lightyellowish-gray; 17–19 – texture: 17 – homogenous, 18 – laminated,19 – bioturbated. 14C dates concern iceberg sediments from MarionDufresne and Jan Mayen sediment cores (their location is shown atFig. 8.16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.19 Examples of grain-size distribution (histograms) from sediment coreASV 1372 (Levitan et al., 2005b). a–d – core depths of samples,cm: a – 0 – 3, b – 27 – 29, c – 82 – 84, d – 122 – 124 . . . . . . . . . . . . . . 92

8.20 Concentration of mineral grains and foraminifers in the >0.1 mmfraction (Levitan et al., 2005b). 1 – mineral grains, 2 – benthicforaminifers, 3 – planktonic foraminifers . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.21 Composition of benthic foraminifer assemblages in sedimentcore ASV 1372 (Levitan et al., 2005b). 1 – Islandiella spp.;2 – Fissurina/Parafissurina; 3 – Elphidium clavatum; 4 – Cibicideswuellerstorfi; 5 – Epistominella exigua; 6 – Epistominella pusilla;7 – Melonis barleeanus; 8 – Oridorsalis umbonatus; 9 – Cassidulinareniforme; 10 – Cassidulina teretis; 11 – other species . . . . . . . . . . . . . 94

8.22 Reconstruction of annual SST based on planktonic foraminifers(Levitan et al., 2005b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.23 Compilation of data on mass accumulation rates and sourceprovinces of terrigenous matter as well as advection of AtlanticWater in the area of sediment core ASV 1372 for the time interval9–14 cal. kyrs. BP (Levitan et al., 2005b) . . . . . . . . . . . . . . . . . . . . . . . . 102

8.24 Lithostratigraphic correlation of sediment cores along the VøringPlateau latitudinal transect (see Fig. 8.16 for location of sedimentcores) (Levitan et al., 2005b). 1 – iceberg deposits, 2 – “highproductivity” sediments enriched in CaCO3, 3 – turbidites. For letterdesignations see text. In parentheses – water depths, m . . . . . . . . . . . . . 106

8.25 Comparison of main paleoceanographic events in the Nordic Seas,glaciation history of Svalbard and western Scandinavia, insolationchange at 78◦ N, and oxygen-isotope record of the Greenland IceCore during the last climatic cycle (Hald, 2001) . . . . . . . . . . . . . . . . . . . 107

8.26 Location of studied sediment cores at the East Greenland continentalmargin off Scoresby Sund (Nam et al., 1995) . . . . . . . . . . . . . . . . . . . . . 108

8.27 Comparison of paleoproductivity and IRD in the North Atlanticduring the last 60 ka (Sarnthein et al., 2001) . . . . . . . . . . . . . . . . . . . . . . 110

Page 11: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures xiii

8.28 Oxygen-isotope record of the GRIP Ice Core (Dansgaard et al.,1993), IRD content and magnetic susceptibility in sediment corePS1726 (from (Stein et al., 1996)). Numbers in column for ice core:number of Dansgaard-Oeschger interstadials (warming periods) . . . . . 110

8.29 Variations of sedimentation rates (cm/ky) in selected sediment coresfrom the East Greenland continental margin (Nam and Stein, 1999).In parentheses – water depths, m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.30 Variability of mass accumulation rates (g/cm2/ky) in selectedsediment cores from the East Greenland continental margin (Namand Stein, 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.1 Elements of the Arctic Ocean morphostructure (Johnson, 1990) . . . . . . 1149.2 Distribution of winter and summer sea ice in the Arctic Ocean

(Macdonald et al., 2003). 1 – compact ice; 2 – non-compact ice(>15 %); 3 – open sea surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3 Stratification of the Arctic Ocean water column (Aagaard andCarmack, 1989). PSW – Polar Surface Water; AIW – ArcticIntermediate Water; CBDW – Canada Basin Deep Water;UAODW – Upper Arctic Ocean Deep Water; LAODW – LowerArctic Ocean Deep Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.4 Arctic Ocean surface-water circulation (Aagaard and Carmack, 1989) 1179.5 Arctic Ocean Intermediate-Water circulation (Rudels et al., 1994) . . . . 1189.6 Heavy-mineral distribution in Arctic Ocean surface sediments

(Belov and Lapina, 1961). 1– 8– heavy-mineral associations:1 – epidot-pyroxene, 2 – black ore-epidot-pyroxene, 3 – chloritoid,4 – dolomite, 5 – garnet, 6 – black ore minerals, 7 – pyroxene,8 – pyroxene-amphibole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.7 Smectite distribution in eastern and central Arctic Ocean surfacesediments (Wahsner et al., 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.8 Illite distribution in eastern and central Arctic Ocean surfacesediments (Wahsner et al., 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.9 Chlorite distribution in eastern and central Arctic Ocean surfacesediments (Wahsner et al., 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.10 Kaolinite distribution in eastern and central Arctic Ocean surfacesediments (Wahsner et al., 1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.11 Location of studied sediment cores at Yermak Plateau and elementsof surface circulation (Levitan et al., 2000b). Isobaths are given inmeters. 1 – West Spitsbergen Current; 2 – East Greenland Current;3 – Arctic Ocean Deep Water currents; 4 – Bottom Water of theNorwegian Sea (N) and the Arctic Ocean (A); 5 – sea-ice margin insummer of 1997; 6 – RV Polarstern sediment cores. I – Barents Sea;II – Spitsbergen; III – Sophia Deep; IV – Yermak Plateau; V – FramStrait; VI – Nansen Basin; VII – Greenland; VIII – Lena Deep . . . . . . 127

9.12 Bathymetric profiles across the Yermak Plateau(Stein and Fahl, 1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Page 12: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xiv List of Figures

9.13 Lithological profiles across the Yermak Plateau from box corerecords; for location of cores see Fig. 9.12 (Levitan et al., 2000b).1 – unrounded coarse rock fragments, gravel, and pebble; 2 – sand;3 – silts and silty clay; 4 – hemipelagic mud; 5 – lenses;6 – hardground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.14 Distribution of biogenic remains in the >0.063 mm fractionof surface sediments (Levitan et al., 2000b). 1 – polychaets;2 – planktonic foraminifers (number in parentheses – amount infraction 2.0–0.063 mm, %); 3 – benthic foraminifers includingBiloculina and Triloculina; 4 – agglutinated benthic foraminifers;5 – silica sponges; 6 – bivalves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.15 Location of studied sediment cores in the Arctic Ocean . . . . . . . . . . . . . 1439.16 MIS 5 sedimentation rates (SR) (cm/ky) in the central Arctic Ocean

(Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449.17 MIS 4 sedimentation rates (SR) (cm/ky) in the central Arctic Ocean

(Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459.18 MIS 3 sedimentation rates (SR) (cm/ky) in the central Arctic Ocean

(Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469.19 MIS 2 sedimentation rates (SR) (cm/ky) in the central Arctic Ocean

(Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479.20 MIS 1 sedimentation rates (SR) (cm/ky) in the central Arctic Ocean

(Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489.21 Histograms of average SR (cm/ky) distribution for glacial (black)

and non-glacial (light) continental margins of the Arctic Ocean forthe last five marine isotope stages (MIS) (Levitan and Stein, 2007) . . . 149

9.22 Histograms of average SR (cm/ky) distribution for deep-sea basins(black) and ridges (light) of the Arctic Ocean for the last five marineisotope stages (MIS) (Levitan and Stein, 2007) . . . . . . . . . . . . . . . . . . . . 151

9.23 Lithology of sediment core PS2837 (Levitan et al., 2002a).1 – clayey mud; 2 – silty clay; 3 – fine silt; 4 – coarse silt; 5 – mictite(sandy-silty clay); 6 – mictites with IRD; 7 – silty clay with sandadmixture; 8 – clay with silt admixture; 9 – silty clay with carbonateadmixture; 10 – hydrotroilite; 11 – planktonic foraminifers.H1-H6 – Heinrich events (Thiede and Tiedemann, 2001) . . . . . . . . . . . 152

9.24 Lithology of sediment core PS2834 (Levitan et al., 2002a).1 – clayey mud; 2 – hardground; 3 – silty clay; 4 – silty clay withcarbonate admixture; 5 – clayey silt; 6 – mictite; 7 – clayey mudwith carbonate admixture; 8 – IRD; 9 – bivalves shells . . . . . . . . . . . . . 155

9.25 Lithology of sediment core PS2859 (Levitan et al., 2002a).1 – clayey mud; 2 –silty clay with sand admixture; 3 – sandy silt;4 – hardground; 5 – silty clay; 6 – clayey mud with carbonateadmixture; 7 – silt with sand admixture; 8 – silty clay; 9 – sandy-siltyclay; 10 – sandy silt with carbonate admixture; 11 – silty clay withcarbonate admixture; 12 – clayey mud with carbonate admixture;13 – turbidites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Page 13: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures xv

9.26 Lithostratigraphic correlation of sedimentary sections along to thenorthern transect at Yermak Plateau (Levitan et al., 2002b). Locationof profiles is shown at Fig. 9.11. 1 – clayey mud; 2 – sand; 3 – silt;4 – silty clay; 5 – hardground; 6 – clayey mud with carbonateadmixture; 7 – silt with carbonate admixture; 8 – IRD;9 – turbidites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.27 Lithostratigraphic correlation of sedimentary sections along to thesouthern transect at Yermak Plateau (Levitan et al., 2002b). Locationof profiles is shown at Fig. 9.11. 1 – clayey mud; 2 – sand; 3 – silt;4 – silty clay; 5 – clayey mud with foraminifers admixture; 6 – siltyclay with foraminifers admixture; 7 – interlayering of clayey mudand sandy silt; 8 – hardground; 9 – clayey mud with carbonateadmixture; 10 – interlayering of silt and clayey mud; 11 – silt withcarbonate admixture; 12 – hydrotroilite; 13 – IRD; 14 – admixtureof foraminifers; 15 – bivalves shells; 16 – turbidites . . . . . . . . . . . . . . . . 163

9.28 Distribution of IRD in sedimentary sections from Yermak Plateau(Levitan et al., 2002b). For core locations see Fig. 9.11 . . . . . . . . . . . . . 167

9.29 Evolution scheme of some paleoceanographic and paleogeographicparameters in the Arctic (Levitan et al., 2000b) . . . . . . . . . . . . . . . . . . . . 171

9.30 TOC, hydrogen index (HI) values, and C/N ratios in organic matterof Arctic Ocean sediments representing the last about 30 ka (Steinet al., 2004b). Arrows show 14C dates; light gray color matches MIS 1 175

9.31 TOC, hydrogen index (HI) values, and C/N ratios in organic matterof the Amundsen Basin core PS2174-5 possibly representing thelast 7–8 MIS (Stein et al., 2004b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.1 Scheme of the Pechora Sea lithodynamics (Tarasov, 1996).1 – sandy-gravely-pebbly sediment; 2 – sand; 3 – silty sand;4 – sandy silt; 5 – clayey silt; 6 – silty clay; 7 – sandy-silty-clayeysediment; 8 – areas of bottom erosion of Pleistocene deposits;9 – areas of bottom erosion of Paleozoic rock; 10 – transportationdirections of sand and silt; 11 – lithological boundaries . . . . . . . . . . . . . 180

10.2 Lithology of surface sediments of Varandey Site (Levitan et al.,2003b). 1 – clayey-silty sand; 2 – small-fine sand; 3 – fine-smallsand; 4 – small-grained sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.3 Terrigenous-mineralogical provinces of the Pechora Sea sediments(Levitan et al., 2003b). 1 – Vaigach; 2 – South Novaya Zemlya;3 – East Pechora; 4 – Central Pechora; 5 – West Pechora . . . . . . . . . . . 185

10.4 Light-mineral assemblages in surface sediments from the St. AnnaTrough (Kukina et al., 1999). 1 – quartz, feldspars, rock fragments;2 – quartz and feldspars; 3 – feldspars, rock fragments, quartz;4 – isobaths, m; 5 – geological stations . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.5 Heavy-mineral assemblages in surface sediments from the St. AnnaTrough (Levitan et al., 1999). 1 – black ore-epidote-clinopyroxene;2 – epidote-clinopyroxene-black ore; 3 – epidote-black ore-clinopyroxene; 4 – black ore-amphibol-epidote-cliopyroxene;

Page 14: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xvi List of Figures

5 – clinopyroxene-epidote-black ore; 6 – garnet-epidote-clinopyroxene-black ore; 7 – isobaths, m; 8 – geologicalstations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.6 Clay-mineral assemblages in surface sediments from the St. AnnaTrough (Levitan et al., 1999). 1 – kaolinite-chlorite-illite-smectite;2 – kaolinite-smectite-chlorite-illite; 3 – chlorite-illite-smectite-kaolinite; 4 – kaolinite-chlorite-smectite-illite; 5 – isobaths, m;6 – geological stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.7 Facies zonality and location of geological stations in the East KaraSea (Levitan et al., 2005a). Cruises: BP – RV Academik BorisPetrov; DM – RV Dmitry Mendeleev. A–D – facies codes . . . . . . . . . . . 196

