lecture 4 the cmos inverter...2018-09-13 lecture 4: cmos inverter dynamics 3 . . . and saturaon...

58
Lecture 4 The CMOS Inverter Dynamic proper9es

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Lecture4TheCMOSInverter

    Dynamicproper9es

  • Week2:TheCMOSinverter•  Tuesday

    –  Sta9cproper9es•  Voltagetransfercurves(VTC)•  Noisemargins

    –  Exercise(Kjell,1hour)•  Thursday

    –  Dynamicproper9es•  Propaga9ondelay•  Drivinglargecapaci9veloadsw.op9malpropaga9ondelay

    –  ExercisePOTW(Victor,2hours)•  Friday

    –  Prelab1deadline1PM

    2018-09-11 MCC092ICDesign-Lecture3:TheInverter 2

  • Last9me?Muddy?

    •  Howswitchingvoltageiscalculated•  NOR/NANDgateVTC•  Noisemargins

    – Howcalculatethem– Aretheyaccuratefromsimplifiedmodels?– Wheredoes1/8comefrominnoisemarginexample?–  Bu^erflydiagram

    •  Coxwhatisthat?

    2018-09-13 Lecture4:CMOSInverterdynamics 3

  • ...andsatura9oncurrentsareequal:

    VoltageTransferCharacteris9c-VTC

    2017-09-05 MCC092ICDesign-Lecture3:TheInverter 6:3

    VIN

    VOUT

    VDD

    NMOSOFF

    PMOSOFF

    VDS

    IDS

    Satura&on:IDSP,N=IDSAT,P

    ( ) ( )2 22 2N P

    IN TN DD IN TPk kV V V V V− = − +

    1DD TP TN

    swV V xVV

    x+ +

    =+

    VSWVSW

    Inverter

    IDS

    ( )2, 2P

    DSAT P DD IN TPkI V V V= − +

    ( )2, 2N

    DSAT N IN TNkI V V= −

    VSW VDD,VDD

    SwitchingoccursinthegreenregionwherebothMOSFETsaresaturated...

    VDD

    Switchingmeans:VIN=VOUT

    SolvingforVINusingx=kN/kPyields

  • Noisemargins

    2018-09-13 Lecture4:CMOSInverterdynamics 5

  • NoiseMargins–anexample

    2018-09-11 MCC092ICDesign-Lecture3:TheInverter 15

    VINVDD

    VOUT

    VDD

    00

    VIL,max VIH,min

    VOH,min

    Valid”0”

    Valid”1”

    Formulascanbederived(forx=1):VOH,min=VDD-ΔV/8VOL,max=ΔV/8VIL,max=VSW-ΔV/8VIH,min=VSW+ΔV/8

    0.28V 0.28VΔV=0.64V

    ΔV/8

    ΔV/8

    ΔV/8ΔV/8Formulascanbederived(forx=1):VOH,min=VDD-ΔV/8=1.12VVOL,max=ΔV/8=80mVVIL,max=VSW-ΔV/8=0.52VVIH,min=VSW+ΔV/8=0.68V

    Forx=1,VTN=0.28VandVTP=-0.28VwehaveVSW=0.28+0.64/2=0.60VandΔV=0.64V

    VOL,max

    Thesepointsyieldsnumbersfor(VOH,min,VIL,max)and(VOL,max,VIH,min)sothatNMHandNMLcanbecalculated!

    NMH=VOH,min-VIH,minNML=VIL,max-VOL,maxNMH=VOH,min-VIH,min1.12-0.68=0.44VNML=VIL,max-VOL,max=0.52-0.08=0.44V

    Let´sdefinevalidregionsfrompointswhereslopeAV=-1!

    VDD=1.2V

  • Quickques9on

    •  Haveyoutriedsolvingprelab3yet?

