lecture 4 - university of california,...

27
1 EE141 Design Rules CMOS Inverter MOS Transistor Model EE141- Spring 2003 Lecture 4 EE141 Today’s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis

Upload: others

Post on 01-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

1

EE141

Design RulesCMOS Inverter

MOS Transistor Model

EE141- Spring 2003Lecture 4

EE141

Today’s lecture

Design RulesThe CMOS inverter at a glanceAn MOS transistor model for manual analysis

Page 2: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

2

EE141

Important!

Labs start next weekYou must show up in one of the lab sessions next weekIf you don’t show up you will be dropped from the class» Unless you let me know that you still want to be in

the classHomework 2 will be posted later today. Due next Thursday, February 6.

EE141

Jan M. Rabaey

Design Rules

Page 3: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

3

EE141

3D Perspective

Polysilicon Aluminum

EE141

Design Rules

Interface between designer and process engineerGuidelines for constructing process masksUnit dimension: Minimum line width» scalable design rules: lambda parameter» absolute dimensions (micron rules)

Page 4: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

4

EE141

CMOS Process Layers

Layer

Polysilicon

Metal1

Metal2

Contact To Poly

Contact To Diffusion

Via

Well (p,n)

Active Area (n+,p+)

Color Representation

Yellow

Green

RedBlue

MagentaBlack

BlackBlack

Select (p+,n+) Green

EE141

Layers in 0.25 µm CMOS process

Page 5: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

5

EE141

Intra-Layer Design Rules

Metal2 4

3

10

90

Well

Active3

3

Polysilicon2

2

Different PotentialSame Potential

Metal1 3

32

Contactor Via

Select2

or6

2Hole

EE141

Transistor Layout

1

2

5

3

Tran

sist

or

Page 6: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

6

EE141

Vias and Contacts

1

2

1

Via

Metal toPoly ContactMetal to

Active Contact

1

2

5

4

3 2

2

EE141

Select Layer

1

3 3

2

2

2

WellSubstrate

Select3

5

Page 7: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

7

EE141

CMOS Inverter Layout

A A’

np-substrate Field

Oxidep+n+

In

Out

GND VDD

(a) Layout

(b) Cross-Section along A-A’

A A’

EE141

Layout Editor

Page 8: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

8

EE141

Design Rule Checker

poly_not_fet to all_diff minimum spacing = 0.14 um.

EE141

Sticks Diagram

1

3

In Out

VDD

GND

Stick diagram of inverter

• Dimensionless layout entities• Only topology is important• Final layout generated by “compaction” program

Page 9: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

9

EE141

Jan M. Rabaey

CMOS InverterMOS Transistor

EE141

What is a Transistor?

VGS ≥ VT

RonS D

A Switch!

|VGS|

A MOS Transistor

Page 10: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

10

EE141

NMOS and PMOS

V GS<0

PMOS Transistor

V GS>0

NMOS Transistor

S D

G

S D

G

EE141

The CMOS Inverter: A First Glance

Vin Vout

CL

VDD

Page 11: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

11

EE141

CMOS Inverter

Polysilicon

In Out

VDD

GND

PMOS 2λ

Metal 1

NMOS

OutIn

VDD

PMOS

NMOS

Contacts

N Well

EE141

Two Inverters

Connect in Metal

Share power and ground

Abut cells

VDD

Page 12: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

12

EE141

Switch Model of CMOS Transistor

Ron

|VGS| < |VT| |VGS| > |VT|

|VGS|

EE141

CMOS InverterFirst-Order DC Analysis

VOL = 0VOH = VDD

VM = f(Rn, Rp)

VDD VDD

Vin 5 VDD Vin 5 0

VoutVout

Rn

Rp

Page 13: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

13

EE141

CMOS Inverter: Transient Response

tpHL = f(Ron.CL)= 0.69 RonCL

V outVout

R n

R p

V DDV DD

V in 5 V DDV in 5 0

(a) Low-to-high (b) High-to-low

CLCL

EE141

CMOS Properties

Full rail-to-rail swingSymmetrical VTCPropagation delay function of load capacitance and resistance of transistorsNo static power dissipationDirect path current during switching

