lecture 6: propositional calculus: part 2 s. choimathsci.kaist.ac.kr/~schoi/logiclec6.pdflogic and...

129
Logic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea Fall semester, 2012 S. Choi (KAIST) Logic and set theory September 18, 2012 1 / 18

Upload: lediep

Post on 25-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Logic and the set theoryLecture 6: Propositional Calculus: part 2

S. Choi

Department of Mathematical ScienceKAIST, Daejeon, South Korea

Fall semester, 2012

S. Choi (KAIST) Logic and set theory September 18, 2012 1 / 18

Page 2: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of Inference

Inference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 3: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference Rules

Hypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 4: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical Rules

Derived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 5: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived Rules

The Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 6: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional Rules

EquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 7: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalences

The soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 8: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.

We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 9: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.

Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 10: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 11: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

About this lecture

Notions of InferenceInference RulesHypothetical RulesDerived RulesThe Propositional RulesEquivalencesThe soundness and the completeness of deductions.We go over the last three Hypothetical Rules in Lecture 6.Course homepages:http://mathsci.kaist.ac.kr/~schoi/logic.html andthe moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 18

Page 12: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer

A mathematical introduction to logic, H. Enderton, AcademicPress.Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 13: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, SpringerA mathematical introduction to logic, H. Enderton, AcademicPress.

Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 14: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, SpringerA mathematical introduction to logic, H. Enderton, AcademicPress.Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )

http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 15: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, SpringerA mathematical introduction to logic, H. Enderton, AcademicPress.Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.

http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 16: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, SpringerA mathematical introduction to logic, H. Enderton, AcademicPress.Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”

http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 17: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, SpringerA mathematical introduction to logic, H. Enderton, AcademicPress.Whitehead, Russell, Principia Mathematica (our library). (Thiscould be a project idea. )http://plato.stanford.edu/contents.html has muchresource. See “classical logic”.http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations inSentential Calculus". (or SC Derivations.) and “The completenessof the SC rules.”http://jvrosset.free.fr/Goedel-Proof-Truth.pdf“Does Godels incompleteness prove that truth transcends proof?”

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 18

Page 18: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 18

Page 19: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)

http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 18

Page 20: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html, complete (i.e. has all the steps)http://svn.oriontransfer.org/TruthTable/index.rhtml,has xor, complete.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 18

Page 21: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Suppose that one proved a logical formula, which are not in theten elementary rules. Then we can substitute the symbols withwffs and still obtain valid logical formula.

Example: P → Q,¬Q ` ¬P. (Modus Tollens (MT)).Substitution instance: P to (R ∨ S) and Q to ¬C. Then obtain(R ∨ S)→ ¬C, ¬¬C. ` ¬(R ∨ S).

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 18

Page 22: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Suppose that one proved a logical formula, which are not in theten elementary rules. Then we can substitute the symbols withwffs and still obtain valid logical formula.Example: P → Q,¬Q ` ¬P. (Modus Tollens (MT)).

Substitution instance: P to (R ∨ S) and Q to ¬C. Then obtain(R ∨ S)→ ¬C, ¬¬C. ` ¬(R ∨ S).

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 18

Page 23: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Suppose that one proved a logical formula, which are not in theten elementary rules. Then we can substitute the symbols withwffs and still obtain valid logical formula.Example: P → Q,¬Q ` ¬P. (Modus Tollens (MT)).Substitution instance: P to (R ∨ S) and Q to ¬C. Then obtain(R ∨ S)→ ¬C, ¬¬C. ` ¬(R ∨ S).

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 18

Page 24: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:

1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 25: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A

2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 26: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.

3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 27: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.

4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 28: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .

5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 29: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .

6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 30: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.

7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 31: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove MT:1. P → Q A2. ¬Q A.3.: ¬¬P. for ¬I.4.: P. ¬E .5.: Q 1,4← E .6.: Q ∧ ¬Q. 2.5. ∧I.7. ¬P.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 18

Page 32: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.

Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 33: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.

Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 34: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).

Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 35: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.

Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 36: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.

Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 37: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.

Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 38: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Derived Rules

Modus Tollens (MT): P → Q,¬Q ` ¬P.Hypothetical syllogism (HS): P → Q,Q → R ` P → R.Absorption (ABS): P → Q ` P → (P ∧Q).Constructive Dilemma (CD): P ∨Q, P → R, Q → S ` R ∨ S.Repeat or Reiteration (RE): P ` Q → P.Contradiction (CON): P,¬P ` Q.Disjunctive syllogism (DS): P ∨Q,¬P ` Q.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 18

Page 39: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.

1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 40: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A

2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 41: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.

3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 42: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.

4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 43: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.

5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 44: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .

6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 45: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.

7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 46: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).

8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 47: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.

9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 48: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.

10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 49: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.

11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 50: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).