    2018-09-11 MCC092ICDesign-Lecture3:TheInverter 7

  • Sta9cvsdynamic

    2018-09-13 Lecture4:CMOSInverterdynamics 8

    Last9me:staGc(DC)behaviorInput:DCvoltage,Output:DCvoltage

    This9me:dynamicbehaviorThatis,with9meInput:voltagewaveformOutputvoltagewaveform

    VDD

    VIN

    ON

    OFF

    VOUT

    VDD

    VIN

    ON

    OFF

    VOUT

    VOUT=1.2V VIN=0.2V

    Incircuitsimula9on:DCanalysis Incircuitsimula9on:transientanalysis

    CL

  • Outline•  Defini9ons

    –  Rise9meandfall9me–  Propaga9ondelay:Risedelayandfalldelay

    •  Propaga9ondelayes9ma9on–  Stepresponsemodel

    •  Charginganddischargingtheloadcapacitor–  Rampresponsemodel

    •  IntroducingtheMOSFETeffec9veresistance•  Invertercapacitances

    –  Modelforscaledinverter:effec9veresistanceandcapac9ance•  Inverterpairdelay

    –  Normalizingtheinverterdelaywrtτ=0.7RC•  Delayw.morethanoneinverter

    –  Inverterpairdelay–  Thefanout-of-four(FO4)delay–  Thetaperedbuffer,findingsizesandnumberofinverters–  (Buffers/driverswithbranching)

    2018-09-13 Lecture4:CMOSInverterdynamics 9

  • Defini9onsforwaveforms

    2018-09-13 Lecture4:CMOSInverterdynamics 10

    VIN

    Time,t

    100%

    tr tf

    20%

    80%

    0

    Inputsignaldefini9ons:riseandfallGmes

    FallingedgeRisingedge

  • Defini9onsfordelay

    2018-09-13 Lecture4:CMOSInverterdynamics 11

    VIN

    Time,t

    100%

    tpdf

    50%

    0

    Propaga9ondelaydefini9ons:riseandfalldelays

    VOUT

    Time,t

    100%

    50%

    0

    tpdr

    Propaga9ondelaysaredefinedatthe50%level!

  • Step-responsemodel

    2018-09-13 Lecture4:CMOSInverterdynamics 12

    VIN

    Time,t

    100%

    tpdf

    50%

    0

    VOUT

    Time,t

    100%

    50%

    0

    tpdr

    Outputfalldelay Outputrisedelay

  • VSS

    VDD VDD/2

    IDS,P

    VOUT

    IDSAT,P

    pMOScurrentflowindetail

    VDD

    VIN

    ON

    OFF

    VIN=LOW VOUT

    ,OUT

    DSAT P LdVI Cdt

    =

    CL

    Step-responsemodel

    2018-09-13 Lecture4:CMOSInverterdynamics 13

    1.Chargingtheloadcapacitorthroughthep-channelMOSFET

    ,

    / 2DDpdr L

    DSAT P

    Vt CI

    =Outputrisedelay

    VINgoesLOW

    VOUTgoesHIGH

  • Step-responsemodel

    2018-09-13 Lecture4:CMOSInverterdynamics 14

    VDD

    VSS

    CL

    VIN VOUT

    2.Dischargingtheloadcapacitorthroughthen-channelMOSFET

    OFF

    ON

    VIN=HIGH

    ,

    / 2DDpdf L

    DSAT N

    Vt CI

    =Outputfalldelay

    ,OUT

    DSAT N LdVI Cdt

    = −

    VDD VDD/2

    IDS,N

    VOUT

    nMOScurrentflowindetail

    IDSAT,N

    VINgoesHIGH

    VOUTgoesLOW

  • Step-responsemodelaccuracy

    •  Howgoodisthestep-responsemodel?–  Realworldinputvoltagesarenotstepfunc9ons–  Theyareoutputvoltagesfromothergates

    2018-09-13 Lecture4:CMOSInverterdynamics 15

  • StepresponsemodelaccuracyExperienceandhundredsofcircuitsimula9onsshowthatpropaga9ondelaysareabout40%longerindesignswhereinputandoutputedgeratesareequal

