lecture chp 9&10 column design

87
Lecture Chp-9&10 – Columns Lecture Chp-9&10 – Columns

Upload: mohan-manickam

Post on 15-Apr-2017

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture Chp 9&10 Column Design

Lecture Chp-9&10 – Lecture Chp-9&10 – ColumnsColumns

Page 2: Lecture Chp 9&10 Column Design

Lecture GoalsLecture Goals

Definitions for short columnsColumns

Page 3: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

General Information

Vertical Structural members

Transmits axial compressive loads with or without moment

transmit loads from the floor & roof to the foundation

Column:

Page 4: Lecture Chp 9&10 Column Design
Page 5: Lecture Chp 9&10 Column Design
Page 6: Lecture Chp 9&10 Column Design
Page 7: Lecture Chp 9&10 Column Design
Page 8: Lecture Chp 9&10 Column Design
Page 9: Lecture Chp 9&10 Column Design
Page 10: Lecture Chp 9&10 Column Design
Page 11: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

General Information

Column Types:

1. Tied

2. Spiral

3. Composite

4. Combination

5. Steel pipe

Page 12: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Tie spacing h (except for seismic)

tie support long bars (reduce buckling)

ties provide negligible restraint to lateral expose of core

Tied Columns - 95% of all columns in buildings are tied

Page 13: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Pitch = 1.375 in. to 3.375 in.

spiral restrains lateral (Poisson’s effect)

axial load delays failure (ductile)

Spiral Columns

Page 14: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Elastic Behavior An elastic analysis using the transformed section method would be:

stcc nAA

Pf

For concentrated load, P

uniform stress over section

n = Es / Ec

Ac = concrete area

As = steel areacs nff

Page 15: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Elastic Behavior The change in concrete strain with respect to time will effect the concrete and steel stresses as follows:

Concrete stress

Steel stress

Page 16: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Elastic Behavior An elastic analysis does not work, because creep and shrinkage affect the acting concrete compression strain as follows:

Page 17: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Elastic Behavior

Concrete creeps and shrinks, therefore we can not calculate the stresses in the steel and concrete due to “acting” loads using an elastic analysis.

Page 18: Lecture Chp 9&10 Column Design

Analysis and Design of Analysis and Design of “Short” Columns“Short” Columns

Elastic Behavior Therefore, we are not able to calculate the real stresses in the reinforced concrete column under acting loads over time. As a result, an “allowable stress” design procedure using an elastic analysis was found to be unacceptable. Reinforced concrete columns have been designed by a “strength” method since the 1940’s.

Creep and shrinkage do not affect the strength of the member.

Note:

Page 19: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Initial Behavior up to Nominal Load - Tied and spiral columns.

1.

Page 20: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Page 21: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

stystgc0 *85.0 AfAAfP

Factor due to less than ideal consolidation and curing conditions for column as compared to a cylinder. It is not related to Whitney’s stress block.

Let

Ag = Gross Area = b*h Ast = area of long steel fc = concrete compressive strength fy = steel yield strength

Page 22: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Maximum Nominal Capacity for Design Pn (max) 2.

0maxn rPP

r = Reduction factor to account for accidents/bending

r = 0.80 ( tied )

r = 0.85 ( spiral )ACI 10.3.6.3

Page 23: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Reinforcement Requirements (Longitudinal Steel Ast)

3.

g

stg A

A

- ACI Code 10.9.1 requires

Let

08.001.0 g

Page 24: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

3.

- Minimum # of Bars ACI Code 10.9.2 min. of 6 bars in circular arrangement w/min. spiral reinforcement.

min. of 4 bars in rectangular arrangement

min. of 3 bars in triangular ties

Reinforcement Requirements (Longitudinal Steel Ast)

Page 25: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

3.

