lecture 2 - university of california, berkeleyee290d/fa13/lecturenotes/lecture2.pdf · lecture 2...

20
Lecture 2 Short-Channel MOSFET Electrostatics MOSFET Performance Metrics Short-Channel Effects Reading: - Taur & Ning, “Fundamentals of Modern VLSI Devices,” Cambridge Univ. Press, 1998. - multiple research articles (reference list at the end of this lecture) Courtesy of V. Moroz (Synopsys) 9/9/2013 1 Nuo Xu EE 290D, Fall 2013

Upload: phamliem

Post on 05-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Lecture 2• Short-Channel MOSFET Electrostatics

– MOSFET Performance Metrics– Short-Channel Effects

Reading: - Taur & Ning, “Fundamentals of Modern VLSI Devices,”

Cambridge Univ. Press, 1998.- multiple research articles (reference list at the end of this lecture)

Courtesy of V. Moroz (Synopsys)

9/9/2013 1Nuo Xu EE 290D, Fall 2013

Simple MOSFET Performance MetricsOutput CharacteristicsTransfer Characteristics

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

0.2

0.4

0.6

0.8

1.0

1.2VGS : 0V - 1V, 0.1V step

Dra

in C

urre

nt I D

S (m

A/u

m)

VDS (V)0.0 0.2 0.4 0.6 0.8 1.0 1.2

10-9

10-8

10-7

10-6

10-5

10-4

10-3

VGS (V)

Dra

in C

urre

nt I D

S (A

/um

)

0.0

0.4

0.8

1.2

9/9/2013 2Nuo Xu EE 290D, Fall 2013

Review of Long Channel MOSFET• Threshold Voltage (VTH)

• Sub-threshold Swing (SS)

incr

easi

ng E

n(E) exp (-E/kT)

SourceDrain

Body

Gate

Drain

CoxCdep Source

9/9/2013 3Nuo Xu EE 290D, Fall 2013

Short Channel Effect (SCE)

Long Channel:

S D

DS

Short Channel:

• The smaller Lg is, the greater percentage of depletion charge balanced by the S/D PN junctions

• 1st Order Analysis

9/9/2013 4Nuo Xu EE 290D, Fall 2013

Quantitative Derivation of SCE:Yau’s Model

• Depletion charge (Qdep) reduction:

• Threshold Voltage Lowering:

• Yau’s model’s assumptions: Uses geometry relations instead of solving

Poisson’s equation Assumes channel potential is linear along lateral

(i.e. channel) direction9/9/2013 Nuo Xu           EE 290D, Fall 2013 5

L.-D. Yau, SSE (1974)

Drain Induced Barrier Lowering (DIBL)- Qualitative

6

In short-Lg MOSFET:• x- and y- components of the electric field are coupled Drain bias will affect the barrier at source/channel More band bending at given gate bias VT decreases

C. Hu, Modern Semiconductor Devices for Integrated Circuits, Figure 7-5

Long Channel

Short Channel

y

x

9/9/2013 Nuo Xu EE 290D, Fall 2013

Derivation for DIBL- A Quasi-2D Model

7

Steps:1. Develop Poisson’s equation in the channel region, including x- and y-components.

2. Solve as a function of position (y)

3. Calculate the peak of , which corresponds to VTH.

9/9/2013 Nuo Xu EE 290D, Fall 2013

Scale Length – A Simplified Knob1. Tells how closely a MOSFET approaches a “short-channel”

device.

2. Provides the guideline to scale a MOSFET while maintaining its electrostatic integrity.

e.g. for Planar Technology:

Bulk Ultra-Thin-Body Double-Gated FinFET

9/9/2013 8Nuo Xu EE 290D, Fall 2013

VTH vs. Lg Plots: SCE + DIBL

Lg

∆|VTH|

Long channel

SCE limited

DIBL limited

Increasing Vds

9/9/2013 9Nuo Xu EE 290D, Fall 2013

State-of-the-Art MOSFET’sVTH vs. Lg Plots

Intel’s 32nm Bulk Samsung’s 20nm Bulk

P. Packan, IEDM (2009) H.-J. Cho, IEDM (2011)

9/9/2013 10Nuo Xu EE 290D, Fall 2013

Sub-threshold Swing Degradation

11

• A 2-D Capacitor Network Model

DrainSource

Gate

• Impact of Lg Scaling on SS

(after Prof. M. Lundstrom)

9/9/2013 Nuo Xu EE 290D, Fall 2013

IOFF vs. ION Plots

ION

logIOFFBaseline

High Gm

ION

logIOFFBaseline

Low SS

ION

logIOFFBaseline

Combined

• Generated by “shifting” a device’s VTH under a fixed VDD• To benchmark the effectiveness of technology advancement.

