lecture 9 hamilton’s equations

41
Lecture 9 Hamilton’s Equations conjugate momentum cyclic coordinates Informal derivation Applications/examples 1

Upload: kevyn

Post on 23-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Lecture 9 Hamilton’s Equations. Informal derivation. conjugate momentum. cyclic coordinates. Applications/examples. derivation. Start with the Euler-Lagrange equations. Define the conjugate momentum. The Euler-Lagrange equations can be rewritten as. derivation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 9 Hamilton’s Equations

1

Lecture 9 Hamilton’s Equations

conjugate momentum

cyclic coordinates

Informal derivation

Applications/examples

Page 2: Lecture 9 Hamilton’s Equations

2

ddt

∂L∂˙ q i ⎛ ⎝ ⎜

⎞ ⎠ ⎟− ∂L

∂qi = λ jC1j + Qi

Define the conjugate momentum

pi = ∂L∂˙ q i

Start with the Euler-Lagrange equations

˙ p i = ∂L∂qi + λ jC1

j + Qi

The Euler-Lagrange equations can be rewritten as

derivation

Page 3: Lecture 9 Hamilton’s Equations

3

If we are to set up a pair of sets of odes, we need to eliminate

˙ q i

We can write the Lagrangian

L = 12

˙ q iM ij ˙ q j −V qk( )

M is positive definite (coming from the kinetic energy), so

˙ q j = M ji pi

derivation

pi = M ij ˙ q jfrom which

Page 4: Lecture 9 Hamilton’s Equations

4

I have the pair of sets of odes

˙ q j = M ji pi

˙ p i = ∂L∂qi + λ jC1

j + Qi

where all the q dots in the second set have been replaced by their expressions in terms of p

derivation

Page 5: Lecture 9 Hamilton’s Equations

5

We can write this out in detail, although it looks pretty awful

L = 12

˙ q iM ij ˙ q j −V qk( )

derivation

∂L∂qi = 1

2˙ q m ∂Mmn

∂qi ˙ q n − ∂V∂qiright hand side

˙ q m = M mr pr, ˙ q n = M ns pssubstitute

∂L∂qi = 1

2M mr pr

∂Mmn

∂qi M ns ps − ∂V∂qi

right hand side

Page 6: Lecture 9 Hamilton’s Equations

6

˙ p i = ∂L∂qi + λ jC1

j + Qi

∂L∂qi = 1

2M mr pr

∂Mmn

∂qi M ns ps − ∂V∂qi

We will never do it this way!€

˙ p i = 12

M mr pr∂Mmn

∂qi M ns ps − ∂V∂qi + λ jC1

j + Qi

derivation

I will give you a recipe as soon as we know what cyclic coordinates are

Page 7: Lecture 9 Hamilton’s Equations

7

??

Page 8: Lecture 9 Hamilton’s Equations

8

˙ p i = ∂L∂qi + λ jC1

j + Qi

If Qi and the constraints are both zero (free falling brick, say) we have

˙ p i = ∂L∂qi

and if L does not depend on qi, then pi is constant!

Conservation of conjugate momentum

qi is a cyclic coordinate

Given

cyclic coordinates

˙ p i = 0

Page 9: Lecture 9 Hamilton’s Equations

9

YOU NEED TO REMEMBER THAT EXTERNAL FORCES

AND/OR CONSTRAINTSCAN MAKE CYCLIC COORDINATES

NON-CYCLIC!

Page 10: Lecture 9 Hamilton’s Equations

10

??

Page 11: Lecture 9 Hamilton’s Equations

11

What can we say about an unforced single link in general?