ACI Code 7.10.5.1

Reinforcement Requirements (Lateral Ties)

# 3 bar if longitudinal bar # 10 bar # 4 bar if longitudinal bar # 11 bar # 4 bar if longitudinal bars are bundled

size

Page 26: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

3. Reinforcement Requirements (Lateral Ties) Vertical spacing: (ACI 7.10.5.2)

16 db ( db for longitudinal bars ) 48 db ( db for tie bar ) least lateral dimension of column

s s s

Page 27: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

3. Reinforcement Requirements (Lateral Ties)

Arrangement Vertical spacing: (ACI 7.10.5.3)

At least every other longitudinal bar shall have lateral support from the corner of a tie with an included angle 135o.

No longitudinal bar shall be more than 6 in. clear on either side from “support” bar.

1.)

2.)

Page 28: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Examples of lateral ties.

Page 29: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

ACI Code 7.10.4

Reinforcement Requirements (Spirals )

3/8 “ dia.(3/8” smooth bar, #3 bar dll or wll wire)

size

clear spacing between spirals 3 in. ACI 7.10.4.31 in.

Page 30: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

Reinforcement Requirements (Spiral)

sDA

c

sps

4Core of VolumeSpiral of Volume

Spiral Reinforcement Ratio, s

sDDA

41

:from 2c

csps

Page 31: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloadsReinforcement Requirements (Spiral)

y

c

c

gs *1*45.0

f

f

A

A ACI Eqn. 10-5

psi 60,000 steel spiral ofstrength yield

center) (center to steel spiral ofpitch spacing

spiral of edge outside toedge outside :diameter core 4

area core

entreinforcem spiral of area sectional-cross

y

c

2c

c

sp

f

s

D

DA

A

where

Page 32: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads4. Design for Concentric Axial Loads

(a) Load Combination

u DL LL

u DL LL w

u DL w

1.2 1.61.2 1.0 1.60.9 1.3

P P PP P P PP P P

Gravity:

Gravity + Wind:

and

etc. Check for tension

Page 33: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads4. Design for Concentric Axial Loads

(b) General Strength Requirement

un PP = 0.65 for tied columns

= 0.7 for spiral columns

where,

Page 34: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

4. Design for Concentric Axial Loads

(c) Expression for Design

08.00.01 Code ACI gg

stg

AA

defined:

Page 35: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

ucystcgn

steel

85.0

concrete

85.0 PffAfArP

or

ucygcgn 85.085.0 PfffArP

Page 36: Lecture Chp 9&10 Column Design

Behavior, Nominal Capacity and Behavior, Nominal Capacity and Design under Concentric Axial Design under Concentric Axial

loadsloads

85.085.0 cygc

ug

fffr

PA

* when g is known or assumed:

cg

u

cy

st 85.085.0

1 fAr

P

ffA

* when Ag is known or assumed:

Page 37: Lecture Chp 9&10 Column Design

Example: Design Tied Column for Example: Design Tied Column for Concentric Axial Load Concentric Axial Load

Page 38: Lecture Chp 9&10 Column Design
Page 39: Lecture Chp 9&10 Column Design
Page 40: Lecture Chp 9&10 Column Design
Page 41: Lecture Chp 9&10 Column Design
Page 42: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Load Concentric Axial Load

Design tied column for concentric axial load

Pdl = 150 k; Pll = 300 k; Pw = 50 k

fc = 4500 psi fy = 60 ksi

Design a square column aim for g = 0.03. Select longitudinal transverse reinforcement.

Page 43: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoad

Determine the loading

u dl ll

u dl ll w

1.2 1.6

1.2 150 k 1.6 300 k 660 k

1.2 1.0 1.6

1.2 150 k 1.0 300 k 1.6 50 k 560 k

P P P

P P P P

u dl w0.9 1.3

0.9 150 k 1.3 50 k 70 k

P P P

Check the compression or tension in the column

Page 44: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoad

For a square column r = 0.80 and = 0.65 and = 0.03

ug

c g y c

2

2g

r 0.85 0.85

660 k0.85 4.5 ksi

0.65 0.8 0.03 60 ksi 0.85 4.5 ksi

230.4 in

15.2 in. 16 in.

