lecture 20 - university of michigan · 2019-08-07 · web lecture 20 class lecture 16-thursday...

46
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 20

Upload: others

Post on 10-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of

chemical reactions and the design of the reactors in which they take place.

Lecture 20

Page 2: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Fi0∑ Ui0 + P0 !Vi0!" #$

Hi0" #$ %$− Fi∑ Ui + P !Vi#$ %&

Hi" #$ %$+ &Q − &WS =

dEsysdt

Fi0∑ Hi0 − Fi∑ Hi +!Q − !WS =

dEsysdt

Last Lecture Energy Balance Fundamentals

2

Substituting for !W

∑∑ =−+− 000 iiiiS HFHFWQ !!

dtdE

WQEFEF sysiiii =−+−∑∑ 00

!!

Page 3: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Web Lecture 20 Class Lecture 16-Thursday 3/14/2013

3

�  Reactors with Heat Exchange �  User friendly Energy Balance Derivations

� Adiabatic � Heat Exchange Constant Ta � Heat Exchange Variable Ta Co-current � Heat Exchange Variable Ta Counter Current

Page 4: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

The feed consists of both - Inerts I and Species A with the ratio of inerts I to the species A being 2 to 1.

A B€

FA0

FI

 Elementary liquid phase reaction carried out in a CSTR

4

Adiabatic Operation CSTR

Page 5: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Adiabatic Operation CSTR

5

�  Assuming the reaction is irreversible for CSTR, A → B, (KC = 0) what reactor volume is necessary to achieve 80% conversion?

�  If the exiting temperature to the reactor is 360K, what is the corresponding reactor volume?

� Make a Levenspiel Plot and then determine the PFR reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.

� Now assume the reaction is reversible, make a plot of the equilibrium conversion as a function of temperature between 290K and 400K.

Page 6: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

1) Mole Balances: exitA

0A

rXFV

−=

6

CSTR: Adiabatic Example

A B€

FA0

FI

 

Δ𝐻↓𝑅𝑥𝑛 =−20000𝑐𝑎𝑙/𝑚𝑜𝑙  𝐴  (exothermic)

𝑇=  ?�𝑋=  ?

𝐹↓𝐴0 =5𝑚𝑜𝑙/𝑚𝑖𝑛  𝑇↓0 =300  𝐾 𝐹↓𝐼 =10𝑚𝑜𝑙/𝑚𝑖𝑛 

Page 7: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ=

=

⎥⎦

⎤⎢⎣

⎡−=−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

T1

T1

RHexpKK

ekk

KCCkr

2

Rx1CC

T1

T1

RE

1

C

BAA

1

2) Rate Laws:

( )

XCC

X1CC

0AB

0AA

=

−=3) Stoichiometry:

7

CSTR: Adiabatic Example

Page 8: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

4) Energy Balance Adiabatic, ∆Cp=0

( ) ( )

( )( )( )

X36164000,20300X

182164000,20300T

CCXHT

CXHTT

IAi PIP

Rx0

Pi

Rx0

++=⎥

⎤⎢⎣

+

−−+=

Θ+

Δ−+=

Θ∑

Δ−+=

X 100300T +=

8

CSTR: Adiabatic Example

Page 9: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Irreversible for Parts (a) through (c)

( ) )K (i.e., X1kCr C0AA ∞=−=−

(a) Given X = 0.8, find T and V

Given X Calc⎯ → ⎯ T Calc⎯ → ⎯ k Calc⎯ → ⎯ −rACalc⎯ → ⎯ V

Calc KC(if reversible)

9

CSTR: Adiabatic Example

Page 10: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )

( )

( )( )( )( )( )

