lecture # ch2-3 complex exponentials & complex numbers

36
DSP-First, 2/e LECTURE # CH2-3 Complex Exponentials & Complex Numbers Aug 2016 1 © 2003-2016, JH McClellan & RW Schafer TLH MODIFIED

Upload: others

Post on 04-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

DSP-First, 2/e

LECTURE # CH2-3

Complex Exponentials

& Complex Numbers

Aug 2016 1© 2003-2016, JH McClellan & RW Schafer

TLH MODIFIED

Page 2: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 2

READING ASSIGNMENTS

▪ This Lecture:

▪ Chapter 2, Sects. 2-3 to 2-5

▪ Appendix A: Complex Numbers

▪ Complex Exponentials

Page 3: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

2020 © 2003-2016, JH McClellan & RW Schafer 3

Dr. Van Veen Strikes Again

3. Complex Numbers Review (Wouldn’t hurt to review) 10:22Review of how to work with complex numbers in rectangular and polar coordinates.

https://www.youtube.com/watch?v=UAn9uah7puU&list=PLGI7M8vwfrFNO-gQ1xoJmN3bJy2-wp2J3

4. Complex Sinusoid Representations for Real Sinusoids 13:21

https://www.youtube.com/watch?v=Tm3gI6PQOYo&feature=youtu.be

Page 4: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

LECTURE OBJECTIVES

▪ Introduce more tools for manipulating

complex numbers Euler Eq.

▪ Conjugate

▪ Multiplication & Division

▪ Powers

▪ N-th Roots of unity

Aug 2016 4© 2003-2016, JH McClellan & RW Schafer

re j = rcos() + jrsin()

Page 5: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5

Page 6: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

LECTURE OBJECTIVES

▪ Phasors = Complex Amplitude

▪ Complex Numbers represent Sinusoids

▪ Take Real or Complex part

}){()cos( tjj eAetA =+

Aug 2016 6© 2003-2016, JH McClellan & RW Schafer

Page 7: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Phasors Not Phasers

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 7

Captain Kirk &

Sally Kellerman STAR TREK

Page 8: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

WHY? What do we gain?

▪ Sinusoids are the basis of DSP,

▪ but trig identities are very tedious

▪ Abstraction of complex numbers

▪ Represent cosine functions

▪ Can replace most trigonometry with algebra

▪ Avoid (Most) all Trigonometric

manipulations

Aug 2016 8© 2003-2016, JH McClellan & RW Schafer

Page 9: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX NUMBERS

▪ To solve: z2 = -1

▪ z = j

▪ Math and Physics use z = i

▪ Complex number: z = x + j y

x

y z

Cartesian

coordinate

system

Aug 2016 9© 2003-2016, JH McClellan & RW Schafer

Page 10: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

PLOT COMPLEX NUMBERS

}{zx =

}{zy =

Real part:

Imaginary part:}05{5 j+−=−

5}52{ =+ j

2}52{ =+ j

Aug 2016 10© 2003-2016, JH McClellan & RW Schafer

Page 11: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX ADDITION = VECTOR Addition

26

)53()24(

)52()34(213

j

j

jj

zzz

+=

+−++=

++−=

+=

Aug 2016 11© 2003-2016, JH McClellan & RW Schafer

Page 12: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

*** POLAR FORM ***

▪ Vector Form

▪ Length =1

▪ Angle =

▪ Common Values▪ j has angle of 0.5p

▪ −1 has angle of p

▪ − j has angle of 1.5p

▪ also, angle of −j could be −0.5p = 1.5p −2p

▪ because the PHASE is AMBIGUOUS

Aug 2016 12© 2003-2016, JH McClellan & RW Schafer

Page 13: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

POLAR <--> RECTANGULAR

▪ Relate (x,y) to (r,) r

x

y

Need a notation for POLAR FORM

( )x

y

yxr

1

222

Tan−=

+=

sin

cos

ry

rx

=

=Most calculators do

Polar-Rectangular

Aug 2016 13© 2003-2016, JH McClellan & RW Schafer

Page 14: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Euler’s FORMULA

▪ Complex Exponential

▪ Real part is cosine

▪ Imaginary part is sine

▪ Magnitude is one

re j = rcos() + jrsin()

)sin()cos( je j +=

Aug 2016 14© 2003-2016, JH McClellan & RW Schafer

Page 15: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Cosine = Real Part

▪ Complex Exponential

▪ Real part is cosine

▪ Imaginary part is sine

)sin()cos( jrrre j +=

)cos(}{ rre j =

Aug 2016 15© 2003-2016, JH McClellan & RW Schafer

Page 16: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Common Values of exp(j)

▪ Changing the angle

p njj eej 200110 ==+=→=

4/21 pjej =

ppp )2/12(2/2/ +==→= njj eej

ppp )12(011 +==+−=−→= njj eej

pppp )2/12(2/2/32/3 −− ===−→= njjj eeej

Aug 2016 16© 2003-2016, JH McClellan & RW Schafer

𝑎2 + 𝑏2 = 𝑐2 θ = arctan(𝑏

𝑎)

IF 𝑎 ≥ 0

Page 17: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX EXPONENTIAL

▪ Interpret this as a Rotating Vector

▪ = t

▪ Angle changes vs. time

▪ ex: =20p rad/s

▪ Rotates 0.2p in 0.01 secs

)sin()cos( tjte tj +=

)sin()cos( je j +=

Aug 2016 17© 2003-2016, JH McClellan & RW Schafer

Page 18: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Cos = REAL PART

}{

}{)cos( )(

tjj

tj

eAe

AetA

=

=+ +So,

Real Part of Euler’s

}{)cos( tjet =

General Sinusoid

)cos()( += tAtx

Aug 2016 18© 2003-2016, JH McClellan & RW Schafer

Page 19: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX AMPLITUDE

}{)cos()( tjj eAetAtx =+=

General Sinusoid

)}({}{)( tzXetx tj ==

Sinusoid = REAL PART of complex exp: z(t)=(Aejf)ejt

Complex AMPLITUDE = X, which is a constant

tjj XetzAeX == )(when

Aug 2016 19© 2003-2016, JH McClellan & RW Schafer

Page 20: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

POP QUIZ: Complex Amp

▪ Find the COMPLEX AMPLITUDE for:

