lecture note electrical machine thermal design

Upload: chaucibai

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    1/32

    Thermal design

    Electromagneticdesign

    Specifications

    P, m

    Mechanicaldesign

    Bearings

    Thermal design

    Power supply

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    2/32

    Loss distribution in an inverter-fed motor

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    3/32

    Loss distribution for sinusoidal supply

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    4/32

    High-frequency flux related to the inverter supply

    Figure presents the high-

    frequency flux associated

    with the harmonic voltagesof the inverter supply.

    The machine was analysed

    in inverter supply and

    sinusoidal supply with the

    two supply voltages having

    equal fundamental

    harmonics. The flux

    presented in the figure is

    the difference of the fluxes

    of the two supply modes.

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    5/32

    Voltage and current in the loss simulation

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    6/32

    Insulation classes for w indings

    A winding should stand for 20 000 h the temperature

    defined by the insulation class (IEC 60216-1).

    Montsingers rule / Arrhenius equation

    A temperature rise of 10 K halves the expected live time of

    an insulation system

    1 0 K 0 .5 L T L T e k TL T B

    Insulation class 130 155 180

    Old system B F H

    Maximum temperature [C] 130 155 180Average temperature rise [K] 80 105 125

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    7/32

    Characteristics of a permanent magnet

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    8/32

    = heat conductivity

    = densitycp = specific heatph = power density

    h( )pc T pt

    q

    hpTc T pt

    Tq

    Equations of heat conduction

    Heat conduction is a solid (or static fluid)

    Conservation of energy

    Heat equation

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    9/32

    Thermal conductivities of some materials

    Material / Part [W/mK]

    Copper 370Aluminium 240Casted iron 58Steel (0.1 % C) 52

    Stainless steel 15 25Laminated core (radial direction) 18 40Laminated core (axial direction) 1 4NeFeB magnets 10Enamel coating of conductors 0.20Slot insulation 0.2 0.3

    Air at 50 C 0.028Water at 20 C 0.60

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    10/32

    Problem: Heat transfer from solid to fluid

    v

    x

    T

    x

    Tm Ta

    v What is velocity distribution?

    Turbulent or laminar flow?

    Conduction or convection?

    What is thermal distribution?=>

    Semi-empirical heat transfer

    coefficient c for the surface

    c c m aq T T

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    11/32

    Circumferential flow pattern in air-gap

    Laminar flow Turbulent flow

    r mRvR e

    = density, = radial air-gap length, Rr= rotor radius, = dynamic viscosity

    Re < 2000 => laminar flow; Re > 5000 => turbulent flow

    Reynolds number

    Rotor

    r

    v

    Stator

    Rotor

    v

    Stator

    Rr

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    12/32

    Flow distribution in r,z-plane

    Couette flow with Taylor vortices:

    Taylor number22 3

    2 m r

    2

    r

    RT a R e

    R

    = density, = radial air-gap length, Rr= rotor radius,

    = dynamic viscosity

    Taylor vortices appear in air-gap flow, if Ta > 1700

    Stator

    Rotorz

    Air gapr

    Rr

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    13/32

    Heat-transfer in the air-gap flow

    Heat-transfer coefficient for the air-gap surfaces

    From one surface to the air flow in the middle of air gap

    Nu = Nusselt numberTam = Modified Taylor number (Tam Ta for air-gap flow)

    Becker K.M. and Kaye J. 1962. Measurements of diabatic flow in an annulus with an

    inner rotating cylinder. Transactions of the ASME, Journal of Heat Transfer, Vol. 84,

    May, pp. 97105.

    c ;

    N um

    0.3 67 4

    m m

    0.241 4 7

    m m

    2 , < 17 00

    0 .128 , 17 00 1 0

    0 .409 , 10 < < 1 0

    N u T a

    N u T a T a

    N u T a T a

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    14/32

    Characters for air-gap flow R e

    r m

    R

    Re < 2000 => laminar flow; Re > 5000 => turbulent flow= density, Rr= rotor radius, m angular speed, = air gap,

    = dynamic viscosity

    Machine A: Turbo-generator 270 MVA, 3000 1/min

    Machine B: Hydro-generator 21 MVA, 125 1/min

    Machine C: Cage induction motor 4.75 MW, 1500 1/min

    Machine D: Cage induction motor 37 kW, 1500 1/min

    Machine A Machine B Machine C Machine D

    Re 660219 21678 13838 702

    Ta 5.7E+10 1.6E+06 2.5E+06 3941

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    15/32

    Heat flow over solid-solid boundaries withan imperfect contact

    An imperfect contact betweentwo solids affects heat flow rate

    =>

    Semi-empirical heat-transfercoefficient c for the surface

    c c 1 2q T T

    Contact [W/mK]

    Aluminium frame Stator core 350 - 550Cast iron frame Stator core 650 - 870Rotor bar Rotor core 430 - 2600

    1T 2T

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    16/32

    Heat transfer by radiation

    4 4r 1 0Q A T T

    Stefan-Boltzmann law

    T1 T0

    Radiation: T1 = 400 K, T0 = 300 K

    => q = 992 W/m2

    Natural convection: c = 14 W/m2K,

    T= 100 K

    => q = 1400 W/m2

    82 4

    W5 .6 7 1 0

    m K

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    17/32

    hpq

    hpT

    Tq

    Analogy of the heat flow and electric current flow

    Static fields

    Heat flow

    Conservation of energy

    Temperature field

    0 J

    0

    J

    Electric current density

    Conservation of charge

    Electric scalar potential

    => The tools developed for electric circuit analysis

    can be used to study heat flow

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    18/32

    A conductor having a constant cross-sectional area

    P

    IA

    l U

    P = Power,

    Temperature

    difference

    R

    A

    l

    AdTAdqPAA

    eR

    UA

    l

    UAdAdJI

    A A

    Equations for the heat flow and electric current (ph = 0)