10.8 Locations of sediment cores and lithological profiles of RV AcademikSergey Vavilov Expedition (Murdmaa et al., 2006) . . . . . . . . . . . . . . . . . 212

10.9 Lithostratigraphic correlation of sediment cores along the western(40–41◦ E) transect. Location of sediment cores is shown on thewater depth transect; for location see also Fig. 10.8(Murdmaa et al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10.10 Lithostratigraphic correlation of sediment cores along the northern(79◦45′–79◦57′ N) transect; for location see also Fig. 10.8 (Murdmaaet al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.11 Lithostratigraphic correlation of sediment cores along the eastern(60◦ E) transect; for location see also Fig. 10.8(Murdmaa et al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

10.12 Summary diagram of results of sediment core ASV880 (Murdmaaet al., 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.13 Summary diagram of results of sediment core ASV1183 (Murdmaaet al., 2006). See legend in Fig. 10.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.14 Summary diagram of results of sediment core ASV1200 (Murdmaaet al., 2006). See legend in Fig. 10.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10.15 Location of sediment core ASV 1157 in the South Novaya ZemlyaTrough (Levitan et al., 2004). 1 – location of sedimentary sectionwith peat layer with an age of 15310 years (Serebryanny andMalyasova, 1998); 2 – southern part of moraine of Admiraltycomplex (Gataullin and Polyak, 1977) . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.16 Lithology and amount of the >0.05 mm fraction (in %) in sedimentcore ASV 1157 (Levitan et al., 2004). 1 – silty clay, 2 – siltyclay with sand admixture, 3 – boundaries of layers with differenttextures, 4 – hydrotroilite, 5 – bivalves shells, 6 – polychaetstubes; 7–10 – sediment color: 7 – yellowish-gray, 8 – olive-gray,9 – olive, 10 – black; 11–14 – texture: 11 – massive, 12 – with weakand intermediate bioturbation, 13 – with intensive bioturbation,14 – laminated. Arrows show calendar age of mollusks shells . . . . . . . . 227

10.17 Distribution of heavy minerals (in %) and their ratios in sedimentcore ASV 1157 (Levitan et al., 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Page 15: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures xvii

10.18 Distribution of TOC, CaCO3, benthic foraminifers, and oxygen andcarbon isotope in N. labradoricum tests of the sediment core ASV1157 (Levitan et al., 2004). 1–7 – species of benthic foraminifers:1 – Spiroplectammina biformis, 2 – Nonion labradoricum,3 – Elphidium clavatum, 4 – Cassidulina reniforme, 5 – Haynesinaorbiculare, 6 – Pyrgo williamsoni, 7 – other species . . . . . . . . . . . . . . . 231

10.19 Changes of some sedimentation parameters in the South NovayaZemlya Trough during Holocene times (Levitan et al., 2004) . . . . . . . . 240

10.20 Location of geological stations in the Pechora Sea . . . . . . . . . . . . . . . . . 24210.21 Geological model (profile) of Quaternary deposits in the

south-eastern Pechora Sea (Levitan et al., 2003b). 1 – sand;2 – “black clay”; 3 – “gray clay”; 4 – diamicton . . . . . . . . . . . . . . . . . . . 247

10.22 Lithology of sediment core PL94-60 (Levitan and Kukina, 2002).1 – silty clay; 2 – silt; 3 – sand; 4 – hydrotroilite; 5 – IRD. . . . . . . . . . . 250

10.23 Lithology of sediment core PL94-08 (Levitan and Kukina, 2002).1 – silty clay; 2 – silt; 3 – sand; 4 – IRD . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.24 Lithology of sediment core PL94-64 (Levitan and Kukina, 2002).See legend at Fig. 10.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

10.25 Location of Yenisei Transect and geological stations(Levitan et al., 2004). 1 – marginal filter (a – distal part,b – depocentre, c – proximal part), 2 – delta . . . . . . . . . . . . . . . . . . . . . . 258

10.26 Lithology and mineral composition of sediment core BP00-23/7(Levitan et al., 2004). I–IV – lithostratigraphic horizons. Arrowsshow radiocarbon dates. 1 – silty clay; 2 – sandy-silty clay;3 – clayey-sandy silt and silty sand; 4 – shells of bivalve mollusks . . . 259

10.27 Chemical composition of sediment core BP00-23/7 (Levitan et al.,2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.28 Age model and environmental evolution of sediment core BP00-23/7(Levitan et al., 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

10.29 Lithology and mineral composition of sediment core BP00-07/6(Levitan et al., 2004). I–II – lithostratigraphic horizons. Radiocarbondates are shown by single arrows for sediment core BP00-07/6 anddouble arrows for sediment core BP00-07/7 (Stein et al., 2002). Seelegend at Fig. 10.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

10.30 Chemical composition of sediment core BP00-07/6 (Levitan et al.,2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

10.31 Age distribution of clinopyroxenes, Fe-hydroxides, andclinopyroxene/epidote ratio in sediment core BP00-07/6(Levitan et al., 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

10.32 Map of the study area of the “Academik Boris Petrov” Expedition2001 in the inner Kara Sea and Ob and Yenisei estuaries, presentinglocations of sampling sites and sediment echograph profiles (Steinand Stepanets, 2002). Based on the profiling results, the extent ofthe southeastern margin of the Last Glacial Maximum (LGM) icesheet and the LGM paleo-river channels were reconstructed (from

Page 16: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xviii List of Figures

(Stein et al., 2002)). Further sediment cores from the Ob Transectinvestigated in this study, were added. 1 – geophysical lines; 2,3 – sediment cores: 2 – with radiocarbon dates, 3 – without agedetermination; 4 – paleo-Ob valley; 5– 7 – land: 5 – 11 ka ago,6 – 9 ka ago, 7 – recent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

10.33 Lithology and age of sediment core BP03-19 (Levitan et al., 2007c).1 – clayey mud; 2 – silt; 3 – silty clay; 4 – clay with silt admixture;5 – sandy clays; 6 – bioturbation; 7 – bivalve mollusk shells . . . . . . . . . 274

10.34 Distribution of chemical elements in sediment core BP03-19(Levitan et al., 2007c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