▪ Use EULER’s FORMULA:

p5.03 jeX =

)5.077cos(3)( pp += ttx

}3{

}3{)(

775.0

)5.077(

tjj

tj

ee

etx

pp

pp

=

= +

Aug 2016 20© 2003-2016, JH McClellan & RW Schafer

Page 21: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

POP QUIZ-2: Complex Amp

▪ Determine the 60-Hz sinusoid whose

COMPLEX AMPLITUDE is:

▪ Convert X to POLAR:

33 jX +=

)3/120cos(12)( pp += ttx

}12{

})33{()(

1203/

)120(

tjj

tj

ee

ejtx

pp

p

=

+=

Aug 2016 21© 2003-2016, JH McClellan & RW Schafer

Page 22: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 22

Note atan (3/√3) –is atan(√3) = π/3

Remember 60 degree angle

Cos = 1/2 Sin = √3/2

Page 23: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX CONJUGATE (z*)

▪ Useful concept: change the sign of all j’s

▪ RECTANGULAR: If z = x + j y, then the

complex conjugate is z* = x – j y

▪ POLAR: Magnitude is the same but angle

has sign change

z = re j z* = re− j

Aug 2016 23© 2003-2016, JH McClellan & RW Schafer

Page 24: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX CONJUGATION

▪ Flips vector

about the real

axis!

Aug 2016 24© 2003-2016, JH McClellan & RW Schafer

Page 25: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

USES OF CONJUGATION

▪ Conjugates useful for many calculations

▪ Real part:

▪ Imaginary part:

}{2

)()(

2

*zx

jyxjyxzz==

−++=

+

}{2

2

2

*zy

j

yj

j

zz===

Aug 2016 25© 2003-2016, JH McClellan & RW Schafer

Page 26: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Inverse Euler Relations

▪ Cosine is real part of exp, sine is imaginary part

▪ Real part:

▪ Imaginary part:

)cos(2

}{,

}{2

*

=+

==

=+

− jjjj ee

eez

zzz

)sin(2

}{,

}{2

*

=−

==

==−

j

eeeez

zyj

zz

jjjj

Aug 2016 26© 2003-2016, JH McClellan & RW Schafer

Page 27: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Mag & Magnitude Squared

▪ Magnitude Squared (polar form):

▪ Magnitude Squared (Cartesian form):

▪ Magnitude of complex exponential is one:

22 ||))((* zrrerezz jj === −

|e j |2= cos2 ( )+ sin2 ( )=1

z z* = (x + jy) (x − jy) = x2 − j2y2 = x2 + y2

Aug 2016 27© 2003-2016, JH McClellan & RW Schafer

Page 28: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

COMPLEX MULTIPLY =

VECTOR ROTATION

▪ Multiplication/division scales and rotates

vectors

Aug 2016 28© 2003-2016, JH McClellan & RW Schafer

Page 29: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

POWERS

▪ Raising to a power N rotates vector by Nθ

and scales vector length by rN

zN = re j( )N

= rNe jN

Aug 2016 29© 2003-2016, JH McClellan & RW Schafer

Page 30: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

MORE POWERS

Aug 2016 30© 2003-2016, JH McClellan & RW Schafer

Page 31: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

ROOTS OF UNITY

▪ We often have to solve zN=1

▪ How many solutions?

kjNjNN eerz p 21===

N

kkNr

pp

22,1 ===

1,2,1,0,2 −== Nkez Nkj p

Aug 2016 31© 2003-2016, JH McClellan & RW Schafer

Page 32: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

ROOTS OF UNITY for N=6

▪ Solutions to zN=1

are N equally

spaced vectors on

the unit circle!

▪ What happens if

we take the sum

of all of them?

Aug 2016 32© 2003-2016, JH McClellan & RW Schafer

Page 33: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Sum the Roots of Unity

▪ Looks like the answer is zero (for N=6)

▪ Write as geometric sum

e j2p k /N

k= 0

N−1

= 0?

rk

k= 0

N−1

=1− rN

1− rthen let r = e j2p /N

01)(11Numerator 2/2 =−=−=− pp jNNjN eer

Aug 2016 33© 2003-2016, JH McClellan & RW Schafer

Page 34: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

▪ Needed later to describe periodic signals

in terms of sinusoids (Fourier Series)▪ Especially over one period

j

ee

j

ede

jajbb

a

b

a

jj −

==

0110/2

0

/2 =−

=−

= jj

eedte

jTTjT

Ttjp

p

Integrate Complex Exp

Aug 2016 34© 2003-2016, JH McClellan & RW Schafer

Page 35: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

BOTTOM LINE

▪ CARTESIAN: Addition/subtraction is most

efficient in Cartesian form

▪ POLAR: good for multiplication/division

▪ STEPS:

▪ Identify arithmetic operation

▪ Convert to easy form

▪ Calculate

▪ Convert back to original form

Aug 2016 35© 2003-2016, JH McClellan & RW Schafer

Page 36: LECTURE # CH2-3 Complex Exponentials & Complex Numbers

Review Appendix A and

TLH Ch2 on Course Website

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 44

Harman Chapter 2 Pages 55-60 Complex Numbers

and

MATLAB Complex Numbers