lecture 5

56
7/21/2019 Lecture 5 http://slidepdf.com/reader/full/lecture-5-56e106546d412 1/56 1 S. Turteltaub Ae 2135-II - 2015 Topic 5 Generally-forced vibrations of undamped and damped, single degree-of-freedom system

Upload: isabelle-el-hajj

Post on 10-Mar-2016

8 views

Category:

Documents


0 download

DESCRIPTION

vibration 5

TRANSCRIPT

Page 1: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 1/56

1

S. Turteltaub

Ae 2135-II - 2015

Topic 5

Generally-forced vibrations of

undamped and damped,

single degree-of-freedom system

Page 2: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 2/56

2

S. Turteltaub

Ae 2135-II - 2015

General (non-periodic) loading

Forced vibrations

Page 3: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 3/56

3

S. Turteltaub

Ae 2135-II - 2015

• In the previous lecture it was shown how to find the response

function of a system loaded with a simple harmonic function(sine and/or cosine). The method relied on a decomposition

(homogeneous + particular parts) and the approach of

undetermined coefficients to find the particular solution.

• It is possible to extend  the method of undetermined

coefficients for more general loading conditions when the

loading function is periodic in time (i.e., when the load repeats

itself in time after one loading period)

• Due to time constraints the general periodic loading is not 

covered in this course[optional: read section 3.3 of textbook if you want to learn how to use it]

Methods for arbitrary loading

Page 4: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 4/56

4

S. Turteltaub

Ae 2135-II - 2015

• For general (non-periodic) loading, two methods can be used:

 – Method of convolutions (“superposition”) – Laplace transform

Note: the methods of convolutions and transformations are typically only

applicable for relatively simple loading. In general one has to use numerical

methods for the solution of problems.

Methods for arbitrary loading

Page 5: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 5/56

5

S. Turteltaub

Ae 2135-II - 2015

Convolutions: impulsive load

Page 6: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 6/56

6

S. Turteltaub

Ae 2135-II - 2015

Idea behind method:

Method of convolutions

• Find the response to a basic impulse loading (Dirac delta)

• Express general loading f  as a “sum” of basic impulsive

loadings

• Use superposition to construct the general response x (in the form of a convolution integral)

• Solve the integral to obtain the response function x

Remark: from the basic impulsive loading, it is also possible to find the responsefunction to some useful “elementary” loadings (step loading, ramp loading, etc.)

In turn, using again linearity, these “elementary” loadings can be used to

construct other more complex loadings made out of sums of steps and/or ramps

(= a “super-superposition” approach)

Page 7: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 7/56

7

S. Turteltaub

Ae 2135-II - 2015

Consider a mass-damper-spring SDOF system at rest until an

impulsive load f i is applied at time t  = t *:

Method of convolutions: impulsive load

Page 8: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 8/56

8

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadConsider a mass-damper-spring SDOF system at rest until an

impulsive load f i is applied at time t  = t *:

The impulse load is obtained formally

as a limit for an infinitesimally smalltime interval:

Page 9: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 9/56

9

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadConsider a mass-damper-spring SDOF system at rest until an

impulsive load f i is applied at time t  = t *:

The impulse load is obtained formally

as a limit for an infinitesimally smalltime interval:

Page 10: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 10/56

10

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadThe impulsive load can be expressed formally using Dirac’s delta

The impulse load is obtained formally

as a limit for an infinitesimally smalltime interval:

Page 11: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 11/56

11

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadThe impulsive load can be expressed formally using Dirac’s delta

Impulse I  of load f i:

Remark: the impulse has units of Force x

Time hence the term P0 has also units of

Force x Time. Observe that the Dirac delta

has units inverse to the units of its

argument (in this case units of 1/time)

P0 is the impulse of the short pulse

Net impulse

Page 12: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 12/56

12

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

Goal:

Page 13: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 13/56

13

S. Turteltaub

Ae 2135-II - 2015

Solution:

• Analyze first the effect of the

impulse (key aspect of solution)

• Solve then the problem after the

pulse has been applied

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

Page 14: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 14/56

14

S. Turteltaub

Ae 2135-II - 2015

Integrate equation of motion

from to

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

Page 15: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 15/56

15

S. Turteltaub

Ae 2135-II - 2015

Transfer of impulse to linear momentum:

(cf. perfectly elastic central collision)