10.35 Age distribution of quartz and K2O/Al2O3 ratio in sediment coreBP03-19 (Levitan et al., 2007c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.36 Lithology and age of sediment core BP03-07 (Levitan et al.,2007c). 1 – silty clay; 2 – clay with silt admixture; 3 – sandy clays;4 – bioturbation; 5 – ikaite; 6 – bivalve mollusk shells . . . . . . . . . . . . . . 282

10.37 Distribution of chemical elements in sediment core BP03-07(Levitan et al., 2007c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

10.38 Age distribution of quartz and K2O/Al2O3 ratio in sediment coreBP03-07 (Levitan et al., 2007c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

10.39 Correlation diagram of HM-TA (see text for explanation) forsediments of the Ob Transect which allows to separate sedimentsbelonging to different facies (Levitan et al., 2007c). 1 – upper unitof core BP03-19; 2 – lower unit of core BP03-19; 3 – core BP03-07 . . 285

11.1 Distribution of biogenic opal (wt. %) in surface sediments of theChukchi Sea (Pavlidis, 1982). 1 – <1; 2 – 1–5; 3 – 5–10; 4 – >10 . . . . 292

11.2 TOC distribution in sediment cores from the Laptev Sea continentalslope (Stein and Fahl, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

11.3 Location of studied sediment cores in the Laptev Sea (Bauch et al.,2001). 1 – transform fault (Explanatory note to tectonic map of theBarents and Kara Seas, 1998); 2 – boundary between complete anduncomplete cross-sections of the Holocene . . . . . . . . . . . . . . . . . . . . . . . 295

12.1 Lithology of the Navarin Basin Subatlantic sediments (the BeringSea north-western shelf) and distribution of TOC (Marina et al.,1985). a – lithology: 1 – gravel and pebble, 2 – sand, 3 – silt,4 – clayey mud, 5 – outcrops of hard rock, 6 – geological stations;b – TOC content (wt. %): 1 – >1.7, 2 – 1.7–1.5, 3 – 1.5–1.3,4 – 1.3–1.1, 5 – 1.1–0.9, 6–0.9–0.7, 7 – 0.7–0.5, 8 – <0.5,9 – geological stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

12.2 Lithological transect through the Navarin Basin (a) and TOCdistribution (b, c) (Marina et al., 1985). a: 1–5 – stratigraphichorizons: 1 – Subatlantic, 2 – Subboreal, 3 – Atlantic, 4 – Boreal,5 – Preboreal; 6–12 – lithology: 6 – sand, 7 – silty sand, 8 – silt,9 – silty clay, 10 – marly mud, 11 – clayey mud, 12 – diatommud, 13 – pebble, 14 – shell, 15 – pyrite. b: 1–8 – TOC (wt. %)distribution: 1 – 0–0.5, 2 – 0.5–0.7, 3 – 0.7–0.9, 4 – 0.9–1.1,

Page 17: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Figures xix

5 – 1.1–1.3, 6 – 1.3–1.5, 7 – 1.5–1.7, 8 – >1.7, 9 – TOC values;10 – boundaries of stratigraphic horizons, 11–15 – stratigraphichorizons. (see Fig. 12.2a) c: 1–6 – TOC mass accumulation rates(g/cm2/ka): 1 – <0.25, 2 – 0.25–0.50, 3 – 0.50–0.75, 4 – 0.75–1.00,5 – 1.00–1.25, 6 – >1.25; 7 – lines of equal mass accumulationrates; 8 – boundaries of stratigraphic horizons . . . . . . . . . . . . . . . . . . . . 304

12.3 Scheme of surface-water circulation (Chernyavsky et al., 1993) andlocation of RV Marion Dufresne sediment cores in theSea of Okhotsk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

12.4 Distribution of selected geochemical parameters in sediment coreDM 2594 (the Bering Sea) (Gorbarenko, 1996) . . . . . . . . . . . . . . . . . . . 309

12.5 Lithology and stratigraphy of sediment core MD01-2415 (Levitanet al., 2007b). 1 – sand; 2 – silty clay; 3 – clay; 4 – diatom ooze;5 – diatom clay; 6 – IRD; 7 – volcanic ash lenses; 8 – volcanic ashlayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

12.6 Histograms of main lithologies and grain-size distribution (Levitanet al., 2007b). a – diatom ooze, b – diatom clay, c – silty clay, d –silty-clayey sand, e – vitric volcanic ash, f – host sediment for lensesof volcanic ash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

12.7 Distribution of Na, Ba, Sr, and Sc in sediment core MD01-2415(cofm – recalculated for carbonate-opal-free matter) (Levitan et al.,2007b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

12.8 Distribution of Th/Sc ratios in sediment core MD01-2415 (Levitanet al., 2007b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

12.9 REE spectra of sediments (chondrite normalized) (a), anddistribution of Eu anomaly in sediment core MD01-2415 (b)(Levitan et al., 2007b). Eu anomaly for all samples was calculatedaccording to formula “(Eu sample/Eu chondrite)/(Sm sample/Smchondrite)”. Those REE are shown which were determined by INAAmethod; other element concentrations are calculated. Numbers inFig. 12.9a: sampling core depth (cm below sea floor) . . . . . . . . . . . . . . 320

12.10 Distribution of smectite/illite ratios in sediment core MD01-2415(Levitan et al., 2007b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

12.11 Schematic summary compilation showing the sedimentation historyof the Northern Sea of Okhotsk for the last 1.1 Ma (Levitan et al.,2007b). MAR – mass accumulation rates (g/cm2/ky) (Nurnbergand Tiedemann, 2004), with change for terrigenous matter MAR.Paleoproductivity downcore up to level 130 ka is given according to(Nurnberg and Tiedemann, 2004), below – on our data . . . . . . . . . . . . . 326

12.12 Changes of oxygene-isotope composition and concentrations ofgreenhouse gases in ice cores of greenland and Antartic (Brooket al., 2006) for the last 90 ka (a) and for the last 750 ka (b)in comparison to the global benthic oxygen isotope stack from(Liciecki and Raymo, 2005). (b) (Levitan et al., 2007b) . . . . . . . . . . . . 328

Page 18: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xx List of Figures

14.1 Surface currents during, the Eemian Interglaciation (Haake andPflaumann, 1989). a – currents of MIS 5e beginning; b – currentsof MIS 5e end. Area of distribution of pack sea ice in the VøringPlateau area is hatched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

14.2 Stadial-interstadial events of the Late Pleistocene in the WestScandinavia and their reflections in sediments of the adjacent shelf(cal. age scale) (Baumann et al., 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

