lecture 6 -- synthesis of nanomaterials

Upload: kannankriv

Post on 05-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    1/28

    Synthesis of Nanomaterials

    Junior Research Seminar 

    Spring 2004

    4 May 2004

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    2/28

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    3/28

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    4/28

    Zero Dimensional (0D) Growth

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    5/28

    Nanoparticle Growth within Dendrimers

    • Polymer macromolecules (poly

    (amido amine)) bind limited

    numbers of metal ions (Cu, Ag, Au,

    Pt, Pd)

     – Driving force for encapsulation

    includes electrostatics, steric

    confinement, covalent bonds

     – Reducing agent causes the metal

    ions to coalesce

     – Nanoparticles as small as 1 nm

    • Useful composite material

     – Metal particles not aggregated

     – Dendrimer branches control

    access of other molecules

     – Terminal groups on dendrimer can

    be used to control solubility,

    linking to surfacesE.W. Meijer, Chem. Rev. 99, 1665 (1999)

    R. Crooks, Acc. Chem. Res. 34, 181 (2001)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    6/28

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    7/28

    Cluster Growth within a Zeolite

    • Zeolite-OH + M(CH3)2 – Intercalation of M ion into zeolite by ion exchange

     – Activation of M+ loaded zeolite

     – Reaction of activated M+ with H2S

     – Zeolite Y high dielectric, aluminosilicate host

    • Examples: MS nanoclusters – CdS, ZnS, SnS, Ag2S

    Calzeferri (U. Bern), J. Phys. Chem. B 103, 6397 (1999)

    Zeolite-OH + M(CH3)2 Zeolite-O-M(CH3) + CH4

    Zeolite-O-M-SH + CH4

    Repeat

    H2S

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    8/28

     Arrested Precipitation: General Approach

    C.B. Murray (IBM)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    9/28

     Arrested Precipitation

    Strong reducing agent

    Metal salts and stabilizers

    (metal halides + inert solvent

    + R3P + long chain acids)

    ~200-250 C

    •  Aqueous reduction of metal

    salts (Ag, Au) in the presence of

    citrate ions

     – Chemisorption of organic ligandsfor handling

     – Distribution varies > 10%

    • II-VI ME nanocrystals (NCs) (M =

    Zn, Cd, Hg; X = S, Se, Te)

     – Metal alkyls + organophosphine

    chalcogenides

     – Phosphine binding to M

    controlled by temperature

     – Ostwald ripening allows for size-

    selective aliquots; growth time for

    1-2 nm NCs in minutes

    Schmid G. 1992. Chem. Rev. 92:1709–27

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    10/28

    Size-Dependent Properties:

    Metall ic Particles

    200 nm

     Au Spheres

    ~100 nm

     Ag Nanoprisms

    ~100 nm

     Ag Spheres

    ~80 nm

     Ag Spheres

    ~40 nm

     Au Spheres

    ~50 nm

     Ag Spheres

    ~120 nm

    200nm

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    11/28

     A. L ibchaber (NEC) Science 298, 1759 (2002)

     A.P. Alivisatos (U.C. Berkeley), Science 281, 2013 (1998)

    10 µm

    Size-Dependent Properties:

    Semiconducting Particles

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    12/28

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    13/28

    One Dimensional (1D) Growth

     Adapted after Y. Xia et al ., Adv. Mat . 15, 353 (2003)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    14/28

    Electrodeposition within Nanoporous Membranes

    •  Alumina, polycarbonate tracketched, and si lica membranes

    • 5-10 m thick with pore sizesdown to 10 nm

    M. Natan (Penn State), Science 294, 137 (2001)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

    http://www.sciencemag.org/content/vol294/issue5540/images/large/se3819799003.jpeghttp://www.sciencemag.org/content/vol294/issue5540/images/large/se3819799003.jpeghttp://www.sciencemag.org/content/vol294/issue5540/images/large/se3819799003.jpeghttp://www.sciencemag.org/content/vol294/issue5540/images/large/se3819799003.jpeg

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    15/28

    Templating against Existing 1D Nanostructures

    GaN from ZnO Nanowires

    P. Yang, Nature 422, 599 (2003)

    TiC nanorods from MWNTs

    C.M. Lieber, Chem. Mater., 8, 2041 (1996)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    16/28

    Templating vs. Other Approaches?

    • Nanoscale structures generated by templating methods are

    typically not crystalline

     – Number of defects is larger 

     – Critical dimension (confined dimension) is larger; quantum size effects

    usually not observed

     – Monodispersity is limited by the structure of template

     – Free-standing, 1D structures are difficult to obtain

    • What are the requirements for a general, synthetic approach

    to nanowires?

