lecture 4: synthetic aperture radar (sar)

25
1 ajf 2/16/2010 MIT Lincoln Laboratory Synthetic Aperture Radar (SAR) Imaging using the MIT IAP 2011 Laptop Based Radar* Presented at the 2011 MIT Independent Activities Period (IAP) *This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government. Gregory L. Charvat, PhD MIT Lincoln Laboratory 24 January 2011

Upload: vantu

Post on 10-Feb-2017

246 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Lecture 4: Synthetic Aperture Radar (SAR)

1

ajf 2/16/2010

MIT Lincoln Laboratory

Synthetic Aperture Radar (SAR) Imaging

using the MIT IAP 2011 Laptop Based

Radar*

Presented at the 2011 MIT Independent Activities Period (IAP)

*This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions,

interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the

United States Government.

Gregory L. Charvat, PhD

MIT Lincoln Laboratory

24 January 2011

Page 2: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory2

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 3: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory3

ajf 2/16/2010

• Similar to a camera, larger the aperture the more energy collected

• For a parabolic antenna, the „dish‟ is the aperture

• Larger the „dish‟ the greater the gain compared to isotropic (ideal point radiator) providing increased signal-to-noise (SNR).

• Larger the dish the narrower the half-power beamwidth providing greater angular resolution.

Isotropic (point

radiator) power

density

Angle (deg)

Isotropic Level

Peak Gain

Radiation

pattern

Antenna Aperture

Aperture

Length

Page 4: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory4

ajf 2/16/2010

Plan Position Indicator (PPI)

• Contemporary radar system

• Rotate a large aperture for a PPI (angle vs. range) image

– angular resolution depends on aperture size

– gain depends on aperture size

(targets)

target

positions

plotted on

screen

rotating

antenna

Page 5: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory5

ajf 2/16/2010

PPI Radar for Ground Mapping: H2S

• Cloudy skies above western Europe

• RAF bombing at night complicating navigation

• H2S ground mapping radar solved problem [1]

– navigation and bomb laying

– could map out where cities were located

– later versions could map out cities

Radome mounted on

bottom of a Halifax

Radome & Antenna

Radar image of ColognePublic domain photos.See http://en.wikipedia.org/wiki/H2S_radar

Page 6: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory6

ajf 2/16/2010

Array Factor:

Angle (deg)R

ela

tive

Am

pli

tud

e (

dB

)

Scan = 0/2

Antenna Aperture and Arrays

Element Spacing = /2Linear Array

=wavelength

Antenna Elements

• Longer the array the more elements

• More elements provides more gain providing greater SNR

• More elements reduces 3 dB beamwidth providing higher resolution

Aperture Length

Page 7: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory7

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 8: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory8

ajf 2/16/2010

Synthetic Aperture Radar (SAR)

• Small antenna on aircraft illuminates large swaths of ground

• Range profiles recorded along flight path

• SAR algorithm processes data into image of ground [2]

– thereby synthesizing an aperture the length of the aircraft flight path

– narrow beamwidth, high resolution and gain

flight path flight path vs range data

SAR imaging algorithm

resulting image of ground

scattering from

target scene below

recorded along

flight path

Page 9: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory9

ajf 2/16/2010

Real-Time Imaging SAR Algorithm

• Range Migration Algorithm (RMA) [2]

• Used for stripmap SAR imaging

• Accounts for wave front curvature

– the synthesized aperture is large compared to target scene

Flight Path vs. Range Data

Hilbert Transform

Calibration Matrix

Matched Filter

Stolt Transform

2D IDFT

resulting image

Page 10: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory10

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 11: Lecture 4: Synthetic Aperture Radar (SAR)

LiMIT Ultra-Wideband X-Band SAR2.5 in × 2.5 in Resolution (3.0 GHz)

Sierra Vista, AZ, August 18, 2005

260 m Cross Range cutout (2 km swath)MIT Lincoln Laboratory

Radar CourseBenitz_11

Aerial Photo

Lincoln Multi-mission ISR Testbed (LiMIT)

Phased-Array Antenna

160

mR

ange

cut

out (

400

msw

ath)

G. R. Benitz, „Synthetic Aperture Radar (SAR),‟ MIT Lincoln Laboratory, 2007.

Page 12: Lecture 4: Synthetic Aperture Radar (SAR)

Sierra Vista, AZ, August 18, 2005

160

mR

ange

cut

out (

400

msw

ath)

260 m Cross Range cutout (2 km swath)MIT Lincoln Laboratory

Radar CourseBenitz_12

LiMIT Ultra-Wideband X-Band SAR2.5 in × 2.5 in Resolution (3.0 GHz)