Page 14: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

14

EE141

The MOS Transistor

Polysilicon Aluminum

EE141

MOS Transistors -Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Page 15: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

15

EE141

Threshold Voltage: Concept

n+

p-substrate

DSG

B

VGS

+

Depletionregion

n-channel

n+

EE141

The Threshold Voltage

Threshold

Fermi potential

2φF is approximately - 0.6V for p-type substratesγ – the body factorVT0 is approximately 0.45V for our process

Page 16: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

16

EE141

The Body Effect

-2.5 -2 -1.5 -1 -0.5 00.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

VBS

(V)

VT (V

)

EE141

The Drain CurrentCharge in the channel is controlled by the gate voltage:

Drain current is proportional to charge and velocity:

Page 17: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

17

EE141

The Drain Current

Combining velocity and charge:

Integrating over the channel:

Transconductance:

EE141

Transistor in Linear

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

Linear (Resistive) mode

Page 18: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

18

EE141

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Pinch-off

EE141

Saturation

For VGD < VT, the drain current saturates

Including channel-length modulation

( )22 TGSn

D VVL

WkI −′

=

( ) ( )DSTGSn

D VVVL

WkI λ+−′

= 12

2

Page 19: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

19

EE141

Modes of Operation

Cutoff:

VGS < VT ID = 0

Resistive:

VT < VGS ; VGS − VT > VDS

( )22 TGSn

D VVL

WkI −′

=

Saturation:

VT < VGS ; VGS − VT < VDS

( )⎥⎥⎦

⎢⎢⎣

⎡−−

′=

22

2DS

DSTGSn

DVVVV

LWkI

EE141

Current-Voltage RelationsA Good Ol’ Transistor

QuadraticRelationship

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VDS (V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Page 20: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

20

EE141

A model for manual analysis

EE141

Current-Voltage RelationsThe Deep-Submicron Era

LinearRelationship

-4

VDS (V)0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Early Saturation

Page 21: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

21

EE141

Velocity Saturation

ξ (V/µm)ξc = 1.5

υn

(m/s

)υsat = 105

Constant mobility (slope = µ)

Constant velocity

EE141

Velocity Saturation

IDLong-channel device

Short-channel device

VDSVDSAT VGS - VT

VGS = VDD

Page 22: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

22

EE141

ID versus VGS

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VGS(V)

I D(A

)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VGS(V)I D

(A)

quadratic

quadratic

linear

Long Channel Short Channel

EE141

ID versus VDS

-4

VDS(V)0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10-4

VDS(V)

I D(A

)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Long Channel Short Channel

Page 23: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

23

EE141

Including Velocity Saturation

Approximate velocity:

And integrate current again:

In deep submicron, there are four regions of operation:(1) cutoff, (2) resistive, (3) saturation and (4) velocity saturation

EE141

Regions of Operation

Long Channel Short Channel

Page 24: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

24

EE141

An Unified Modelfor Manual Analysis

S D

G

B

EE141

Regions of Operation

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

DSV (V)

I D(A

)

VelocitySaturatedLinear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

DSV (V)DSV (V)

I D(A

)

VelocitySaturatedLinear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

Page 25: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

25

EE141

A PMOS Transistor

-2.5 -2 -1.5 -1 -0.5 0-1

-0.8

-0.6

-0.4

-0.2

0x 10

-4

VDS (V)

I D(A

)

Assume all variablesnegative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

EE141

Transistor Model for Manual Analysis

Page 26: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

26

EE141

The Transistor as a Switch

VGS ≥ VT

RonS D

ID

VDS

VGS = VD D

VDD/2 VDD

R0

Rmid

EE141

The Transistor as a Switch

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7x 10

5

VDD

(V)

Req

(Ohm

)

Page 27: Lecture 4 - University of California, Berkeleybwrcs.eecs.berkeley.edu/Classes/neei6341/f06/Lectures/Lecture4-M… · Lecture 4 EE141 Today’s lecture zDesign Rules zThe CMOS inverter

27

EE141

The Transistor as a Switch

EE141

Future Perspectives

25 nm MOS transistor (Folded Channel)