    Thermal resistance

    lR

    A

    el

    RA

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    19/32

    Ax

    212hh

    2

    2

    2 cxcx

    pxT

    p

    dx

    Td

    = constant;ph = constant

    1D thermal network

    hpT

    ph

    T1 T2

    1

    2

    0T T

    T l T=>

    21h

    2T

    l

    xT

    l

    xlxlx

    pxT

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    20/32

    A

    l

    Thermal network for 1D heat flow

    ph

    T1 T2

    A thermal network for the bar with 1D heat flow

    AlR

    A

    lRR

    6

    2

    3

    21

    T1

    T2

    Ta

    P

    R1

    R2

    R3

    Ta is the average temperature of the bar

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    21/32

    Matrix of round wires

    Equivalent thermal conductivity for round conductors ina stator slot

    d

    d

    i

    )

    '

    ( i

    i

    ir

    d

    d

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    22/32

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    23/32

    Thermal network for the stator

    Yoke

    Tooth Winding End ring

    Boundary layerfrom yoke to air

    Boundary layer fromteeth to air gap

    Boundarylayers to

    and fromend caps

    The two end-regions combined

    Air in air gap

    Air outside

    Airoutside

    End-winding air

    Heat source

    Thermal resistor

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    24/32

    Thermal network for the PM rotor

    core

    Boundary layer fromcore to air gap

    Boundary layerfrom PM to core

    Air-gap air

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    25/32

    The original

    cage inductionmotor

    The stator of thePM machine wasborrowed from this

    machine.

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    26/32

    Thermal network for a cage rotor

    Boundary layer fromteeth to air gap

    Tooth Bar End ring

    End-windingair

    The two end-regionscombined

    Air-gap air

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    27/32

    Results from the thermal networks

    Temperature rise; Pshaft = 37 kW

    PM machine Induction machine

    T [K]

    Yoke 56Stator winding

    - core region 84

    - end winding 89

    Air gap 102

    Rotor cage 136

    End-winding air 86

    T [K]

    Yoke 32Stator winding

    - core region 48

    - end winding 51

    Air gap 47

    Permanent magnet 54

    End-winding air 21

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    28/32

    Results from the thermal networks II

    Maximum power from the PM machine if the temperature of

    the stator winding is allowed to rise by 90 K isP = 55 kW

    T [K]

    Yoke 51

    Stator winding- core region 82

    - end winding 89

    Air gap 69

    Permanent magnet 76

    End-winding air 37

    Note: The temperature rise of the permanent magnets is close to amaximum that can be allowed for NdFeB magnets. If a higher temperaturerise is expected, SmCo magnets could be used.

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    29/32

    Validation Cage induction machine

    IM DCG~

    ~

    Frequencyconverter

    CurrentVoltagePower

    Temperaturesensors

    Grid

    Torque

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    30/32

    Temperature-rise test

    0

    20

    40

    60

    80

    100

    120

    140

    0 2 4 6 8

    Time [h]

    Te

    mperaturerise[K]

    Thermocouples in end-windings

    Steady state when the temperature rise per half anhour is less than 1 K.

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    31/32

    Cooling-down curve at the end of test

    Reference resistance 0.1235 at 22 C

    Ambient temperature 29 C

    Temperature rise about 87 C

    0.161

    0.162

    0.163

    0.164

    0.165

    0.166

    0.167

    0.168

    0.169

    0 20 40 60 80 100

    Time [s]

    Resistance[C]

    100

    102

    104

    106

    108

    110

    112

    114

    116

    118

    120

    0 20 40 60 80 100

    Time [s ]

    Temperature[C]

    o

    o0 0

    235 C

    235 C

    R T

    R T

    Stator resistance is measured after the switch-off of the supply.Switch-off at time instant t= 0.

  • 8/10/2019 Lecture Note Electrical Machine Thermal Design

    32/32

    Literature on thermal analysis of electrical machines

    Lumped parameter thermal models

    Hak J., Lsung eines Wrmequellen-Netzes mit Bercksichtigung der Khlstrme.Archiv fur Elecktrotechnik, Vol. 42, No. 3, pp. 138-154, 1956.

    Mellor P.H.; Roberts D.; Turner D.R., Lumped parameter thermal model for electrical

    machines of TEFC design, Proc. Inst. Elect. Eng., pt. B, vol.138, pp.205218, 1991.

    Numerical thermal field analysis Armor A.F.; Chari M.V.K., Heat flow in the stator core of large turbine generators by

    the method of three-dimensional finite elements, Part I: Analysis by scalar potential

    formulation; Part II: Temperature distribution in the stator coreIEEE Trans. Power

    App. Syst., vol. PAS-95, pp.16481656, 16571668, Sept./Oct. 1976.

    Driesen J., Coupled electromagnetic-thermal problems in electrical energy

    transducers. PhD Thesis, Faculty of Applied Sciences, K. U. Leuven, 2000.

    Kolondzovski Z., Thermal and mechanical analyses of high-speed permanent-

    magnet electrical machines, PhD Thesis, Aalto University, 2010, available at:

    http://lib.tkk.fi/Diss/2010/isbn9789526032801/