    2018-09-13 Lecture4:CMOSInverterdynamics 16

    / 2DDpd L

    DSAT

    Vt CI

    =

    0.7 DDpd LDSAT

    Vt CI

    =

  • Themostimportantequa9on

    2018-09-13 Lecture4:CMOSInverterdynamics 17

    0.7 DDpd LDSAT

    Vt CI

    =

  • Rampinput–outputtrace

    2018-09-13 Lecture4:CMOSInverterdynamics 18

    VGSrisesfrom0toVDDVIN:

    VGS=0

    VGS=VDD

    Somedischargehappenswhileinputrisesfrom0toVDDMostdischarges9llhappenswithIDSAT,max

  • Effec9veresistances:65nmMOSFETs

    2018-09-13 Lecture4:CMOSInverterdynamics 19

    Reff=VDD/IDSAT,maxReff=VDD/IDSAT,max

    RN,eff=2kΩ.µm RP,eff=4kΩ.µm

    IDSAT,max=

    600µA/µm

    VDD=1.2V

    N-channeldevice P-channeldevice

    IDSAT,max=

    300µA/µm

    VDD=1.2V

    IDS

    VDS

    IDS

    VDSVDD VDD

    0.7 DDpd LDSAT

    Vt CI

    = 0.7pd eff Lt R C=

  • Themostimportantequa9onrevisited

    2018-09-13 Lecture4:CMOSInverterdynamics 20

    t pd = 0.7CLReff

  • RCdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 21

    0.7pd eff Lt R C=

    VOUT

    VSS

    CL

    VDD

    Reff

    ThisRCcircuithasanoutputvoltagedelaygivenby

  • Rampinput–outputresponse

    2018-09-13 Lecture4:CMOSInverterdynamics 22

    Thetwocurveformsarenotthesame,buttheyyieldthesamedelay!

  • MOSFETcapacitances(fromlecture2)

    2018-09-13 Lecture4:CMOSInverterdynamics 23

    STI STI

    L,thechannellength

    drain source

    LD LS

    Cbo^om

    Csidewall

    Cbo^om

    Csidewall

    L

    Metalgate

    Siliconsubstrate

    W,thechannelwidth

    Thereisadistributedgatecapacitancethatmustbelumpedtototheavailablecktnodes,thatis,sourceanddrain

    Thereareparasi9ccapacitancesfromsource/draintosubstrate

  • LS

    LD

    W

    65nmCMOScapacitances

    September2018 MCC092-TheMOSFET 24

    GatecapacitancePlatecapacitancebetweengateandchannel(butherewemodelitbetweengateandsource)CG=WLCoxCox≈20fF/μm2(correspondsto1.2nmeffec9veoxidethickness,tox)60nmeffec9vechannellengthyields:CG=1.2fF/μmDrain/sourceparasiGccapacitancesSameorderofmagnitudeasthegatecapacitance,CS=CD=pinvCGGenericapproachistousepinv=1forsimplicityButsome9mespinv=0.5orpinv=0.8!

    channel length,L

  • ElectricalmodelforsaturatedMOSFET(fromlecture2)

    2018-09-13 Lecture4:CMOSInverterdynamics 25

    VG VD

    VS VS

    IDSAT

    ModelforsaturatedMOSFETValidforbothnMOSandpMOStransistors

    CD CG

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 26

    ReplacetheMOSFETswiththeirequivalentelectricalcircuits!