G. R. Benitz, „Synthetic Aperture Radar (SAR),‟ MIT Lincoln Laboratory, 2007.

Page 13: Lecture 4: Synthetic Aperture Radar (SAR)

LiMIT Ultra-Wideband X-Band SAR2.5 in × 2.5 in Resolution (3.0 GHz)

Sierra Vista, AZ, August 18, 2005

260 m Cross Range cutout (2 km swath)MIT Lincoln Laboratory

Radar CourseBenitz_13

(Aerial Photo)

160

mR

ange

cut

out (

400

msw

ath)

G. R. Benitz, „Synthetic Aperture Radar (SAR),‟ MIT Lincoln Laboratory, 2007.

Page 14: Lecture 4: Synthetic Aperture Radar (SAR)

LiMIT Ultra-Wideband X-Band SAR2.5 in × 2.5 in Resolution (3.0 GHz)

Sierra Vista, AZ, August 18, 2005

260 m Cross Range cutout (2 km swath)MIT Lincoln Laboratory

Radar CourseBenitz_14

(Aerial Photo)

160

mR

ange

cut

out (

400

msw

ath)

G. R. Benitz, „Synthetic Aperture Radar (SAR),‟ MIT Lincoln Laboratory, 2007.

Page 15: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory15

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 16: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory16

ajf 2/16/2010

• FMCW Radar moved down linear rail

• Range profiles acquired along rail

• SAR algorithm synthesizes aperture to form high resolution image

Linear Rail SAR

radar sensorrail

motor drive

computer for

recording data

and processing

SAR imageresulting image

target scene

Page 17: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory17

ajf 2/16/2010

Rail SAR example: Backyard SAR

Block DiagramLinear Rail Radar Sensor

Data Acquisition

and Rail ControlAircraft Models Placed on

Styrofoam Table

http://blog.makezine.com/archive/2010/06/how-to_build_a_synthetic_aperture_r.htmlhttp://hackaday.com/2010/06/17/x-band-linear-rail-sar-imaging/http://hardware.slashdot.org/story/10/06/18/1350259/DIY-Synthetic-Aperture-Radarhttp://www.popsci.com/diy/article/2010-06/diy-synthetic-aperture-radar-system-250

G. L. Charvat. "Low-Cost, High Resolution X-Band Laboratory Radar System for Synthetic Aperture Radar Applications." Austin Texas: Antenna MeasurementTechniques Association conference, October 2006.

G. L. Charvat, L. C. Kempel. “Low-Cost, High Resolution X-Band Laboratory Radar System for Synthetic Aperture Radar Applications.” East Lansing, MI: IEEEElectro/Information Technology Conference, May 2006.

Page 18: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory18

ajf 2/16/2010

20 cm

1:32 Scale F141:48 Scale B52

Backyard SAR Imagery

Imagery of aircraft placed on Styrofoam table

Page 19: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory19

ajf 2/16/2010

Backyard SAR Imagery

5.0 Mustang on radar

Cannondale M300

Page 20: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory20

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 21: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory21

ajf 2/16/2010

IAP SAR Geometry and Processing

• implement rail SAR by manually moving radar down straight path

• record range profiles incrementally every 2”

• process with SAR_image.m

laptop

measuring tape

IAP radar

target scene of

your choice

record range

profiles every 2”

audio out to laptop

Page 22: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory22

ajf 2/16/2010

Example: SAR image of Back of Warehouse using IAP „11 Radar

Page 23: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory23

ajf 2/16/2010

Outline

• Aperture, Antennas, and Arrays

• Synthetic Aperture Radar (SAR)

• Airborne SAR

• Rail SAR

• SAR using the MIT IAP Radar

• Homework

Page 24: Lecture 4: Synthetic Aperture Radar (SAR)

MIT Lincoln Laboratory24

ajf 2/16/2010

Homework

• Use the MIT IAP radar to make SAR imagery of one or more interesting target scenes of your choice

• Discussion of your imagery during final class on 1/28/11

References

[1] B. Lovell, Echoes of War: The Story of H2S Radar, Taylor & Francis Group, New York,NY, 1991.

[2] W.G. Carrara, R.S. Goodman, and R.M. Majewski, Spotlight Synthetic Aperture RadarSignal Processing Algorithms, Artech House, Boston, MA, 1995.

[3] G. L. Charvat, “A Low-Power Radar Imaging System,” Ph.D. dissertation, Deptartmentof Electrical and Computer Engineering, MichiganState University, East Lansing, MI,2007.

Page 25: Lecture 4: Synthetic Aperture Radar (SAR)

MIT OpenCourseWare http://ocw.mit.edu

Resource: Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar Imaging Dr. Gregory L. Charvat, Mr. Jonathan H. Williams, Dr. Alan J. Fenn, Dr. Steve Kogon, Dr. Jeffrey S. Herd

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.