12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 51: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

ExamplesProve CD: P ∨Q, P → R, Q → S ` R ∨ S.1. P ∨Q A2. P → R A.3. Q → S. A.4.: P for→ I.5.: R from→ E .6.: R ∨ S ∨I.7. P → (R ∨ S).8.: Q for→ I.9.: S.10.: R ∨ S.11. Q → (R ∨ S).12. R ∨ S.

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 18

Page 52: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.

1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 53: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A

2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 54: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.

3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 55: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.

4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 56: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)

5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 57: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.

6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 58: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.

7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 59: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.

8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 60: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.

9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 61: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Derived Rules

Examples

Prove DS: P ∨Q,¬P ` Q.1. P ∨Q A2. ¬P A.3.: P for→ I.4.: Q. 2.3. (CON)5. P → Q.6.: Q for→ I.7:: Q.8. Q → Q.9. Q by ∨E .

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 18

Page 62: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)

¬(P ∧ ¬P), or ¬P ∨ P.P → ((P → Q)→ Q).P → (Q → P).(P → (Q → R))→ ((P → Q)→ (P → R)).(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 63: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)¬(P ∧ ¬P), or ¬P ∨ P.

P → ((P → Q)→ Q).P → (Q → P).(P → (Q → R))→ ((P → Q)→ (P → R)).(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 64: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)¬(P ∧ ¬P), or ¬P ∨ P.P → ((P → Q)→ Q).

P → (Q → P).(P → (Q → R))→ ((P → Q)→ (P → R)).(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 65: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)¬(P ∧ ¬P), or ¬P ∨ P.P → ((P → Q)→ Q).P → (Q → P).

(P → (Q → R))→ ((P → Q)→ (P → R)).(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 66: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)¬(P ∧ ¬P), or ¬P ∨ P.P → ((P → Q)→ Q).P → (Q → P).(P → (Q → R))→ ((P → Q)→ (P → R)).

(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 67: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Theorems

Theorems are wffs deduced from no assumptions. They are justtautologies. (At least in this book)¬(P ∧ ¬P), or ¬P ∨ P.P → ((P → Q)→ Q).P → (Q → P).(P → (Q → R))→ ((P → Q)→ (P → R)).(((¬P → ¬Q)→ (Q → P)).

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 18

Page 68: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).

1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 69: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.

2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 70: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.

3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 71: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P

4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 72: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.

5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 73: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.

6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 74: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P

7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 75: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-5

8. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 76: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce (Prove) ` ((¬P → ¬Q)→ (Q → P)).1. :¬P → ¬Q H. for→ I.2. :: Q. H for→ I.3. ::: ¬P4. ::: ¬Q. 1.3.5. ::: Q ∧ ¬Q.6. :: P7. : Q → P. 2-58. ¬P → ¬Q → (Q → P).

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 18

Page 77: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).

1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 78: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.

2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 79: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.

3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 80: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.

4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 81: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.

5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 82: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.

6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 83: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.

7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 84: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-6

8. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 85: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-7

9. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 86: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Theorems

Example

Deduce ` (P → (Q → R))→ ((P → Q)→ (P → R)).1. : (P → (Q → R)) for→ I.2. :: (P → Q) for→ I.3. ::: P for→ I.4. ::: (Q → R) 1.3.5. ::: P → R. 2.4.6. ::: R.7. :: P → R. 3-68. : (P → Q)→ (P → R). 2-79. (P → (Q → R))→ ((P → Q)→ (P → R)) 1-8.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 18

Page 87: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.

Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 88: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.

The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 89: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.

¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 90: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)

¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 91: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)

P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 92: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)

P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 93: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)

P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 94: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).

P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 95: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Equivalences

Equivalences φ↔ ψ for two wff φ and ψ. We prove by φ→ ψ andψ → φ.Clearly, equivalence is exactly a tautology for the form φ↔ ψ.The equivalences can be used to replace some subwffs withequivalent subwffs.¬(P ∧Q)↔ (¬P ∨ ¬Q). DeMorgan’s law. (DM)¬(P ∨Q)↔ ¬P ∧ ¬Q. (DM)P ∨Q ↔ Q ∨ P. Commutation (COM)P ∧Q ↔ Q ∧ P. (COM)P ∨ (Q ∨ R)↔ (P ∨Q) ∨ R. Association (ASSOC).P ∧ (Q ∧ R)↔ (P ∧Q) ∧ R. Association (ASSOC).

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 18

Page 96: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)

P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 97: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)

P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 98: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)

(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 99: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)

(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 100: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)

(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 101: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)

P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 102: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)

P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 103: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)

The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 104: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More equivalences

P ∧ (Q ∨ R)↔ (P ∧Q) ∨ (P ∧ R). Distribution (DIST)P ∨ (Q ∧ R)↔ (P ∨Q) ∧ (P ∨ R). (DIST)P ↔ ¬¬P. Double negation (DN)(P → Q)↔ (¬Q → ¬P). Transposition (TRANS)(P → Q)↔ (¬P ∨Q). Material Implication (MI)(P ∧Q)→ R ↔ (P → (Q → R)). Exportation (EXP)P ↔ (P ∧ P). Tautology (TAUT)P ↔ (P ∨ P). (TAUT)The equivalences can be verified by the truth table method or bydeduction.