14.3 Climate changes in the West Arctic between 15 000 and 11 000years ago (by Yu.A. Lavrushin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

14.4 Structure of coastal late glacial terraces (Lavrov and Potapenko,2005). a – location of main sedimentary sections; b – terracestructure: 1 – peat, 2 – peat under moraine deposits, 3 – sand,4 – sand with gravel and pebble, 5 – boulder clays, 6 – flow till,7 – sand and silt (“kame” sediments), 8 – limestone, dolomite,9 – clay, siltstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

15.1 Sedimentation zones and ecological conditions during glacialexpansion (A) and waning (B) (fjord variant) . . . . . . . . . . . . . . . . . . . . . 346

15.2 Barents sea level changes during post-glacial time . . . . . . . . . . . . . . . . . 34715.3 Movements of the Barents and White Seas coastal lines

(Lavrov and Potapenko, 2005). 1 – Kola Peninsula (Koshechkin,1975) – highest (1a) and lowest (1b) position; 2 – Malozemel’skayaand Bol’shezemel’skaya tundra (Arslanov et al., 2005); 3, 4 – sealevel: 3 – according to (Fairbanks, 1989), 4 – according to(Shepard, 1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Page 19: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Tables

2.1 Composition and the distribution of mollusks, barnacles andbrachiopods in the interglacial sediments of the Kola Peninsula[Gudina, Euzerov, 1973] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Chronostratigraphy and vegetation of the North-Eastern Europeanpart of Russia in the late Neopleistocene (according to [Lavrov,Potapenko, 2005]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Chronstratigraphy of the late Pleistocene geological events of thenorthern West Siberia plain (according to [Arkhipov, 1997]) . . . . . . . . 34

3.2 The event-related chronostratigraphy of Kargin – Middle Valdaystage (according to [Arkhipov, 2000]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Basic glaciological and morphogenetic events of last glaciationduring its degradation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Radiocarbon dates, calibrated calendar age and calculated averagedsedimentation rates [Bauch et al.,2001] . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1 Sedimentation rates (cm/ky) in the Norwegian-Greenland Basinduring the last five marine oxygen isotope stages (MIS) (compiledby M.A. Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 Average values of SR ratio for MIS in the studied regions (by M.A.Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Physical properties in sediment core ASV 1372[Levitan et al., 2005] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 Clay mineral composition in sediment core ASV 1372[Levitan et al., 2005] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.5 Sedimentation rates and mass accumulation rates of major sedimentcomponents in sediment core ASV 1372 [Levitan et al., 2005] . . . . . . . 99

9.1 Average composition (%) of clay mineral associations in fraction<2 mkm of surface layer sediments at the continental margins of theArctic Ocean [Levitan et al., 1995b], with changes . . . . . . . . . . . . . . . . 121

9.2 Average composition (%) of clay mineral associations in the fraction<2 mkm of surface layer sediments in the deep-water areas of theArctic Ocean [Levitan et al., 1995b], with changes . . . . . . . . . . . . . . . . . 122

xxi

Page 20: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xxii List of Tables

9.3 Average composition (%) of clay mineral associations in surfacelayer sediments of the main oceans [Levitan et al., 1995b], withchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Temperature and salinity of bottom waters [Levitan et al., 2000b] . . . . 1309.5 Major zones of Holocene sedimentation [Levitan et al., 2000b],

with changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1349.6 Age difference between Heinrich events in the North Atlantic and

iceberg sediments related to the Arctic part of the Laurentian IceSheet [Darby et al., 2002], simplified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.7 Sedimentation rates (cm/ky) in the Arctic Ocean during the lastfive marine oxygen isotope stages (MIS) (compiled by R. Stein andM.A. Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.8 Spatial and temporal distribution of sedimentation rates (cm/ky) andits ratio in the Arctic Ocean during the last five MIS(by M.A. Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.9 Sedimentation rates (cm/ky) on the Yermak Plateau . . . . . . . . . . . . . . . . 1519.10 Epidote/pyroxene ratio in sediments of different marine isotope

stages [Levitan et al., 2002b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1699.11 Total content of mica and amphiboles (rel. %) in sediments of the

Yermak Plateau calculated for IRD-free matter[Levitan et al., 2002b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.12 Location of the studied stations [Stein et al., 1994a] . . . . . . . . . . . . . . . . 17410.1 Content of grain-size fractions (wt. %) in the surface layer sediments

of the Pechora Sea [Levitan et al., 2003b] . . . . . . . . . . . . . . . . . . . . . . . . 18110.2 Calculated grain-size parameters [Levitan et al., 2003b] . . . . . . . . . . . . 18210.3 Content of main heavy minerals (rel. %) in the surface sediment

layer of the Pechora Sea [Levitan et al., 2003b] . . . . . . . . . . . . . . . . . . . 18410.4 Location of geological stations of RV Polarstern in the eastern

Kara Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18510.5 Average grain-size composition (wt. %) of the recent facies [Levitan

et al., 2005a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20210.6 Average content of major clay minerals in different facies (fraction

<2 mkm) (rel. %) [Levitan et al., 2005a] . . . . . . . . . . . . . . . . . . . . . . . . . 20310.7 Average content of major light minerals in different facies (fraction

0.1– 0.05 mm)(rel. %) [Levitan et al., 2005a] . . . . . . . . . . . . . . . . . . . . . 20310.8 Average content of major heavy minerals in different facies (fraction

0.1– 0.05 mm) (rel. %) [Levitan et al., 2005a] . . . . . . . . . . . . . . . . . . . . . 20410.9 Average chemical composition of different facies

[Levitan et al., 2005a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20510.10 Characteristics of the studied sediment cores from the central and

eastern parts of the Barents Sea [Murdmaa et al., 2006] . . . . . . . . . . . . 21110.11 Radiocarbon dates of samples from sediment cores ASV 880, 1200

and 1183 [Murdmaa et al., 2006] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21510.12 Content of clay minerals in the fraction of less than 0.001 mm in the

eastern Barents Sea sediments (rel. %) [Murdmaa et al., 2006] . . . . . . . 221

Page 21: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

List of Tables xxiii

10.13 Location of sediment cores and thickness of the individual units(by I.O Murdmaa and M.A. Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10.14 Age of bivalve mollusk shells from sediment core ASV 1157[Levitan et al., 2003b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.15 Calendar age (cal. yrs. BP) of Holocene stages by Blitt-Sernanderscale [Merkt, 1999] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.16 Radiocarbon age of bivalve mollusk shells Astarta borealis andMacoma calcarea from the “blanket” sand of the Pechora Seastudied in 13-th cruise of RV Academik Sergey Vavilov[Levitan et al., 2000], with changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