    VIN VOUT

    VSS

    VDD

    NMOS

    ( )22N

    DSN IN TNkI V V= −

    VIN VOUT

    VSS

    CGN

    CDN

    VSS

    IDSN

    IDSN

    IDSP = −kP2VIN −VDD −VTP( )

    2

    PMOS

    VDD

    CGP

    CDP

    VDD

    IDSP

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 27

    VIN VOUT

    VSS

    VDD

    NMOS

    ( )22N

    DSN IN TNkI V V= −

    VIN VOUT

    VSS

    CGN

    CDN

    VSS

    IDSN

    IDSN

    ISDP =kP2VDD −VIN +VTP( )

    2

    PMOS

    VDD

    CGP

    CDP

    VDD

    ISDP

    ChangethesignofthepMOScurrentsothatallcurrentsareposi9ve(WealsomadethepMOSvoltagesposi9ve,althoughitisnotnecessary)

  • 2018-09-13 Lecture4:CMOSInverterdynamics 28

    Placeallcapacitorstosignalground!Bothrailsareconstantvoltages,nodV/dt

    VIN VOUT

    VSS

    VDD

    ( )22N

    DSN IN TNkI V V= −

    VIN VOUT

    VSS VSS

    IDSN

    IDSN

    ISDP =kP2VDD −VIN +VTP( )

    2

    VDD VDD

    ISDP

    CG=CGN+CGP

    Inverterinputcapacitance:CG=CGN+CGP;MOSFETgatecapacitancesadd!Inverterparasi9coutputcapacitance:CD=CDN+CDP.Draincapsalsoadd!

    Theinverteranditselectricalmodel

    CD=CDN+CDP

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 29

    EliminateVDDrailbyinser9ngpowersupplytosignalground!

    VIN VOUT

    VSS VSS

    IDSN

    Inverterinputcapacitance:CG=CGN+CGP;MOSFETgatecapacitancesadd!Inverterparasi9coutputcapacitance:CD=CDN+CDP.Draincapsalsoadd!

    VIN VOUT

    VSS

    VDD

    CG=CGN+CGP

    CD=CDN+CDP

    ISDP VDD

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 30

    ReplaceMOSFETconstant-currentsourceswiththeireffec9veresistances!

    VIN VOUT

    VSS VSS

    RN,eff

    Inverterinputcapacitance:CG=CGN+CGP;MOSFETgatecapacitancesadd!Inverterparasi9coutputcapacitance:CD=CDN+CDP.Draincapsalsoadd!

    VIN VOUT

    VSS

    VDD

    CG=CGN+CGP

    CD=CDN+CDP

    RP,eff

    VDD

    RN,eff=2kΩ.µm RP,eff=4kΩ.µm

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 31

    Toocumbersometohavedifferentriseandfalldelays! Replaceeffec9veresistanceswithoneaverageeffec9veresistance!

    VIN VOUT

    VSS VSS

    Inverterinputcapacitance:CG=CGN+CGP;MOSFETgatecapacitancesadd!Inverterparasi9coutputcapacitance:CD=CDN+CDP.Draincapsalsoadd!

    VIN VOUT

    VSS

    VDD

    CG=CGN+CGP CD=CDN+CDP

    VDD

    RN,eff=2kΩ.µm RP,eff=4kΩ.µm

    Reff=3kΩ.µmW=1

    W=1

  • Theinverteranditselectricalmodel

    2018-09-13 Lecture4:CMOSInverterdynamics 32

    Toocumbersometohavedifferentriseandfalldelays! Replaceeffec9veresistanceswithoneaverageeffec9veresistance!

    VIN VOUT

    VSS VSS

    RN,eff=2kΩ.µm

    Inverterinputcapacitance:CG=CGN+CGP;MOSFETgatecapacitancesadd!Inverterparasi9coutputcapacitance:CD=CDN+CDP.Draincapsalsoadd!

    VIN VOUT

    VSS

    VDD

    CG=CGN+CGP CD=CDN+CDP

    VDD

    Orevenbe^er!Designtheinverterforequaleffec9veresistances,RP,eff=RN,eff,bymakingp-channelMOSFETtwiceaswideasthen-channel

    MOSFETtocompensateforthelowerholemobility W=2

    W=1

  • Invertercapacitances

    2018-09-13 Lecture4:CMOSInverterdynamics 33

    VIN VOUT

    VSS

    VDD

    VIN VOUT

    VSS VSS

    CG=3.6fF/µm CD=pinvCG VDD

    W=2

    W=1

    Task:CalculateCGandCDwithpMOSFETistwiceaswideasnMOSFETexpressedinthewidthofthenMOStransistor.