3

A

0A

0A

0A

exitA

0A

dm 82.28.01281.3

8.05rXFV

81.3380

12981

989.1000,10exp1.0k

K3808.0100300T

X1kCXF

rXFV

=−

=−

=

=⎥⎦

⎤⎢⎣

⎡ −=

=+=

−=

−=

Given X, Calculate T and V

10

CSTR: Adiabatic Example

Page 11: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

(b) VrkTXGiven CalcA

CalcCalcCalc ⎯⎯→⎯−⎯⎯→⎯⎯⎯→⎯⎯⎯→⎯

CK Calc(if reversible)

( )

( )( )( )( )( )

3

1

0

05.24.0283.1

6.05min83.1

6.0100

300360

ble)(Irreversi 1

dmV

k

TX

KTXkCr AA

==

=

=−

=

=

−=−

Given T, Calculate X and V

11

CSTR: Adiabatic Example

Page 12: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

(c) Levenspiel Plot

( )X1kCF

rF

0A

0A

A

0A

−=

Choose X Calc⎯ → ⎯ T Calc⎯ → ⎯ k Calc⎯ → ⎯ −rACalc⎯ → ⎯

FA0

−rA

X100300T +=

12

CSTR: Adiabatic Example

Page 13: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

(c) Levenspiel Plot

13

CSTR: Adiabatic Example

Page 14: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0/Ra

CSTR 95%

CSTR X = 0.95 T = 395 K

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0/Ra

CSTR 60%

CSTR X = 0.6 T = 360 K

14

CSTR: Adiabatic Example

Page 15: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

PFR X = 0.6

PFR X = 0.95

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0/Ra

PFR 60%

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

-Fa0/Ra

PFR 95%

15

CSTR: Adiabatic Example

Page 16: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

CSTR X = 0.6 T = 360 V = 2.05 dm3

PFR X = 0.6 Texit = 360 V = 5.28 dm3

CSTR X = 0.95 T = 395 V = 7.59 dm3

PFR X = 0.95 Texit = 395 V = 6.62 dm3

16

CSTR: Adiabatic Example - Summary

Page 17: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )

( )

⎥⎦

⎤⎢⎣

⎡+−=

=−+−

=Δ−+−

∑∑∑

∑∑ Δ+

dVdF

HdVdH

FdV

HFd

TTUadV

HFd

VTTUaHFHF

ii

ii

ii

aii

aVViiVii

0

0

Energy Balance in terms of Enthalpy

17

Page 18: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )RPiii TTCHH −+= 0

dVdTC

dVdH

Pii =

( )

xRii

AiiPiiii

HH

rHdVdTCF

dVHFd

Δ=

⎥⎦

⎤⎢⎣

⎡ −+−=−

∑ ∑∑

υ

υ

PFR Heat Effects

18

( )Aiii rr

dVdF

−== υ

Page 19: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

− CPiFi∑ dTdV

+ΔHRx −rA( )$

%&'

()+Ua Ta −T( ) = 0

Fi∑ CPidTdV

= ΔHRxrA −Ua T −Ta( )

dTdV

=ΔHRx( ) −rA( )−Ua T −Ta( )

Fi∑ CPi

19 Need to determine Ta

PFR Heat Effects

Page 20: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Heat Exchange:

( )( ) ( )iPi

aRxA

CFTTUaHr

dVdT

−−Δ−−=

dTdV

=−rA( ) −ΔHRx( )−Ua T −Ta( )

FA0 ∑ΘiCPi

20 Need to determine Ta

Page 21: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Energy Balance:

Adiabatic (Ua=0) and ΔCP=0

( ) )A16( C

XHTTiPi

Rx0 Θ∑

Δ−+=

Heat Exchange Example: Case 1 - Adiabatic

21

Page 22: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

A.  Constant Ta e.g., Ta = 300K

( ))17( 0 , CTTV

CmTTUa

dVdT

aoaP

aa

cool

==−

=!

B. Variable Ta Co-Current

C. Variable Ta Counter Current ( ) Guess ? 0 ==

−= a

P

aa TVCm

TTUadVdT

cool!

Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations

22

Page 23: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Coolant Balance:

In - Out + Heat Added = 0

( )

( ) 0

0

=−+−

=−Δ+−Δ+

aC

C

aVVCCVCC

TTUadVdH

m

TTVUaHmHm

!

!!

Heat Exchanger Energy Balance Variable Ta Co-current

( )

dVdTC

dVdH

TTCHH

aPC

C

raPC0CC

=

−+=

23

( )0 0 , aa

PCC

aa TTVCmTTUa

dVdT

==−

=!

Page 24: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

In - Out + Heat Added = 0

24

( )

( )

( )

0

0

PCC

aa

aC

C

aVCCVVCC

CmTTUa

dVdT

TTUadVdH

m

TTVUaHmHm

!

!

!!

−=

=−+

=−Δ+−Δ+

Heat Exchanger Energy Balance Variable Ta Counter-current

Page 25: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1.

25

FA0 FI

Ta cm!

Heat Exchange Fluid

A⇔ BT

Heat Exchanger – Example Case 1 – Constant Ta

Page 26: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

T1

T1

REexpkk )3(

11

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ=

T1

T1

RHexpKK )4(

2

Rx2CC

FrdVdX )1( 0AA−=1) Mole Balance:

⎥⎦

⎤⎢⎣

⎡−−=

C

BAA K

CCkr )2(2) Rate Laws:

26

Heat Exchanger – Example Case 1 – Constant Ta

Page 27: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )0CP =Δ

( ) ( )

( )6 XCC

5 X1CC

0AB

0AA

=

−=3) Stoichiometry:

( )9 CCC PIIPAPii θ+=θ∑

( )8 k1

kXC

Ceq +=

4) Heat Effects: ( )( ) ( ) ( )7 0∑

−−−Δ=

PiiA

aAR

CFTTUarH

dVdT

θ

Heat Exchanger – Example Case 1 – Constant Ta

27

Page 28: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Parameters:

A

IPIPAA

AaC

R

rrateCCC

FTUakkTTREH

−=

Δ

, , , ,, , , , ,

, , , , ,

0

021

21

θ

Heat Exchanger – Example Case 1 – Constant Ta

28

Page 29: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Pii

rg

CFQQ

dVdT

∑−

=

Heat removed

Heat generated

FiCPi =∑ FA0 θi +υiX( )CPi = FA0∑ θiCPi +ΔCPX∑#$ %&

dTdV

=ΔHR( ) rA( )−Ua T −Ta( )FA0 θiCPi +ΔCPX∑$% &

'

PFR Heat Effects

29

Page 30: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Energy Balance:

Adiabatic and ΔCP=0 Ua=0

( ) )A16( C

XHTTiPi

Rx0 Θ∑

Δ−+=

Additional Parameters (17A) & (17B)

IAi PIPPi0 CCC ,T Θ+=Θ∑30

Mole Balance:

dXdV

=−rAFA 0

Heat Exchanger – Example Case 2 – Adiabatic

Page 31: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

31

Adiabatic PFR

Page 32: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Find conversion, Xeq and T as a function of reactor volume

V

rate

V

T

V

X X

Xeq

Example: Adiabatic

32

Page 33: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )( ) ( )iPi

aRxA

CFTTUaHr

dVdT

−−Δ−−=

( )( ) ( ) )B16( CF

TTUaHrdVdT

iPi0A

aRxA

Θ∑

−−Δ−−=

Heat Exchange

33 Need to determine Ta

Page 34: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

A. Constant Ta (17B) Ta = 300K

Ua ,C ,TiPia Θ∑

Additional Parameters (18B – (20B):

( ) )17( 0 CTTVCmTTUa

dVdT

aoaP

aa

cool

==−

=!

B. Variable Ta Co-Current

C. Variable Ta Countercurrent

( ) ? 0 ==−

= aP

aa TVCm

TTUadVdT

cool!

Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations

34

Page 35: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Coolant balance:

In - Out + Heat Added = 0

( )

( ) 0

0

=−+−

=−Δ+−Δ+

aC

C

aVVCCVCC

TTUadVdHm

TTVUaHmHm

!