10.17 Grain-size composition (wt. %) of the Pechora Sea Quaternarysediments [Levitan et al., 2003b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10.18 Arithmetic mean values of TOC and CaCO3, and the physicalproperties values of the basic Quaternary sedimentary units[Levitan et al., 2003a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.19 Degree of sediment sorting according to normalizedentropy [Romanovsky, 1977] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.20 Radiocarbon dating of the sediment sample from theSt. Anna Trough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

10.21 Radiocarbon age of the bivalve Portlandia shell samples[Levitan et al., 2004] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.22 REE content (ppm) in sediments of the Yenisei marginal filter[Levitan et al., 2004] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

10.23 Location of studied sediment cores of the Ob River transect . . . . . . . . . 27210.24 Results of the radiocarbon analysis of mollusk shells . . . . . . . . . . . . . . . 27310.25 Correlation matrix of sediment core BP03-19 (upper horizon) . . . . . . . 27710.26 Correlation matrix of sediment core BP03-19 (lower horizon) . . . . . . . 27810.27 Correlation matrix of sediment core BP03-07 . . . . . . . . . . . . . . . . . . . . . 27910.28 Chemical composition (wt. %) of sediment cores

of Ob River transect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28611.1 Sedimentation rate (cm/ky) and bulk mass accumulation rate

(g/cm2/ky) at the continental slope of the East Siberian Sea[Stein et al., 2001] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

11.2 Grain-size (wt. %) and chemical composition (wt. %) ofdiatom-bearing silty clays in sediment core PSh 40 at the ChukchiSea shelf [Aksenov et al., 1987] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

12.1 Thickness of Holocene diatom oozes in the Bering Sea according toM.A. Levitan (29-th cruise of RV Dmitry Mendeleev) . . . . . . . . . . . . . . 304

12.2 Distribution of chemical elements in the major lithotypes ofsediment core MD01–2415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

12.3 Average concentration of elements in the Okhotomorsk (I) andVanin (II) sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Page 22: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xxiv List of Tables

12.4 Average value of Eu anomaly in different geologic objects(composed by M.A. Levitan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

15.1 Geochronological correlations of high productive events, Heinrichevents (Bonds et al.1993; Shaw, 1995, Dokken and Hald, 1999;Hald, 2001) and the Middle Valday Interstadials of theRussian Plain(by Yu.A. Lavrushin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Page 23: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Introduction

The establishment of relationships between sediment composition and climatic en-vironment in the sediment basin and subsequent evolution of climate relates to theclassical problems of fundamental sedimentology. The widely known publicationsby the Russian academicians N.M. Strakhov, A.B. Ronov, and A.P. Lisitsin arededicated to different aspects of this problem. In particular, the monograph pub-lished by A.P. Lisitsin “Sea-ice and iceberg sedimentation in the Ocean: recent andpast” (Lisitsin, 2002) closely corresponds to the issues examined in this book. Thismonograph discusses in detail the environments and means of accumulations ofrecent marine and oceanic sediments in the ice zone of sedimentation of the Ocean,however, much less attention is given to the history of ice sedimentation, especiallyto high-resolution paleoceanography.

In the present work the authors accepted the following basic principles:

1. Study not only of the Arctic, but also of the Subarctic, especially of those regions,where there were conducted the original studies by the authors.

2. Study of climatic history influence (first of all, – the glaciation evolution ofNorthern Hemisphere) on sedimentation for the last 130 ka (MIS 5e – MIS 1) notonly in the marine periglacial environment (term of G.G. Matishov), but also inthe deep water areas and on the adjacent continental blocks.

3. Imperative description of recent sedimentation environment for subsequent ap-plication of the comparative-lithological method.

4. Detailed consideration of accessible stratigraphic and geo-chronometric data forpartition and correlation of various sedimentary facies.

Some of the above-mentioned principles require further explanation. First of all,stratigraphy of the recent marine and oceanic sediments of the Arctic ice zone wasessentially undeveloped compared to the stratigraphy of terrestrial Quaternary sed-iments. This circumstance was due to the predominantly terrigenous compositionof marine sediments, which, as a rule, do not contain sufficient amount of bio-genic calcite for dating by the traditional methods of radiocarbon analysis. As itwas shown by numerous studies, in these sediments the scattered organic matteris mainly terrigenous and redeposited. Therefore, it is not suitable for radiocarbondating. Just at the beginning of the 80’s of the last century the new method of ra-diocarbon dating appeared which was based on the accelerating mass-spectrometry

xxv

Page 24: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xxvi Introduction

(AMS 14C), which made it possible to date sediments using the very small (firstmilligrams) hinges of calcite.

Only then, the active determination of age of the Arctic and Subarctic siliciclasticsediments has become widely available within the age limits of radiocarbon method(approximately within 50 ka). Unfortunately, the AMS 14C facility does not existin Russia. The presented data either are taken from the reference or determinedin the course of joint projects with the associates from Germany, USA, France.Lately some funding has become available for payment of the corresponding studiesabroad, which gives hope for the wider use of AMS 14C method in Russia.

Secondly, the next important stratigraphic method for the Arctic sediments isoxygen-isotope study. Development of new generation of mass spectrometers andspecial prefixes for the automatic mass measurement of samples allowed obtainingappropriate data literally on several species of the carbonate foraminifer planktonicand secretional tests.

Thirdly, the actively developing procedures of magnetostratigraphy, which inves-tigate magnetic excurses, played an important role in the stratigraphy of the Arcticsediments. Such works have already led to a whole series of important discoveries,in particular, to the “rejuvenation” of many geological cross-sections and the proofof the higher sedimentation rates in the pelagic regions of the Arctic Ocean, than itwas considered earlier.

Finally, a wide application of optically simulated luminescence (OSL) methodand dating of exposure age on the earth’s surface on 10Be is very important for thestratigraphy of Quaternary sediments and understanding of the glacial history of thecontinental blocks, which adjoin the Arctic Ocean.

In the first part of the book a prime attention is given to geology and paleoecologyof the terrestrial Upper Quaternary and Holocene sediments at the territory of NorthEurasia since the authors mainly conducted their own studies in these regions, orin the surrounding seas (for example, the longest chapter is dedicated to the WestArctic seas). However, there is much information regarding the history of glaciationof Greenland and North America in the chapters devoted to the West Subarctic seasand the Arctic Ocean. It should be noted that the studies are presented here start-ing from the Mikulino Interglaciation (MIS 5e), in order to have the comparativematerial for the analysis of the last interglacial period – the Holocene.