    Answer:AssumingL=60nmandCox=20fF/µm2weobtainCGN=1.2fF/µmandCGP=2.4fF/µm.HenceCG=3.6fF/µm.ConcerningCDweassumeCD=pinvCG=3.6fF/µmwithpinv=1.

    RN,eff=2kΩ.µm

    Weno9cethatCG×RN,effisaconstant.Itwillsoonreturn!

  • Morethanoneinverter

    2018-09-13 Lecture4:CMOSInverterdynamics 34

  • Inverterpairdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 35

    Reff

    VDD

    Task:Calculatetheinverterpairdelay!

  • Inverterpairdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 36

    CG

    Reff

    VDD

    Putonyour“two-portglasses”andlooktowardstheloadinginverter!Youwillonlyseetheinputcapacitanceoftheloadinginverter

  • Inverterpairdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 37

    Reff

    CD

    VDD

    CD

    Haveyour“two-portglasses”onandlooktowardsthedrivinginverter!Youwillseeavoltagesourcewithacertainsourceresistance,andyouwillsee

    theparasi&ccapacitanceoftheloadinginverter

  • Inverterpairdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 38

    Reff

    VDD

    Inanidealinverterthe9meconstanttauisreallywhatthenamesays,aconstant;Itisindependentofinvertersize(aslongasWP/WN=2).

    CG

    CD

    Propaga9ondelay:( ) ( )0.7 0.7 1 5 ps 2 10 pspd eff D G eff G invt R C C R C p= + = + = × =

    Alldelaycalcula9onsaremadewrttothistechnology9meconstanttau(𝜏)

    ( ) ( )0.7 0.7 2 k µm 3.6 / µm 5 pseff GR C fFτ = = × Ω× × =

  • Inverterpairdelay

    2018-09-13 Lecture4:CMOSInverterdynamics 39

    Reff

    VDD

    Propaga9ondelay:( ) ( )0.7 0.7 1 5 ps 2 10 pspd eff D G eff G invt R C C R C p= + = + = × =

    Alldelaycalcula9onsaremadewrttothistechnology9meconstanttau(𝜏)

    ( ) ( )0.7 0.7 2 k µm 3.6 / µm 5 pseff GR C fFτ = = × Ω× × =

    Equivalentelectricalcircuitforpropaga9ondelaycalcula9ons

    CG

    CD

    VOUT

  • Importantconcept

    2018-09-13 Lecture4:CMOSInverterdynamics 40

    Thetechnology9meconstanttau,𝜏:

    ⌧ = 0.7Re↵CG

  • Quiz9me!

    2018-09-13 Lecture4:CMOSInverterdynamics 41

    – Gotosocra9ve.com– SelectStudentlogin– Gotoroom:“MCC0922018”

  • InverterFO4delay

    2018-09-13 Lecture4:CMOSInverterdynamics 42

    TheFO4propaga9ondelayinour65nmprocess:

    t pd = 0.7Reff CD + 4CG( ) = 0.7ReffCGtau

    ! "# $#p+ 4( ) = 5 ps×5= 25 ps

    X1

    X1

    X1

    Reff

    CD

    VDD

    X1X1

    CG

    CG

    CG

    CG

    Oneinverterdrives4iden9calinverters

  • NormalizedFO4delay

    2018-09-13 Lecture4:CMOSInverterdynamics 43

    ⌧ = 0.7Re↵CG

    tpd = (pinv + 4)⌧ ⇡ 5⌧Normalizeddelaymeansnormalizedto𝜏

    X1

    X1Reff CD

    VDD

    X1X1

    CG

    CG

    CG

    CG

    d ⌘ tpd⌧

    d ⇡ 5SoFO4normalizeddelay:

