lecture 7 (linear motors ii) - overhead

8
University of British Columbia Elec Machines & Electronics EECE 365 – Winter 2013 Lecture 7: Linear Machines II Nathan Ozog © 2013 Page 1 of 8 Linear Machines Recall the basic Electromagnet: Recall its inductance is given ( )  l  L k  x k  x  L  + + = 2 1 2  where r c c l k  A  N k µ µ = = 2 0 2 1  ;  1 i 1 e  N  g  R  x c  A b  F tot Φ 1 v c  A

Upload: werewaro

Post on 02-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 1/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 1 of 8

Linear Machines

Recall the basic Electromagnet:

Recall its inductance is given

( )   l  Lk  x

k  x L   +

+=

2

1

where

c

c

l k 

 A N k 

µ 

µ 

=

=

2

02

1   ;

 

1i

1e

 N 

 g  R

 x

c A

b F 

tot Φ

1v

c A

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 2/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 2 of 8

Co-Energy

Definition

{   321

energyco field 

coupling 

energy field 

coupling 

 f  W i

+=λ   

Mathematically, we express this as:

( )

{ {

{

 f  

c f  

c

W W 

id idiW 

diid i

diid id 

∫∫

∫∫

−==

+=

+=

λ λ λ 

λ λ λ 

λ λ λ 

 

Graphically, we express this as:

Non-Linear Linear (assumed)

λ 

i

2λ 

1λ 

1i

2i

∫=∆2

1

i

i

c   diW    λ    ( )2

1

2

22

2

1

2

1

ii L

 LididiW i

i

i

i

c   −===∆ ∫∫λ 

{

===321

22

2

1

2λ  L

i L

W c

λ 

i

2λ 

1λ 

1i 2i

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 3/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 3 of 8

For a linear system, energy and co-energy will be equal

They are often both simply referred to as “energy”

Recalling our system, we note that the relationship between current andflux in the magnet changes with the position

i.e. ( ) xih   ,=λ   

The co-energy in the magnet is also “ ”It does not depend on the of flux or current, only on their

present state and relationship

the equation for change in co-energy in the magnet is:

( )( )

( )( )

−=∆ ∫∫ab   xi

a

 xi

bc   di xidi xiW 00

,,   λ λ   

- -

( )a xih   ,

( )b xih   ,

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 4/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 4 of 8

This time, we consider the force on the bar when current is held constant

i.e. aii =  

 f  

 x

 x

W iedt  fdxb

a

b

a

∆−= ∫∫  

dt 

d e

  λ = , because flux will change

so, there is addition of electrical energy as the bar moves

 f  

 x

 x

W iedt  fdxb

a

b

a

∆−= ∫∫  

Consider the change in electrical energy graphically

Position a Position b

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 5/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 5 of 8

The total change is:

Mathematically, we have

( )=−====∆ ∫∫∫   ab

e   id idt dt 

d iiedt W 

b

a

b

a

b

a

λ λ λ λ 

  λ 

λ 

 

A subtle note:Current and flux are not functions of each-other in this equation

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 6/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 6 of 8

Next consider the energy in the coupling field

We again have

( ) ( )

−=∆ ∫∫

ab   xi xi

 f     id id W 

,

0

,

0

λ λ 

λ λ   

Graphically:

Position a Position b

( ) ( )

=

−=∆ ∫∫ab   xi xi

 f     id id W 

,

0

,

0

λ λ 

λ λ 

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 7/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 7 of 8

( ) ( )

c

 x

 x

 AD

 xi

 BC 

 xi

 ABCD

 x

 x

 f  em

W  fdx

id id iedt  fdx

W W W 

b

a

abb

a

b

a

∆=

−−=

∆−∆=∆

∫∫∫∫321321321

0

,

0

0

,

0

λ λ 

λ λ   

Remember that ∫=   diW c   λ   

So

( ) ( )

( ) ( )[ ]∫

∫∫

−=

−=∆

a

aa

i

ab

i

a

i

bc

di xi L xi Li

dii xdii xW 

0

00

,,

,,   λ λ 

 

8/10/2019 Lecture 7 (Linear Motors II) - Overhead

http://slidepdf.com/reader/full/lecture-7-linear-motors-ii-overhead 8/8

University of British Columbia Elec Machines & Electronics

EECE 365 – Winter 2013 Lecture 7: Linear Machines II

Nathan Ozog © 2013 Page 8 of 8

The equations are converse to what we had when aλ λ  =  

This time we have in place of and

in place of

This will give the result ( )aiic

  xiW d  fdx=

=   ,  

Leads to ( )= x f    

Again, assume our linear relationship ( ) ( )   l  L x L x L   +==,λ   

( ) ( ) ( )  

+

+===

=   l aa

iic   Lk  x

k i

dx

d  x L

i

dx

d  xiW 

dx

d  x f  

a2

1

22

222,  

( )( )22

12

2   k  x

k i x f   a

+−==  

( )( )22

12

2   k  x

k i x f   a

+−=

 

( ) ( )aii

 xiW dx

d  x f   c

==   ,