Again, the authors would like to emphasize the comprehensive character of theconducted investigations. There was studied the influence of the most varied glacia-tion features on evolution of sedimentation, in particular: continental and marineice sheets, mountain glaciations, permafrost, sea ice and icebergs. The influence ofthese features on the Earth climate and its change is completely obvious.

Is is important to note two other main components of the Arctic climate: theinfluence of water exchange of the Arctic Ocean with the warm and saline waters ofthe Atlantic Ocean and, to a lesser degree, with the Pacific waters, and the abundantliquid and solid riverine discharge of Eurasia and North America into the ArcticOcean. The above influence of both factors on accumulation, primary production,thermohaline circulation, water chemistry, temperature fields in the water layer and

Page 25: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Introduction xxvii

the atmosphere is very significant. These factors have been studied to a differentdegree in various regions. Some data are presented for the first time.

In order to solve the specified fundamental problem not only the “direct” taskis imperative, for example as the climatic features influence sedimentation, but alsothe “reverse” task, as according to sedimentology proxies (grain-size, mineralogical,geochemical, and micropaleontological data), to determine climate environment andits changes. Here the authors proposed a whole set of indicators, which are validwithin the regional framework of its application. At the first place, the book dealswith the heavy, light and clay mineral data, and results of geochemical (organic andinorganic) studies.

Introduction is written by Prof. Dr. M.A. Levitan (V.I. Vernadsky Institute forGeochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow,Russia) with participation of Prof. Dr. Yu.A. Lavrushin (Geological Institute, Rus-sian Academy of Sciences, Moscow, Russia), the second part is composed by M.A.Levitan (with one exception: Section “Organic-Geochemical Sediment Studies ofthe Eastern Part of the Central Arctic” is written by Prof. Dr. R. Stein, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany). Theauthor of the first and the third parts is Yu.A. Lavrushin (with the participation ofM.A. Levitan in the third part). The authors of the book have been studying theabove scientific issues for a long period. It is worthy to note that the first monographof Yu.A. Lavrushin, dedicated to the Quaternary sediments of Spitsbergen, was pub-lished in 1969. The first cruise of M.A. Levitan into the Sea of Okhotsk happenedin 1976, and it did in 1982 into the Bering Sea. For the last 15 years almost allpublications of M.A. Levitan were dedicated to the Arctic and the Subarctic regions.

It makes sense to briefly mention the title of this book. It is necessary to note thatthe sedimentation basins of the extensive Arctic region have been studied unevenly(for example, it is difficult to compare the Barents and East Siberian Sea degree ofresearch). At present, there are still very few datings and not enough bore holes. Forthe most part, sedimentation history on the shelves could be described only for thelatest 10–15 ka according to the research results for the shelf seas of North Eurasia.There are only a few paragraphs that discuss sedimentation history of much longertime periods (up to 1.1 million years).

The severe ice conditions still do not allow conducting scientific studies on boardof the common research vessels in many Arctic regions, for example, in the Karaand East Siberian Sea. Thus far, the continental margin of the Arctic Ocean has beenpoorly studied. In this book the authors have not considered the applied scientificaspects, such as oil and gas exploration, geological engineering, geo-ecology, placerdeposits, fishery, etc., but the importance of the book for these studies is obvious.

To summarize, the authors have chosen this particular book title and proposed itto the readers because the necessity for scientific generalization of the Arctic stud-ies had already appeared that, in particular, emphasized by numerous publicationsdedicated to the studies of other aspects of marine geology of the Arctic region[(Svitoch, 2003; Romankevich and Vetrov, 2001; Stein and Macdonald, 2004) andother].

Page 26: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

xxviii Introduction

The international studies of the high-latitude regions, in particular, the Arctic andthe Subarctic are of particular importance. The authors participated in many inter-national programs, mainly in joint cooperation with the German associates fromthe AWI (Bremerhaven) and GEOMAR (Kiel) scientific institutions. Besides thejoint papers, there were published four collections, in which the authors partici-pated in composition and editing (Stein et al., 1996; 1999; Schoster and Levitan,2003, 2004). M.A. Levitan had an unforgettable impression during the expeditionson board of the German research ice-breaker Polarstern (1997) in the area of theYermak Plateau and on board of the French research vessel Marion Dufresne (2001)in the Japan Sea, Sea of Okhotsk and the northwestern part of the Pacific Ocean.The authors are deeply grateful to all associates and crews of the above scientificexpeditions.

Finally, it is necessary to focus attention on one more crucial point. Several in-ternational expeditions have been working for the last 10–15 years in the Subarcticregions of the Russian part of Eurasia and the adjacent seas. As a result of thesestudies, many new interesting materials have been obtained, which made it possibleto formulate a number of the fundamental conclusions, presented in many publica-tions. The overwhelming majority of these publications are known to the authors ofthis book, but the references are absent in the book due to the following reason. Itis caused by significant controversy and insufficient authenticity of the part of theconclusions, based on geochronological methods. In particular, the datings, obtainedby modern modification of thermoluminescent method. As far as TL-method is con-cerned, the absolutization of the results obtained, causes doubt in many Russian andforeign researchers.

With respect to some conclusions, based on the datings of AMS 14C method, itseems that the sampling procedure did not take into account the local features ofsedimentation particularities. In particular, the discussion deals with the fact thatin Pleistocene the alluvial deposits of the north of Eurasia contained plant detriteof unequal-age, which accumulation is respectively connected with the wash-out ofthe peat bogs of different age.

Despite the above considerations, obtaining the large set of geochronologicaldata, although of various degree of authenticity, by itself is the important result ofthe international research, since previously only single datings have been known.These findings made it possible to date many important paleogeographic events ofthe Subarctic. Some of the obtained results have been taken into account, and arebeing discussed at the I and III parts of the proposed book.

Authors used different approaches: M.A. Levitan described mainly results of hisregional studies while Yu.A. Lavrushin concentrated on important results obtainedby Russian researchers in the Arctic/Subarctic region. This still makes the book tobe an important contribution in Arctic Ocean climate research because it will presenta lot of new data and interpretation which are not available in the open literature forwestern readers yet.