    X1

  • Importantconcept

    2018-09-13 Lecture4:CMOSInverterdynamics 44

    Thenormalizeddelay,d:

    d ⌘ tpd⌧

    Wheretau,𝜏,isthetechnology9meconstant,𝜏

  • FO4delaytrendsvs.featuresize

    2018-09-13 Lecture4:CMOSInverterdynamics 45

    1µm 1/4µm 0.13µm 65nm 22nm0.5µm 32nm

  • Microprocessorcycle9metrends

    2018-09-13 Lecture4:CMOSInverterdynamics 46

    From Weste & Harris.

  • InverterSize

    •  Inmostvendorcelllibraries,invertersandotherlogicgatescomeinanumberofdifferentvarie9esconcerningtheirdrivingcapability(Reff)andinputcapacitance(CG).

    •  Inthefollowingallinvertersandlogicgatesofacertainsize,e.g.sizeX=8,willhavethesameinputcapacitance,and,asanexample,thisinputcapacitancewillbeonlyhalftheinputcapacitanceofagateofsizeX=16.

    2018-09-13 Lecture4:CMOSInverterdynamics 47

  • Minimizingdelaythroughmul9pleinverters

    2018-09-13 Lecture4:CMOSInverterdynamics 48

  • Pathdefini9ons

    2018-09-13 Lecture4:CMOSInverterdynamics 49

    Reff/x1 Reff Reff/x2 CL=HC

    x1C x2C Histhepathelectricaleffort C

    Pathelectricaleffort:H=CL/CINStageelectricaleffortorfanoutforinvertern:hn=CINn+1/CINn=xn+1/xnNormalizeddelayforinvertern:dn=hn+pinvNormalizedpathdelaywithNstages:D=N×pinv+h1+h2+…+hN

  • Thetaperedbufferwith3stages

    2018-09-13 Lecture4:CMOSInverterdynamics 50

    Referenceinverter... andtwoinsertedbufferinverters

    C

    Normalized path delay: D = 3 pinv + h1 + h2 + h3 where h1=x1, h2=x2/x1 and h3=H/x2. But only h1 and h2 are independent variables, h3 becomes h3=H/h1h2:

    D = 3 pinv + h1 + h2+ H/h1h2

    Show that minimum delay is obtained for h1=h2=3√H, which gives:

    Dmin = 3 pinv + 3 × 3√H

    Sizex1 Size=1 Sizex2

    Reff/x1 Reff Reff/x2 CL=HC

    x1C x2C Histhepathelectricaleffort

    Hint: ddh1D h1,h2( ) = 0, and

    ddh2

    D h1,h2( ) = 0

    yields h1 = h2 and h3 = H / h1h2 → h = h1 = h2 =h3 = H3

  • ExamplewithpathelectricaleffortH=64

    Thetaperedbufferwith3stages

    2018-09-13 Lecture4:CMOSInverterdynamics 51

    Referenceinverter... andtwoinsertedbufferinverters

    C

    Normalized path delay: D = 3 pinv + h1 + h2 + h3 where h1=x1, h2=x2/x1 and h3=H/x2. But only h1 and h2 are independent variables, h3 becomes h3=H/h1h2:

    D = 3 pinv + h1 + h2+ H/h1h2 Example: H = 64

    Minimum delay is obtained for h1=h2=3√64=4 gives D = 3(pinv+4)=15 with pinv=1

    Sizex1=4 Size=1 Sizex2=16

    Reff/4 Reff Reff/16 CL=64C

    4C 16C

  • ThetaperedbufferwithNstages

    •  Whatifthepathelectricaleffort,forsomereason,isverylarge,e.g.H=4096.

    •  Howmanyinverters,N,areneededtominimizethedelay?

    2018-09-13 Lecture4:CMOSInverterdynamics 52

    CL=HC C

    Size=1 LargepathelectricaleffortH=4096=212

    MinimumpathdelayD=N(pinv+h)?DeterminebestNandh!