PAf f f

A d d d

Page 45: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoad

For a square column, As=Ag= 0.03(15.2 in.)2 =6.93 in2

ust c g

y c

2

2

1 0.85r0.85

160 ksi 0.85 4.5 ksi

660 k * 0.85 4.5 ksi 16 in0.65 0.8

5.16 in

PA f A

f f

Use 8 #8 bars Ast = 8(0.79 in2) = 6.32 in2

Page 46: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoadCheck P0

0 c g st y st

2 2 2

n 0

0.85

0.85 4.5 ksi 256 in 6.32 in 60 ksi 6.32 in

1334 k0.65 0.8 1334 k 694 k > 660 k OK

P f A A f A

P rP

Page 47: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoadUse #3 ties compute the spacing

b stirrup# 2 cover

# bars 1

16 in. 3 1.0 in. 2 1.5 in. 0.375 in.2

4.625 in.

b d ds

< 6 in. No cross-ties needed

Page 48: Lecture Chp 9&10 Column Design

Example: Design Tied Column Example: Design Tied Column for for Concentric Axial Concentric Axial LoadLoad

Stirrup design

b

stirrup

16 16 1.0 in. 16 in. governs 48 48 0.375 in. 18 in.

smaller or 16 in. governs

ds d

b d

Use #3 stirrups with 16 in. spacing in the column

Page 49: Lecture Chp 9&10 Column Design

Behavior under Combined Behavior under Combined Bending and Axial LoadsBending and Axial Loads

Usually moment is represented by axial load times eccentricity, i.e.

Page 50: Lecture Chp 9&10 Column Design

Behavior under Combined Behavior under Combined Bending and Axial LoadsBending and Axial Loads

Interaction Diagram Between Axial Load and Moment ( Failure Envelope )

Concrete crushes before steel yields

Steel yields before concrete crushes

Any combination of P and M outside the envelope will cause failure.

Note:

Page 51: Lecture Chp 9&10 Column Design

Behavior under Combined Behavior under Combined Bending and Axial LoadsBending and Axial Loads

Axial Load and Moment Interaction Diagram – General

Page 52: Lecture Chp 9&10 Column Design

Behavior under Combined Behavior under Combined Bending and Axial LoadsBending and Axial Loads

Resultant Forces action at Centroid

( h/2 in this case )s2

positive is ncompressio

cs1n TCCP

Moment about geometric center

2*

22*

2* 2s2c1s1n

hdTahCdhCM

Page 53: Lecture Chp 9&10 Column Design

Columns in Pure Columns in Pure TensionTension

Section is completely cracked (no concrete axial capacity)

Uniform Strain y

N

1iisytensionn AfP

Page 54: Lecture Chp 9&10 Column Design

ColumnsColumnsStrength Reduction Factor, (ACI Code 9.3.2)

Axial tension, and axial tension with flexure. = 0.9

Axial compression and axial compression with flexure.

Members with spiral reinforcement confirming to 10.9.3

Other reinforced members

(a)

(b)

Page 55: Lecture Chp 9&10 Column Design

ColumnsColumnsExcept for low values of axial compression, may be increased as follows:

when and reinforcement is symmetric

and

ds = distance from extreme tension fiber to centroid of tension reinforcement.

Then may be increased linearly to 0.9 as Pn decreases from 0.10fc Ag to zero.

psi 000,60y f

70.0s

h

ddh

Page 56: Lecture Chp 9&10 Column Design

ColumnColumn

Page 57: Lecture Chp 9&10 Column Design

ColumnsColumnsCommentary:

Other sections:

may be increased linearly to 0.9 as the strain s increase in the tension steel. Pb

Page 58: Lecture Chp 9&10 Column Design

Design for Combined Design for Combined Bending and Axial Load Bending and Axial Load

(Short Column)(Short Column)

Design - select cross-section and reinforcement to resist axial load and moment.

Page 59: Lecture Chp 9&10 Column Design

Design for Combined Design for Combined Bending and Axial Load Bending and Axial Load

(Short Column)(Short Column)Column Types

Spiral Column - more efficient for e/h < 0.1, but forming and spiral expensive

Tied Column - Bars in four faces used when e/h < 0.2 and for biaxial bending

1)

2)

Page 60: Lecture Chp 9&10 Column Design

General ProcedureGeneral Procedure

The interaction diagram for a column is constructed using a series of values for Pn and Mn. The plot shows the outside envelope of the problem.