9/9/2013 12Nuo Xu EE 290D, Fall 2013

Gate Induced Drain Leakage (GIDL)

13

Id vs. Vgs CharacteristicsIllustration and Band Profiles

T.-Y. Chan, IEDM (1987)

9/9/2013 Nuo Xu EE 290D, Fall 2013

Intel’s 32nm Bulk CMOSIOFF vs. ION Plots

PMOS

45nm

32nm

NMOS

45nm

32nm

P. Packan, IEDM (2009)9/9/2013 14Nuo Xu EE 290D, Fall 2013

IBM’s 20nm Bulk CMOSIOFF vs. ION Plots

NMOS PMOS

H. Shang, VLSI-T (2012)

28nm

20nm

28nm

20nm

9/9/2013 15Nuo Xu EE 290D, Fall 2013

GIDL-Limited IOFF vs. ION Plots

16

100 200 300 400 500 600 700

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

I off (

A/u

m)

Ion (uA/um)

Leff=172nm Leff=92nm Leff=62nm Leff=52nm

Vdd=1.2V

GIDL-limited

FWD Vb

9/9/2013 Nuo Xu EE 290D, Fall 2013

Narrow Width Effects

• Narrow Width Effect is caused by LOCOS process.• Reverse Narrow Width Effect is caused by STI process.• Introduce problems as transistor systematic variations.

17

Reverse Narrow Width EffectNarrow Width Effect- A “Quasi-planar” MOSFET !

9/9/2013 Nuo Xu EE 290D, Fall 2013

State-of-the-Art MOSFET’sNarrow Width Effects

Samsung’s 20nm CMOS

H.-J. Cho, IEDM (2011)

IBM’s 20nm CMOS

H. Shang, VLSI-T (2012)

• Thanks to advanced isolation techniques, narrow width effects are no longer problematic.

9/9/2013 18Nuo Xu EE 290D, Fall 2013

Summary

19199/9/2013 Nuo Xu EE 290D, Fall 2013

Id vs. Vg Id vs. Vd Vg vs. Lg IOFF vs. ION

SCEDIBLSS DegradationPunchthroughGIDLNarrow WidthEffects

• How bad a planar bulk MOSFET is, regarding electrostatics?

References

20

Short Channel Effects1. (SCE) L.-D. Yau, “A Simple Theory to Predict the Threshold Voltage of Short-Channel IGFET’s,” Solid State Electronics, Vol.17, pp. 1059-1063, 1974.2. (Scale Length) R.-H. Yan, A. Ourmazd, K.F. Lee, “Scaling the Si MOSFET: from Bulk to SOI to Bulk,” IEEE Transactions on Electron Devices, Vol. 39, Issue 7, pp. 1704-1710, 1992.3. (2D Capacitor) M. Lundstrom, “2D MOS Electrostatics,” NanoHub Online Resources at http://nanohub.org/resources/15617/download/nanoHUB-U-Lundstrom-L2.5.pdf, 2012.4. (GIDL) T.-Y. Chan, J. Chen, P. K. Ko, C. Hu, “The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling,” IEEE International Electron Devices Meeting Technical Digest, pp. 87-90, 1987.

Industry Bulk CMOS Platforms5. (Intel 32nm HP) P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier et al., “High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors,” IEEE International Electron Devices Meeting Technical Digest, pp. 659-662, 2009.6. (Samsung 20nm) H.-J. Cho, K.-I. Seo, W.C. Jeong, Y.-H. Kim, Y. D. Lim et al., “Bulk Planar 20nm High-K/Metal Gate CMOS Technology Platform for Low Power and High Performance Applications,” IEEE International Electron Devices Meeting Technical Digest, pp. 350-353, 2011.7. (IBM 20nm) H. Shang, S. Jain, E. Josse, E. Alptekin, M. H. Nam et al., “High Performance Bulk Planar 20nm CMOS Technology for Low Power Mobile Applications,” Symposium on VLSI Technology Digest, pp. 129-130, 2012.

9/9/2013 Nuo Xu EE 290D, Fall 2013