L = 12

A ˙ θ cosψ + ˙ φ sinθ sinψ( )2

+ B − ˙ θ sinψ + ˙ φ sinθ cosψ( )2

+ C ˙ ψ + ˙ φ cosθ( )2 ⎛

⎝ ⎜ ⎞ ⎠ ⎟

+ 12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mgz

We see that x and y are cyclic (no explicit x or y in L)

px = p1 = m˙ x , py = p2 = m˙ y

Conservation of linear momentum in x and y directions

We see that f is also cyclic (no explicit f in L)

Page 12: Lecture 9 Hamilton’s Equations

12

pφ = p4 = Asin2ψ + Bcos2ψ( )sin2 θ + Ccos2 θ( ) ˙ φ + A − B( )sinθ sinψ cosψ ˙ θ + Ccosθ ˙ ψ

Does it mean anything physically?!

The conserved conjugate momentum is

the angular momentum about the k axisas I will now show you

Page 13: Lecture 9 Hamilton’s Equations

13

The angular momentum in body coordinates is

l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )I3 + B − ˙ θ sinψ + ˙ φ sinθ cosψ( )J3 + C ˙ ψ + ˙ φ cosθ( )IZZK 3

I3 = cosψ cosφI0 + sinφJ0( ) + sinψ cosθ −sinφI0 + cosφJ0( ) + sinθK 0( )

J3 = −sinψ cosφI0 + sinφJ0( ) + cosψ cosθ −sinφI0 + cosφJ0( ) + sinθK 0( )

K 3 = −sinθ −sinφI0 + cosφJ0( ) + cosθK 0

The body axes are (from Lecture 3)

and the k component of the angular momentum is

k ⋅l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )sinψ sinθ +

B − ˙ θ sinψ + ˙ φ sinθ cosψ( )cosψ sinθ + C ˙ ψ + ˙ φ cosθ( )cosθ

Page 14: Lecture 9 Hamilton’s Equations

14

The only force in the problem is gravity, which acts in the k direction

Any gravitational torques will be normal to k, so the angular momentum in the k direction must be conserved.

k ⋅l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )sinψ sinθ +

B − ˙ θ sinψ + ˙ φ sinθ cosψ( )cosψ sinθ + C ˙ ψ + ˙ φ cosθ( )cosθ

p4 = Asin2ψ + Bcos2ψ( )sin2 θ + C cos2 θ( ) ˙ φ + A − B( )sinθ sinψ cosψ ˙ θ + C cosθ ˙ ψ

some algebra

Page 15: Lecture 9 Hamilton’s Equations

15

Summarize our procedure so far

Write the Lagrangian

Apply holonomic constraints, if any

Assign the generalized coordinates

Find the conjugate momenta

Eliminate conserved variables (cyclic coordinates)

Set up numerical methods to integrate what is left

Page 16: Lecture 9 Hamilton’s Equations

16

??

Page 17: Lecture 9 Hamilton’s Equations

17

Let’s take a look at some applications of this method

Falling brick

Flipping a coin

The axisymmetric top

Page 18: Lecture 9 Hamilton’s Equations

18

Flipping a coin

Page 19: Lecture 9 Hamilton’s Equations

19

A coin is axisymmetric, and this leads to some simplification

L = 12

A ˙ θ 2 + ˙ φ 2 sin2 θ( ) + C ˙ ψ + ˙ φ cosθ( )2

( ) + 12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mgz

We have four cyclic coordinates, adding y to the set and simplifying f

pψ = p6 = C ˙ ψ + ˙ φ cosθ( )€

pφ = p4 = Asin2 θ + Ccos2 θ( ) ˙ φ + C cosθ ˙ ψ

We can recognize the new conserved term as the angular momentum about K

l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )I3 + B − ˙ θ sinψ + ˙ φ sinθ cosψ( )J3 + C ˙ ψ + ˙ φ cosθ( )K 3

Flipping a coin

Page 20: Lecture 9 Hamilton’s Equations

20

We can use this to simplify the equations of motion

˙ φ =p4 − p6 cosθ( )

Asin2 θ, ˙ ψ = p6

C−

p4 − p6 cosθ( )cosθAsin2 θ

The conserved momenta are constant; solve for the derivatives

(There are numerical issues when q = 0; all is well if you don’t start there)