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 18

Page 105: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More derived rules

Theorem introduction (TI): Any substituted version of a theoremmay be introduced with at any line of the proof.

Equivalence introduction (using above notations): Given χ withsubwff φ and an equivalence φ↔ ψ, we deduce χ′ with somesubwffs of form φ replaced with subwffs of form ψ.

S. Choi (KAIST) Logic and set theory September 18, 2012 15 / 18

Page 106: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

More derived rules

Theorem introduction (TI): Any substituted version of a theoremmay be introduced with at any line of the proof.Equivalence introduction (using above notations): Given χ withsubwff φ and an equivalence φ↔ ψ, we deduce χ′ with somesubwffs of form φ replaced with subwffs of form ψ.

S. Choi (KAIST) Logic and set theory September 18, 2012 15 / 18

Page 107: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.

We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 108: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q

1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 109: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A

2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 110: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.

3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 111: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.

4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 112: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.

5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 113: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)

6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 114: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).

7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 115: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-6

8. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 116: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences

Example

We use the equivalence ¬P ∨Q ↔ ¬(P ∧ ¬Q). DM.We shall prove that ¬P ∨Q, ` P → Q1. ¬P ∨Q. A2. : P H. for→ I.3. ::¬Q H for ¬I.4. :: P ∧ ¬Q.5. :: ¬(P ∧ ¬Q). 1. (DM)6. :: (P ∧ ¬Q) ∧ ¬(P ∧ ¬Q).7. : Q. 3-68. P → Q. 2-7.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 18

Page 117: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system with

I An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 118: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.

I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 119: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulas

I A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 120: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.

I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 121: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 122: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 123: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)

Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 124: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.

That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 125: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Soundness

A logical system is a formal system withI An alphabet, a set of statement symbols with logical connectives.I well-formed formulasI A set of axioms.I Rules of inference.

See also http://plato.stanford.edu/entries/logic-classical/

A logical system is consistent if not all wff can be deduced.(Equivalently, exactly one of φ and ¬φ can be deduced.)Given any truth-false assigment to atomic formula so that theaxioms are all true, the soundness means that by applying rules ofinference you obtain true statements only.That is, we cannot deduce a falsehood.

S. Choi (KAIST) Logic and set theory September 18, 2012 17 / 18

Page 126: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Completeness

The completeness means that if a formula is true from logical truthassignment from a set of assumptions Σ, then the formula can bededuced from Σ.

This is true for the first order theories but not true for higher-ordertheories. Also, true if there are finitely or countably manystatement symbols.See Theorem 4.3 of Cameron.If we go to a higher-order theory, this fails. (Gödel’sincompleteness theorems: Theorem 5.8 in Cameron)

S. Choi (KAIST) Logic and set theory September 18, 2012 18 / 18

Page 127: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Completeness

The completeness means that if a formula is true from logical truthassignment from a set of assumptions Σ, then the formula can bededuced from Σ.This is true for the first order theories but not true for higher-ordertheories. Also, true if there are finitely or countably manystatement symbols.

See Theorem 4.3 of Cameron.If we go to a higher-order theory, this fails. (Gödel’sincompleteness theorems: Theorem 5.8 in Cameron)

S. Choi (KAIST) Logic and set theory September 18, 2012 18 / 18

Page 128: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Completeness

The completeness means that if a formula is true from logical truthassignment from a set of assumptions Σ, then the formula can bededuced from Σ.This is true for the first order theories but not true for higher-ordertheories. Also, true if there are finitely or countably manystatement symbols.See Theorem 4.3 of Cameron.

If we go to a higher-order theory, this fails. (Gödel’sincompleteness theorems: Theorem 5.8 in Cameron)

S. Choi (KAIST) Logic and set theory September 18, 2012 18 / 18

Page 129: Lecture 6: Propositional Calculus: part 2 S. Choimathsci.kaist.ac.kr/~schoi/Logiclec6.pdfLogic and the set theory Lecture 6: Propositional Calculus: part 2 S. Choi Department of Mathematical

Equivalences Soundness and completeness of deductions

Completeness

The completeness means that if a formula is true from logical truthassignment from a set of assumptions Σ, then the formula can bededuced from Σ.This is true for the first order theories but not true for higher-ordertheories. Also, true if there are finitely or countably manystatement symbols.See Theorem 4.3 of Cameron.If we go to a higher-order theory, this fails. (Gödel’sincompleteness theorems: Theorem 5.8 in Cameron)

S. Choi (KAIST) Logic and set theory September 18, 2012 18 / 18