Funding of the executed work was achieved due to the Grants of Russian Founda-tion for Basic Research (RFFI), RFFI-CNRS (France), RFFI-GFEN (China), DFG(Germany), NRL (USA), FTSP “World Ocean”, Presidium RAS (Russian Academy

Page 27: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Introduction xxix

of Sciences) (program # 16), ONZ-14. The authors are grateful to the funding agen-cies and organizations, which contributed to the creation of this monograph. Theauthors hope that the proposed book will find its readers among the specialists in theareas of sedimentology, Quaternary and marine geology, paleoceanography, marinegeoecology, oceanology, climatology, and also among students of the enumeratedspecialties.

The translation of slightly modified version of book by (Levitan et al., 2007a) isperformed by E.S. Shelekhova, Ph. D. (Moscow, Russia). Editing of translation wasdone by M.A. Levitan (whole manuscript), R. Stein (Part II), and T.N. Golodnyuk(Parts I and III).

Page 28: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Part IGeological and Paleoecological Events of

the Late Pleistocene and Holocene inNorthern Eurasia

Page 29: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

Chapter 1Geological and Paleoecological Eventsof the Late Pleistocene along EurasianCoastal Areas of the Arctic Ocean

In the Late Pleistocene and Holocene a number of important geological-paleoecological events took place that were related to significant global climaticchanges, relationships of land and sea areas, specific terrestrial sedimentation, anddifferent types of natural phenomena some which had a catastrophic character and,accordingly, geoecological effect.

General Upper Pleistocene Stratigraphic Schemefor Northern Eurasia

In contrast to the lower units of the Pleistocene, stratigraphy of the upper one hasbeen studied for a long time and developed in detail. The most comprehensive inves-tigations were carried out in the Eurasian temperate zone of Northern Hemisphere.Therefore, it seems expedient to begin describing the Upper Pleistocene stratigra-phy from this zone. In spite of numerous debatable problems, application of phys-ical methods and usage of results of paleomagnetic, biostratigraphic, paleoclimaticand lithological investigations enabled approaching still inadequately substantiatedbut essentially new scheme of Late Pleistocene event stratigraphy (Lavrushin et al.,2002). It should be stressed that such a scheme can be developed on the base of mul-tidisciplinary studies only. The application of physical methods to different (conti-nental and marine) natural environments helps to compile a calendar of significantglobal events, which occurred both in the subaqual and subaerial conditions, includ-ing subglacial ones, and provides an important tool of reliable correlations of manynatural phenomena.

After the preliminary brief notes some general trends in the Late Pleistoceneenvironmental history should be outlined. Now this time interval is estimated to beapproximately 130 ka.

Traditionally, the Russian researchers distinguish a single interglacial of the earlyLate Pleistocene, which is called Mikulino in the European part of Russia andKazantsev in the Asian part and correlative to the Eemian Interglacial of WesternEurope. Two glacials and two interstadials of the later time were established. Theglacials correspond to the Kalinin and Ostashkov glaciations (correlated with MIS 4and MIS 2 respectively) in European Russia and to the Zyryansk and Sartan glacia-tions in Siberia. The interstadials embrace a larger (post-Eemian) part of MIS 5

M.A. Levitan, Y.A. Lavrushin, Sedimentation History in the Arctic Ocean and SubarcticSeas for the Last 130 kyr, Lecture Notes in Earth Sciences 118,DOI 10.1007/978-3-642-00288-5 1, C© Springer-Verlag Berlin Heidelberg 2009

3

Page 30: Lecture Notes in Earth Sciences 118 · Lecture Notes in Earth Sciences 118 Editors: J. Reitner, G¨ottingen M. H. Trauth, Potsdam K. St¨uwe, Graz D. Yuen, USA Founding Editors: G

4 1 Geological and Paleoecological Events of the Late Pleistocene

(d–a) and MIS 3. The latter interstadial is called the Middle Valday. The intersta-dials were characterized by climatic instability with periodic alternation of warm-ing and cooling phases. According to integrated data (mainly palynological), thewarming phases were colder than the present-day climate. Landscapes close to theperiglacial ones with some cryogenic horizons dominated in the cooling phases.Shifts of Scandinavia and Spitsbergen mountain glaciers to the shelves were fixed atMIS 5 d.

The mentioned events reflect a complex climatic history of the Late Pleistocene.Since this book describes processes both in the Arctic seas and adjacent land areas,the noticeable fluctuations of the World Ocean level are worth noting. During thelast glaciation the sea level fell by 110–120 m and a large part of the Arctic shelveswas dried. Consequently, since the Kalinin Glaciation is supposed to be the mostsignificant one, the dried shelf area was wider at that time.

Some important facts related to the glaciations should be also mentioned. Theglacier degradation caused a very rapid rise of sea level. The available data indi-cates a catastrophic rate of post-glacial transgression and avalanche sedimentation.As shown below, there was a rapid rearrangement of sea currents, which reflectedthe high dynamics of water mass and its complex structure. Periodic changes ofmarine biota (the cold Arctic fauna was replaced by the warmer boreal and Arctic-boreal ones and vice versa) occurred even during the interstadials, which may serveas indicators of paleoclimatic conditions on the adjacent land areas. In this case wedeal with paleodynamics of different-type water masses rather than the ocean levelfluctuations. Particularly, the cooling could be caused by deep penetration of high-Arctic water masses into the shelf seas, while the warming could be brought aboutby the warm currents, e.g., a branch of the paleo-Gulf Stream. A role of atmosphericprocesses must not be neglected. According to available data, vegetation of Euro-pean Russia included some Siberian floral elements in the post-Eemian phases ofMIS 5d–5a and some West European elements at MIS 3.

Finally, one more important fact is worth noting. Changes in the sea current sys-tem occurred not only in the Late Glacial phases, but also in the relatively warmintervals, particularly, in the interglacials. The high changeability of sea currents inthe early Eemian Interglacial (Lavrushin and Alekseev, 1999) was found out by theGerman researchers (Haake and Pflaumann, 1989) who studied foraminifers of theVøring Plateau of the Norwegian Sea.

The cold East Spitsbergen current was originated in the Holocene (Subboreal) inthe northwestern Barents Sea, between the Bear Island and Spitsbergen (Lavrushinet al., 1990). This current brought about an increase of ice volume in the BarentsSea and climatic deterioration in European Russia. Certainly, its influence shouldnot be overestimated, because this area experienced a reduced effect of the Atlanticair masses and an increased action of the Siberian air masses (Spiridonova andLavrushin, 1997).

Thus, the climatic conditions were formed under the influence of both highlydynamical water masses and genetically different air masses.

The presented trends in the Late Pleistocene environmental development are con-sidered below in more detail.