Flipping a coin

Page 21: Lecture 9 Hamilton’s Equations

21

pψ = p6 = C ˙ ψ + ˙ φ cosθ( ) = 0

pφ = p4 = Asin2 θ + Ccos2 θ( ) ˙ φ + C cosθ ˙ ψ = 0€

˙ φ = 0 = ˙ ψ

I can flip it introducing spin about I with no change in f or y

This makes p4 = 0 = p6

∂L∂θ

= Asinθ cosθ ˙ φ 2 − C sinθ ˙ ψ + ˙ φ cosθ( ) = 0

Then

Flipping a coin

Page 22: Lecture 9 Hamilton’s Equations

22

p1 = p10, p2 = p20, p3 = p30 − mgt, p4 = p40 = 0, p5 = p50, p6 = p60 = 0

q1 = q10 + p10

m, q2 = q20 + p20

m, q3 = q30 + p30

m− 1

2gt 2

q4 = q40, p5 = p50

A, q6 = q60

from which

x = x0 + ut, y = y0 + vt, z = z0 + wt − 12

gt 2

φ = φ0 = 0, θ = θ0 + ωt, ψ =ψ 0 = 0

or

Flipping a coin

Page 23: Lecture 9 Hamilton’s Equations

23

I claim it would be harder to figure this out using the Euler-Lagrange equations

Flipping a coin

I’ve gotten the result for a highly nonlinear problem by clever argumentaugmented by Hamilton’s equations

Page 24: Lecture 9 Hamilton’s Equations

24

??

Page 25: Lecture 9 Hamilton’s Equations

25

Same Lagrangian

but constrained

xyz

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪= dK = d

sinφsinθcosφsinθ

cosθ

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

symmetric top

How about the symmetric top?

Page 26: Lecture 9 Hamilton’s Equations

26

Treat the top as a cone

A = 35

m 14

a2 + h2 ⎛ ⎝ ⎜

⎞ ⎠ ⎟= B, C = 3

10ma2

and apply the holonomic constraints

symmetric top

xyz

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪= dK = d

sinφ sinθcosφsinθ

cosθ

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

Page 27: Lecture 9 Hamilton’s Equations

27

After some algebra

L = 3320

m 12a2 + 31h2 + 4a2 − 31h2( )cos 2θ( )( ) ˙ φ 2 + 3160

m 4a2 + 31h2( ) ˙ θ 2 + 320

ma2 ˙ ψ 2

310

ma2 cosθ ˙ φ ˙ ψ − 34

mgh cosθ

and we see that f and y are both cyclic here.

f is the rotation rate about the vertical — the precession

y is the rotation rate about K — the spin

symmetric top

Page 28: Lecture 9 Hamilton’s Equations

28

The conjugate momenta are

p1 = 3160

m 12a2 + 31h2( ) + 12a2 + 31h2( )cos 2θ( )( ) ˙ φ + 310

ma2 cosθ ˙ ψ

p2 = 380

m 4a2 + 31h2( ) ˙ θ

p3 = 310

ma2 cosθ ˙ φ + ˙ ψ ( )

There are no external forces and no other constraints, so the first and third are conserved

symmetric top

Page 29: Lecture 9 Hamilton’s Equations

29

We are left with two odes

˙ θ = 80 p2

3m 4a2 + 31h2( )

˙ p 2 = 402 p1

2 + p32( )cosθ − p1p3 3 + cos 2θ( )( )

3m 4a2 + 31h2( )sin3 θ+ 3

4mgh sinθ

The response depends on the two conserved quantitiesand these depend on the initial spin and precession rates

symmetric top

We can go look at this in Mathematica

Page 30: Lecture 9 Hamilton’s Equations

30

Let’s go back and look at how the fall of a single brick will go in this method

Falling brick

I will do the whole thing in Mathematica

Page 31: Lecture 9 Hamilton’s Equations

31

That’s All Folks

Page 32: Lecture 9 Hamilton’s Equations

32

Page 33: Lecture 9 Hamilton’s Equations

33

pφ = p4 = Asin2ψ + Bcos2ψ( )sin2 θ + Ccos2 θ( ) ˙ φ + A − B( )sinθ sinψ cosψ ˙ θ + Ccosθ ˙ ψ

What is this?!