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

 x(t *-)= x(t *+)=0: Continuous integrands

Rest at t *-

Page 16: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 16/56

16

S. Turteltaub

Ae 2135-II - 2015

Effect of impulsive force: the impulse is

transferred  to the mass as an (initial)

linear momentum at time

The (initial) velocity becomes:

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

The position at instants and

remains unchanged:

Page 17: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 17/56

17

S. Turteltaub

Ae 2135-II - 2015

After the pulse has been applied, the

problem reduces to a free-vibration with

initial conditions at

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

Equation of motion

Example: underdamped  case:

Page 18: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 18/56

18

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: impulsive loadResponse of a system initially at rest subjected to a pulse

h(t -t *): Unit impulseresponse function at t * 

Under-

damped

case:

Exercise: find analogous functions for cases

Page 19: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 19/56

19

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superpositionConsider an underdamped system subjected to several impulses:

The total loading can be expressed as a sum

of impulse loadings and the total response

as a sum of the corresponding responses:

Page 20: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 20/56

20

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superpositionConsider an underdamped system subjected to several impulses:

Page 21: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 21/56

21

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superpositionConsider an underdamped system subjected to several impulses:

Page 22: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 22/56

22

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superposition

The total response is obtained as

a sum with the proper “shift"

Page 23: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 23/56

23

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superposition

Add all impulsive

responses up to the

“current” time t c

Page 24: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 24/56

24

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: superposition

Duhamel integral (convolution)

Page 25: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 25/56

25

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: argument

Duhamel integral (convolution)

Useful property: swap arguments in integrand (use only if

integrand is zero up to t  = 0)

Page 26: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 26/56

26

S. Turteltaub

Ae 2135-II - 2015

Heaviside (step) function:

Method of convolutions: Step loading

(derivative in the sense of distributions)

Step loading:

Properties:

Page 27: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 27/56

27

S. Turteltaub

Ae 2135-II - 2015

Find response in underdamped mass-damper-spring system

Method of convolutions: Step loading

Use alternative form of Duhamel’s convolution

Recall that t  is “fixed”, t  > t * and the

variable τ ranges from 0 to t

The function H  is equal to 1 if its

argument is positive and 0 otherwise: 

if Relevant limits of integration

Page 28: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 28/56

28

S. Turteltaub

Ae 2135-II - 2015

Find response in underdamped mass-damper-spring system

Method of convolutions: Step loading

Recall for the underdamped case that the response function to the

unit impulse is

Substitute in integral,

Page 29: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 29/56

29

S. Turteltaub

Ae 2135-II - 2015

Find response in underdamped mass-damper-spring system

Method of convolutions: Step loading

Carry out the integration (use complex variable methods,

integration by parts, use Mathematica or consult a “table of

integrals” (as provided in the exam)

Use formula with

Page 30: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 30/56

30

S. Turteltaub

Ae 2135-II - 2015

Find response in underdamped mass-damper-spring system

Method of convolutions: Step loading

Simplify expression

Evaluate expression and use

Page 31: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 31/56

31

S. Turteltaub

Ae 2135-II - 2015

Method of convolutions: Step loadingUnderdamped mass-damper-spring system

Page 32: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 32/56

32

S. TurteltaubAe 2135-II - 2015

A convenient way to express the response of an underdamped  

mass-damper-spring system initially at rest  subjected to a step

loading is as follows:

Method of convolutions: Step loading

where hs is the response to a unit step loading (Heaviside

loading) at for times t  > t *

Page 33: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 33/56

33

S. TurteltaubAe 2135-II - 2015

A convenient way to express the response of an underdamped  

mass-damper-spring system initially at rest  subjected to a step

loading is as follows:

Method of convolutions: SUPER-Position

Application: square pulse

Page 34: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 34/56

34

S. TurteltaubAe 2135-II - 2015

Laplace transform

Page 35: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 35/56

35

S. TurteltaubAe 2135-II - 2015

Laplace transform: overview

Original problem

(ODE)

(Real) time domain

Laplace transform

(Complex) frequency domain

Transformed problem 

(Algebraic equation)

Simple

Solution of

transformed problem 

Difficult

Solution of original

problem  Inverse transform

Less difficult

Page 36: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 36/56

36

S. TurteltaubAe 2135-II - 2015

Laplace transformDefinition of Laplace transformation

In this course: tables for transformations of relevant functions will be provided

s: complex frequency

Inverse transformation

Page 37: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 37/56

37

S. TurteltaubAe 2135-II - 2015

Important (forward) transformations used to transform the

original ODE problem:

1. Transformations for derivatives of the unknown function x

2. Transformations for typical functions that describe the

loading f

The unknown function x is simply formally transformed as X  and

left as an unknown in the new (transformed) problem

Laplace transform

Page 38: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 38/56

38

S. TurteltaubAe 2135-II - 2015

The transformation of a derivative of a given function f can be

computed using integration by parts assuming that the function

being transform does not grow to infinity in the limit as time

tends to infinity:

Laplace transform: derivatives

If limit of f  is finite

Page 39: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 39/56

39

S. TurteltaubAe 2135-II - 2015

Second derivative: same procedure (apply integration by parts

twice)

Laplace transform: derivatives

Higher order derivatives are typically not required in vibrations(equation of motion is second-order)

Application to homogeneous problem:

Initial conditions are accounted

for in transformed problem

Page 40: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 40/56

40

S. TurteltaubAe 2135-II - 2015

The differential equation for x has been transformed into an

algebraic equation for the transformed unknown X

Laplace transform: homogeneous case

Solve for X :

Last step: inverse transform to find the actual response function

Page 41: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 41/56

41

S. TurteltaubAe 2135-II - 2015

Last step: inverse transform to find the actual response function

Application to non-homogeneous problem:

Laplace transform: non-homogeneous

Solve for X :

Page 42: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 42/56

42

S. TurteltaubAe 2135-II - 2015

Relevant functions and important relations

Laplace transform: common functions

A more complete table will be provided

(Step)

(Dirac)

Page 43: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 43/56

43

S. TurteltaubAe 2135-II - 2015

The method of convolutions (superposition) was used to solve

the problem of an underdamped system initially at rest loaded

with a square pulse. It can also be solved using the Laplace

transform

Laplace transform: square pulse revisited

Square pulse loading:

Transformed loading:

Page 44: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 44/56

44

S. TurteltaubAe 2135-II - 2015

Transformed loading:

Use in non-homogeneous problem

Laplace transform: square pulse revisited

Page 45: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 45/56

45

S. TurteltaubAe 2135-II - 2015

Transformed loading:

Use in non-homogeneous problem

Laplace transform: square pulse revisited

To compute the inverse transform x of a function X  using a table

of transformations, it is often necessary to decompose the X  in a

sum of terms that can be transformed more easily

The most commonly-used method is “partial fractions”

Example: underdamped system subjected to a square pulse

Page 46: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 46/56

46

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

1. Separate exponential terms:

2. Factor denominator: Underdamped:

Page 47: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 47/56

47

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

1. Separate exponential terms:

2. Factor denominator: Underdamped:

Page 48: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 48/56

48

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

Underdamped:

3. Use partial fractions:

Find  coefficients c0, c1, c2, d 1, d 2 

Page 49: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 49/56

49

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

Underdamped:

3. Use partial fractions: (coefficients)

Note: It can be shown

that the coefficients

c1, c2 and d 1, d 2 are

complex conjugates

Page 50: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 50/56

50

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

3. Use partial fractions:

Underdamped:

(Coefficients computed in previous slide)

Page 51: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 51/56

51

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

4. Look-up inverse transforms and combine as required:

Page 52: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 52/56

52

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

Page 53: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 53/56

53

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

Page 54: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 54/56

54

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

Note: Coefficients c1, c2 and d 1, d 2 are complex conjugates hence  x(t ) is real

Response function in terms of complex exponentials

f f

Page 55: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 55/56

55

S. TurteltaubAe 2135-II - 2015

Underdamped system subjected to a square pulse

Laplace transform: partial fractions

l f

Page 56: Lecture 5

7/21/2019 Lecture 5

http://slidepdf.com/reader/full/lecture-5-56e106546d412 56/56

56

Summary of method:

1. Transform all terms containing derivatives (this step will also

take care of the initial conditions)

2. Transform the loading term (crucial aspect: express the

loading in a convenient way! Dirac delta and/or step function

are quite useful at this stage)

3. Solve for the transformed response function and express in aconvenient way to transform back

4. Perform the inverse transform to get the solution (use tables,

a symbolic manipulator or compute it yourself)

Laplace transform