!!

( )

dVdTC

dVdH

TTCHH

aPC

C

raPC0CC

=

−+=All equations can be used from before except Ta parameter, use differential Ta instead, adding mC and CPC

Heat Exchange Energy Balance Variable Ta Counter-current

35

( )0 0 , aa

PCC

aa TTVCmTTUa

dVdT

==−

=!

Page 36: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

In - Out + Heat Added = 0

All equations can be used from before except dTa/dV which must be changed to a negative. To arrive at the correct integration we must guess the Ta value at V=0, integrate and see if Ta0 matches; if not, re-guess the value for Ta at V=0

36

( )

( ) ( )PCC

aaa

CC

aVCCVVCC

CmTTUa

dVdTTTUa

dVdHm

TTVUaHmHm

!!

!!

−==−+

=−Δ+−Δ+

0

0

Heat Exchange Energy Balance Variable Ta Co-current

Page 37: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( ) 0HFHFdWTTUaii0i0ia

W

0 B

=−+−ρ ∑∑∫

( ) 0dWdHFH

dWdF0TTUa i

iii

aB

=−−+−ρ ∑∑

Differentiating with respect to W:

37

Derive the user-friendly Energy Balance for a PBR

Page 38: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

⎟⎠⎞⎜

⎝⎛ ʹ′−υ=ʹ′= Aii

i rrdWdF

Mole Balance on species i:

( ) ∫+= οT

TPiRii

R

dTCTHH

Enthalpy for species i:

38

Derive the user-friendly Energy Balance for a PBR

Page 39: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Differentiating with respect to W:

dWdTC0

dWdH

Pii +=

( ) 0dWdTCFHrTTUa

PiiiiAaB

=−υʹ′+−ρ ∑∑

39

Derive the user-friendly Energy Balance for a PBR

Page 40: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( ) 0dWdTCFHrTTUa

PiiiiAaB

=−υʹ′+−ρ ∑∑

( )THH Rii Δ=υ∑( )XFF ii0Ai υ+Θ=

Final Form of the Differential Equations in Terms of Conversion:

A:

40

Derive the user-friendly Energy Balance for a PBR

Page 41: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

Final form of terms of Molar Flow Rate:

( )

Pii

AaB

CF

HrTTUa

dWdT

Δʹ′+−ρ

=

B: ( )T,Xg

Fr

dWdX

0A

A =ʹ′−

=

41

Derive the user-friendly Energy Balance for a PBR

Page 42: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

The rate law for this reaction will follow an elementary rate law.

DCBA +⇔+

⎟⎟⎠

⎞⎜⎜⎝

⎛−=−

C

DCBAA K

CCCCkr

Where Ke is the concentration equilibrium constant. We know from Le Chaltlier’s law that if the reaction is exothermic, Ke will decrease as the temperature is increased and the reaction will be shifted back to the left. If the reaction is endothermic and the temperature is increased, Ke will increase and the reaction will shift to the right.

42

Reversible Reactions

Page 43: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

( )δ=RTKK P

C

Van’t Hoff Equation:

( ) ( ) ( )2

RPRR2

RP

RTTTCTH

RTTH

dTKlnd −Δ+Δ

=ο

43

Reversible Reactions

Page 44: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

For the special case of ΔCP=0

Integrating the Van’t Hoff Equation gives:

( ) ( ) ( )⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

Δ=

ο

21

RR1P2P T

1T1

RTHexpTKTK

44

Reversible Reactions

Page 45: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

endothermic reaction

exothermic reaction

KP

T

endothermic reaction

exothermic reaction

Xe

T

45

Reversible Reactions

Page 46: Lecture 20 - University of Michigan · 2019-08-07 · Web Lecture 20 Class Lecture 16-Thursday 3/14/2013 3 ! Reactors with Heat Exchange ! User friendly Energy Balance Derivations

46

End of Lecture 20