Page 61: Lecture Chp 9&10 Column Design

General Procedure for General Procedure for Construction of IDConstruction of ID

Compute P0 and determine maximum Pn in compression

Select a “c” value (multiple values)Calculate the stress in the steel components.Calculate the forces in the steel and concrete,Cc,

Cs1 and Ts.Determine Pn value.Compute the Mn about the center.Compute moment arm,e = Mn / Pn.

Page 62: Lecture Chp 9&10 Column Design

General Procedure for General Procedure for Construction of IDConstruction of ID

Repeat with series of c values (10) to obtain a series of values.

Obtain the maximum tension value. Plot Pn verse Mn. Determine Pn and Mn.

Find the maximum compression level.Find the will vary linearly from 0.65 to 0.9

for the strain values The tension component will be = 0.9

Page 63: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagram

Consider an square column (20 in x 20 in.) with 8 #10 ( = 0.0254) and fc = 4 ksi and fy = 60 ksi. Draw the interaction diagram.

Page 64: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagram

Given 8 # 10 (1.27 in2) and fc = 4 ksi and fy = 60 ksi

2 2st

2 2g

2st

2g

8 1.27 in 10.16 in

20 in. 400 in

10.16 in 0.0254400 in

A

A

AA

Page 65: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramGiven 8 # 10 (1.27 in2) and fc = 4 ksi and fy = 60 ksi

0 c g st y st

2 2

2

0.85

0.85 4 ksi 400 in 10.16 in

60 ksi 10.16 in

1935 k

P f A A f A

n 0

0.8 1935 k 1548 kP rP

[ Point 1 ]

Page 66: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramDetermine where the balance point, cb.

Page 67: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramDetermine where the balance point, cb. Using similar triangles, where d = 20 in. – 2.5 in. = 17.5 in., one can find cb

b

b

b

17.5 in.0.003 0.003 0.00207

0.003 17.5 in.0.003 0.00207

10.36 in.

c

c

c

Page 68: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramDetermine the strain of the steel

bs1 cu

b

bs2 cu

b

2.5 in. 10.36 in. 2.5 in. 0.00310.36 in.

0.00228

10 in. 10.36 in. 10 in. 0.00310.36 in.

0.000104

cc

cc

Page 69: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagram

Determine the stress in the steel

s1 s s1

s2 s s1

29000 ksi 0.00228

66 ksi 60 ksi compression29000 ksi 0.000104

3.02 ksi compression

f E

f E

Page 70: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

c c 1

s1 s1 s1 c

2

2s2

0.850.85 4 ksi 20 in. 0.85 10.36 in.598.8 k

0.85

3 1.27 in 60 ksi 0.85 4 ksi

215.6 k

2 1.27 in 3.02 ksi 0.85 4 ksi

0.97 k neglect

C f b c

C A f f

C

Page 71: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

2s s s

n c s1 s2 s

3 1.27 in 60 ksi

228.6 k

599.8 k 215.6 k 228.6 k 585.8 k

T A f

P C C C T

Page 72: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the moment about the center

c s1 1 s 32 2 2 2

0.85 10.85 in.20 in.599.8 k2 2

20 in. 215.6 k 2.5 in.2

20 in. 228.6 k 17.5 in.2

6682.2 k-in 556.9 k-ft

h a h hM C C d T d

Page 73: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramA single point from interaction diagram, (585.6 k, 556.9 k-ft). The eccentricity of the point is defined as

6682.2 k-in 11.41 in.585.8 k

MeP

[ Point 2 ]

Page 74: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramNow select a series of additional points by selecting values of c. Select c = 17.5 in. Determine the strain of the steel. (c is at the location of the tension steel)

s1 cu

s1

s2 cu

s2

2.5 in. 17.5 in. 2.5 in. 0.00317.5 in.