     – Anisotropic growth

     – Equilibrium constraints

     – Control of catalyst size

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    17/28

    Laser-assisted Catalytic Growth

    (1) Pulsed laser; (2) Focusing lens; (3) Composite target; (4) Furnace; (5) Cold f inger; (6) Pump system

    C.M. Lieber (Harvard), Science 279, 208 (1998)

    Examples: InP, GaAs, InAs (Au colloids); GaN (Fe colloids)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    18/28

    Chemical Vapor Deposition (CVD)

    1  m

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    19/28

    Solution-based growth

    • Dissolution of anisotropic crystalstructures

     – Dissolve inorganicmetallopolymers in polarsolvents such as dimethyl

    sulfoxide (DMSO) to formhexagonally close packed,linear chains ~2 nm in diameter 

     –    Example: Mo6Se6 wires

    • Other methods to obtain

    anisotropy?

     – Reduction of an acid or salt inelevated temperatures andexploit Ostwald ripening

     – Decomposition of precursors in

    the presence of capping ligands(followed by fractionation forsize distribution)

     –    Example: BaTiO3 and SrTiO3(perovskite) nanostructures

    H. Park (Harvard), J. Am. Chem. Soc. 124, 1186 (2002)

    F. diSalvo (Cornell), Science 273, 792 (1996)

    P. Yang, Adv. Mat. 12, 1526 (2000)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    20/28

     Assembly of 0D nanoparticles

    • Organization of CdTenanoparticles into wires

     – Removal of stabilizer 

     – Assembly over a week in the dark

    • Recrystallization

     – Ostwald ripening with Cd2+ andTe2- ions

     – Diffusion of CdTe particles

    N.A. Koltov (Okla. State), Science 297, 237 (2002)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    21/28

    Zero dimensional structures

    Three dimensional structures

    One dimensional structures

    Chemical approaches to nanostructures

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    22/28

    Three dimensional (3D) nanostructures

    • Polymer emulsif ication

     – Reducing agent is also the solvent

     – In the presence of a capping reagent

    and different ratios of seed source,

    different types of structures

     –    Example: reduction of silver nitrate by

    ethylene glycol in the presence of

    poly(vinyl pyrrolidone)

    • Replacement reactions

     – Conversion of one metal to one with a

    higher reduction potential

     –    Example: Replacement of Ag with Auoccurred along the crystal facets in

    an order commensurate with their free

    energies: {110} > {100} > {111}

    3Ag(s) + HAuCl4(aq)

     Au(s) + 3AgCl(aq) + HCl(aq)

    Y. Xia (U. Wash.), Science 298, 2176 (2002); Nano. Lett., 2, 481 (2002)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    23/28

    3D nanostructures: DNA-based assembly

    •  Au nanostructures assembled by DNA

    hybridization

     – Functionalize large and small Au particles with

    different DNA strands – Introduce a linker strand that contains

    complementary sequence to those on large

    and small Au particles

    C.A. Mirkin, Inorg. Chem. 39, 2258 (2000)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    24/28

    3D nanostructures: NC superlattices

    • CdSe colloidal crystals

     – Introduce non-solvent to cause

    aggregation and precipitation

     – Slow destabilization by

    evaporation from a mixture ofsolvents can result in ordered

    superlattices

    C.B. Murray, Annu. Rev. Mater. 30, 545 (2000)

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    25/28

    Lab 7: Synthesis of Nanomaterials

    • Gold colloids

    • CdSe nanocrystals

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    26/28

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    27/28

    Synthesis of Colloidal Gold

     – Make HAuCl4 solution in water and pour into a

    beaker.

    • Weigh the HAuCl4

    using a teflon-wrapped spatula

    • Heat the solution to boiling on a hot plate.

     – Add Na3C6H5O7 to the Au solution in the beaker.

     – Let the solution boil.

    http://www.mrsec.wisc.edu/EDETC/cineplex/gold/index.html

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom

    http://www.mrsec.wisc.edu/EDETC/cineplex/gold/index.htmlhttp://www.mrsec.wisc.edu/EDETC/cineplex/gold/gold3.htmlhttp://www.mrsec.wisc.edu/EDETC/cineplex/gold/index.htmlhttp://www.mrsec.wisc.edu/EDETC/cineplex/gold/index.html

  • 8/15/2019 Lecture 6 -- Synthesis of Nanomaterials

    28/28

    Gold Particles as a Chemical Sensor 

     – Take a UV-Vis absorbance

    spectrum of the Au colloid

    solution.

     – Place 3 mL of the Aucolloid solution in each of

    three glass vials. Add 3 mL

    of water to dilute the colloid

    solution.

     – Add 5-10 drops 1M NaCl to

    the first vial dropwise.

    Record what happens asthe salt solution is added.

     – Add 5-10 drops 1M

    sucrose to the second vial

    dropwise.

    Junior Research Seminar: Nanoscale Patterning and Systems

    Teri W. Odom