  • Besth&N?

    •  Op9malhwithpinv=0canbeshownanaly9callytobeh=e=2.72forNopt=ln(H)

    •  Withlargerpinvnumericalsolu9ongivesh≈4– ThatiswhytheFO4delayissoimportant!

    •  Theminimumis,soabitlargerhdoesonlyincreasedelaymarginallyandsubstanciallysmallerarea

    2018-09-13 Lecture4:CMOSInverterdynamics 53

  • Quickques9on

    •  Ifyouweretodesignataperedbufferwheretheloadcapacitanceis15009meslargerthantheinputcapacitance,andyouarenotallowedtoinvertthesignal,howmanyinverterswouldyouchoose?

    •  Whatwouldbetheresul9ngnormalizeddelayforthebuffer?

    2018-09-13 Lecture4:CMOSInverterdynamics 54

  • H-treeclockdistribu9on

    2018-09-13 Lecture4:CMOSInverterdynamics 55

    x3 x3

    x2

    x1

    x2

    x2

    x2

    x3

    x3x3 x3x3

    x3

    x3x3 x3x3

    x3 x3 x3 x3

    b2 b2

    b2 b2

    b1

    CL

    CL

    CL

    CL

    CL

    CL

    CL

    CL

    CL CL CL CL

    CL CL CL CL

    CIN

  • H-treeclockdistribu9on•  Whatisthe9mingpathelectricaleffort?•  WhatsizestochooseforinvertersintheH-tree?

    2018-09-13 Lecture4:CMOSInverterdynamics 56

    Criticalpathpropagationdelay

    b1 b2

    x2

    x2

    x2

    x2

    x3

    x3

    x3

    x1

    CL

    CL

    CL

    CL

    x3

    CIN

  • Shortsummary

    2018-09-13 Lecture4:CMOSInverterdynamics 57

    0.7 DDpd LDSAT

    Vt CI

    = t pd = 0.7CLReff

    ⌧ = 0.7Re↵CG

    Thetechnology9meconstant,tau

    Theinverterpropaga9ondelay,witheffec9veresistance

    Thenormalizeddelay

    Normalizedinverterpairdelay Normalizedfanout-of-four(FO4)delay

    TaperedbufferwithpathfanoutHandNstages(Disnormalizedpathdelay)

    Dmin

    = N(pinv

    + hopt

    )hopt

    =NpH

    d = pinv + 1 d = pinv + 4

    d ⌘ tpd⌧

    Op9malhisaround4

  • Longsummary•  Definedriseandfalldelaysatthe50%level(VDD/2)andriseandfall9mesbetween

    20%and80%levels•  Calculatedpropaga9ondelayinresponsetoasquare-waveinputsignalassuming

    MOSFETsbeingsaturatedduringdelay•  Improvedthedelaymodelbyadding40%

    –  assumingarampinputsignaland–  assumingequalinputandoutputedgerates

    •  Replacedsatura9oncurrentsourcesbyeffec9veresistances•  MadethepMOSFETtwiceaswidetocompensateforlowerholemobility

    –  BothMOSFETsnowhavethesameeffec9veresistanceof2kΩ.µm–  However,p-channeldevicenowhastwicetheinputcapacitanceofthen-channelMOSFET

    •  Obtainedanelectricaltwo-portmodeloftheinverterfordelaycalcula9ons–  weknowwhatthismodellookslikeseenfromtheinputport,andseenfromtheoutputport

    •  CalculatedtheFO4delay,andwefoundtheReffCGproductbeingindependentoftheinvertersize(aslongaswekeepsamera9obetweenWPandWN)

    •  Introducedtechnology9meconstant,tau,andnormalizeddelay,d•  Foundbestinvertersizesofataperedinverterbufferforminimumdelay.Fanouth=

    4istheop9mum.

    2018-09-13 Lecture4:CMOSInverterdynamics 58