If A and B are equal (axisymmetric body) , this is much simpler

pφ = p4 = Asin2 θ + Ccos2 θ( ) ˙ φ + Ccosθ ˙ ψ

Falling brick

Page 34: Lecture 9 Hamilton’s Equations

34

We know what happens to all the position coordinates

All that’s left is the single equation for the evolution of p5.

After some algebra we obtain

˙ p 5 = −p6 − p4 cosθ( ) p4 − p6 cosθ( )

Asin3 θ

˙ θ = p5

A

Falling brick

Page 35: Lecture 9 Hamilton’s Equations

35

We can restrict our attention to axisymmetric wheelsand we can choose K to be parallel to the axle

without loss of generality

L =12

A ˙ θ cosψ + ˙ φ sinθ sinψ( )2

+ B − ˙ θ sinψ + ˙ φ sinθ cosψ( )2

+ C ˙ ψ + ˙ φ cosθ( )2

( )

+12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mg⋅R

L =12

A ˙ θ 2 + ˙ φ 2 sin2 θ( ) + C ˙ ψ + ˙ φ cosθ( )2

( ) +12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mg⋅R

mgz

Page 36: Lecture 9 Hamilton’s Equations

36

If we don’t put in any simple holonomic constraint (which we often can do)

q =

xyzφθψ

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

Page 37: Lecture 9 Hamilton’s Equations

37

We know v and w in terms of qany difficulty will arise from r

This will depend on the surface

flat, horizontal surface — we’ve been doing this

flat surface — we can do this today

general surface: z = f(x, y) — this can be done for a rolling sphere

v =ω × r

r = −aJ2

Actually, it’s something of a question as to where the difficulties will arise in general

Page 38: Lecture 9 Hamilton’s Equations

38

ddt

∂L∂˙ x i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgx = λ jC1

j

ddt

∂L∂ ˙ φ i ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC4

j

ddt

∂L∂ ˙ θ ⎛ ⎝ ⎜

⎞ ⎠ ⎟−

∂L∂θ

= λ jC5j

ddt

∂L∂ ˙ ψ ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC6

j

ddt

∂L∂˙ y i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgy = λ jC2

j

ddt

∂L∂˙ z i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgz = λ jC3

j

Page 39: Lecture 9 Hamilton’s Equations

39

We have the usual Euler-Lagrange equations

ddt

∂L∂˙ q i ⎛ ⎝ ⎜

⎞ ⎠ ⎟−

∂L∂qi = λ jCi

j

and we can write out the six equations

Page 40: Lecture 9 Hamilton’s Equations

40

The angular momentum in body coordinates is

l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )I3 + B − ˙ θ sinψ + ˙ φ sinθ cosψ( )J3 + C ˙ ψ + ˙ φ cosθ( )IZZK 3

I3 = cosψ cosφI0 + sinφJ0( ) + sinψ cosθ −sinφI0 + cosφJ0( ) + sinθK 0( )

J3 = −sinψ cosφI0 + sinφJ0( ) + cosψ cosθ −sinφI0 + cosφJ0( ) + sinθK 0( )

K 3 = −sinθ −sinφI0 + cosφJ0( ) + cosθK 0

The body axes are (from Lecture 3)

and the k component of the angular momentum is

k ⋅l = A ˙ θ cosψ + ˙ φ sinθ sinψ( )sinψ sinθ +

B − ˙ θ sinψ + ˙ φ sinθ cosψ( )cosψ sinθ + C ˙ ψ + ˙ φ cosθ( )cosθ

Page 41: Lecture 9 Hamilton’s Equations

41

We will have a useful generalization fairly soonThe idea of separating the second order equations

into first order equations

˙ q i = M ir pr

˙ p i = 12

M mr pr∂Mmn

∂qi M ns ps − ∂V∂qi + λ jC1

j + Qi

More generically

˙ q i = A ji qm( )u j

˙ u i = f i qm,un( )