0.00257 74.5 ksi 60 ksi (compression)

10 in. 17.5 in. 10 in. 0.00317.5 in.

0.00129 37.3 ksi (compression)

cc

f

cc

f

Page 75: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

c c 1

2s1 s1 s1 c

2s2

0.85 0.85 4 ksi 20 in. 0.85 17.5 in.1012 k

0.85 3 1.27 in 60 ksi 0.85 4 ksi

216 k

2 1.27 in 37.3 ksi 0.85 4 ksi

86 k

C f b c

C A f f

C

Page 76: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

2s s s

n

3 1.27 in 0 ksi

0 k 1012 k 216 k 86 k 1314 k

T A f

P

Page 77: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the moment about the center

c s1 12 2 2

0.85 17.5 in.20 in.1012 k2 2

20 in. 216 k 2.5 in.2

4213 k-in 351.1 k-ft

h a hM C C d

Page 78: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramA single point from interaction diagram, (1314 k, 351.1 k-ft). The eccentricity of the point is defined as

4213 k-in 3.2 in.1314 k

MeP

[ Point 3 ]

Page 79: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramSelect c = 6 in. Determine the strain of the steel, c =6 in.

s1 cu

s1

s2 cu

s2

s3 cu

2.5 in. 6 in. 2.5 in. 0.0036 in.

0.00175 50.75 ksi (compression)

10 in. 6 in. 10 in. 0.0036 in.

0.002 58 ksi (tension)

17.5 in. 6 in.

cc

f

cc

f

cc

s3

17.5 in. 0.0036 in.

0.00575 60 ksi (tension)f

Page 80: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

c c 1

s1 s1 s1 c

2

2s2

0.85

0.85 4 ksi 20 in. 0.85 6 in.

346.8 k0.85

3 1.27 in 50.75 ksi 0.85 4 ksi

180.4 k C

2 1.27 in 58 ksi

147.3 k T

C f b c

C A f f

C

Page 81: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the forces in the column

2s s s

n

3 1.27 in 60 ksi

228.6 k 346.8 k 180.4 k 147.3 k 228.6 k 151.3 k

T A f

P

Page 82: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramCompute the moment about the center

c s1 1 s 32 2 2 2

0.85 6 in.346.8 k 10 in.

2

180.4 k 10 in. 2.5 in.

228.6 k 17.5 in. 10 in.

5651 k-in 470.9 k-ft

h a h hM C C d T d

Page 83: Lecture Chp 9&10 Column Design

Example: Axial Load Vs. Example: Axial Load Vs. Moment Interaction DiagramMoment Interaction DiagramA single point from interaction diagram, (151 k, 471 k-ft). The eccentricity of the point is defined as

5651.2 k-in 37.35 in.151.3 k

MeP

[ Point 4 ]

Page 84: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagramSelect point of straight tension. The maximum tension in the column is

2n s y 8 1.27 in 60 ksi

610 k

P A f

[ Point 5 ]

Page 85: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagram

Point c (in) Pn Mn e

1 - 1548 k 0 0

2 20 1515 k 253 k-ft 2 in

3 17.5 1314 k 351 k-ft 3.2 in

4 12.5 841 k 500 k-ft 7.13 in

5 10.36 585 k 556 k-ft 11.42 in

6 8.0 393 k 531 k-ft 16.20 in

7 6.0 151 k 471 k-ft 37.35 in

8 ~4.5 0 k 395 k-ft infinity

9 0 -610 k 0 k-ft

Page 86: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction DiagramDiagram

Column Analysis

-1000

-500

0

500

1000

1500

2000

0 100 200 300 400 500 600

M (k-ft)

P (k

)

Use a series of c values to obtain the Pn verses Mn.

Page 87: Lecture Chp 9&10 Column Design

Example: Axial Load vs. Example: Axial Load vs. Moment Moment Interaction Interaction

DiagramDiagram

Column Analysis

-800

-600

-400

-200

0

200

400

600

800

1000

1200

0 100 200 300 400 500

Mn (k-ft)

Pn

(k)

Max. compression

Max. tension

Cb

Location of the linearly varying