lecture 2 - section 2.2 definition of limit section 2.3...

22
Review Section 2.2 Section 2.3 Lecture 2 Section 2.2 Definition of Limit Section 2.3 Some Limit Theorems Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/jiwenhe/Math1431 Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 1 / 22

Upload: others

Post on 04-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3

Lecture 2Section 2.2 Definition of Limit

Section 2.3 Some Limit Theorems

Jiwen He

Department of Mathematics, University of Houston

[email protected]/∼jiwenhe/Math1431

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 1 / 22

Page 2: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

Graphical Introduction to Limit

limx→c

f (x) = L

In taking the limit of a function f as x approaches c , it doesnot matter whether f is defined at c and, if so, how it isdefined there.

The only thing that matters is the values that f takes onwhen x is near c .

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 2 / 22

Page 3: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

Example: limx→3

x2 − 9

x − 3= 6

Let f (x) = x2−9x−3 . Use the graph of f to find

(a) f (3) (b) limx→3−

f (x) (c) limx→3+

f (x) (d) limx→3

f (x)

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 3 / 22

Page 4: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

Example

Use the graph of f to find

(a) f (5) (b) limx→5−

f (x) (c) limx→5+

f (x) (d) limx→5

f (x)

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 4 / 22

Page 5: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

Example

Use the graph of f to find

(a) f (3) (b) limx→3−

f (x) (c) limx→3+

f (x) (d) limx→3

f (x)

(e) f (7) (f) limx→7−

f (x) (g) limx→7+

f (x) (h) limx→7

f (x)

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 5 / 22

Page 6: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

Example: limx→0

sinπ

x

Let f (x) = sin πx . Use the graph of f to find

(a) f (0) (b) limx→0−

f (x) (c) limx→0+

f (x) (d) limx→0

f (x)

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 6 / 22

Page 7: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 The Ideal of Limit Examples Theorem

An Important Theorem

Theorem

limx→c

f (x) = L

if and only if both

limx→c−

f (x) = L and limx→c+

f (x) = L

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 7 / 22

Page 8: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Definition of Limit: ε, δ statement

We say that

limx→c

f (x) = L

if for each ε > 0, there exists a δ > 0such that

if 0 < |x − c | < δ, then |f (x)− L| < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 8 / 22

Page 9: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Choice of δ Depending on the Choice of ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 9 / 22

Page 10: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Example

Which of the δ’s “works” for the given ε?

(a) δ1 (b) δ2 (c) δ3

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 10 / 22

Page 11: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Example

For which of the ε’s given does the specified δ “work”?

(a) ε1) (b) ε2 (c) ε3

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 11 / 22

Page 12: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Example: limx→2

(2x − 1) = 3

Show that limx→2

(2x − 1) = 3.

Let ε > 0. We choose δ = 12ε such that

if 0 < |x − 2| < δ, then |(2x − 1)− 3| < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 12 / 22

Page 13: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Example: limx→−1

(2− 3x) = 5

Show that limx→−1

(2− 3x) = 5.

Let ε > 0. We choose δ = 13ε such that

if 0 < |x − (−1)| < δ, then |(2− 3x)− 5| < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 13 / 22

Page 14: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Basic Limit limx→c

x = c

Show that limx→c

x = c .

Let ε > 0. We choose δ = ε such that

if 0 < |x − c | < δ, then |x − c | < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 14 / 22

Page 15: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Basic Limit limx→c

|x | = |c |

Show that limx→c

|x | = |c |.

Let ε > 0. We choose δ = ε such that

if 0 < |x − c | < δ, then ||x | − |c || < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 15 / 22

Page 16: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Basic Limit limx→c

k = k

Show that limx→c

k = k.

Let ε > 0. We can choose any number δ > 0 such that

if 0 < |x − c | < δ, then |k − k| < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 16 / 22

Page 17: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

Basic Limit limx→c

√x =

√c

Show that for c > 0,

limx→c

√x =

√c

Let ε > 0. We choose δ = min{c , ε} such that

if 0 < |x − c | < δ, then |√

x −√

c | < ε

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 17 / 22

Page 18: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Some Limit Theorems

Some Limit Theorems - Sum and Product

Theorem

If limx→c

f (x) and limx→c

g(x) each exists, then

1 limx→c

(f (x) + g(x)) = limx→c

f (x) + limx→c

g(x)

2 limx→c

(α f (x)) = α limx→c

f (x)

3 limx→c

(f (x) g(x)) = limx→c

f (x) limx→c

g(x)

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 18 / 22

Page 19: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Some Limit Theorems

Some Limit Theorems - Quotient

Theorem

If limx→c

f (x) and limx→c

g(x) each exists, then

1 if limx→c

g(x) 6= 0, then limx→c

f (x)

g(x)=

limx→c

f (x)

limx→c

g(x)

2 if limx→c

g(x) = 0 while limx→c

f (x) 6= 0,

then limx→c

f (x)

g(x)does not exist.

3 if limx→c

g(x) = 0 and limx→c

f (x) = 0,

then limx→c

f (x)

g(x)may or may not exist.

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 19 / 22

Page 20: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Some Limit Theorems

Limit of a Polynomial

Theorem

Let P(x) = anxn + · · ·+ a1x + a0 be a polynomial and c be any

number. Thenlimx→c

P(x) = P(c)

Examples

limx→−1

(2x3 + x2 − 2x − 3

)= 2(−1)3 + (−1)2 − 2(−1)− 3 = −2

limx→0

(14x5 − 7x2 + 2x + 8

)= 14(0)5 − 7(0)2 + 2(0) + 8 = 8

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 20 / 22

Page 21: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Some Limit Theorems

Limit of a Rational Function

Theorem

Let R(x) =P(x)

Q(x)be a rational function (a quotient of two

polynomials) and let c be a number. Then

1 if Q(c) 6= 0, then limx→c

R(x) = limx→c

P(x)

Q(x)=

P(c)

Q(c)= R(c)

2 if Q(c) = 0 while P(c) 6= 0,

then limx→c

R(x) = limx→c

P(x)

Q(x)does not exist.

3 if Q(c) = 0 while P(c) = 0,

then limx→c

R(x) = limx→c

P(x)

Q(x)may or may not exist.

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 21 / 22

Page 22: Lecture 2 - Section 2.2 Definition of Limit Section 2.3 ...jiwenhe/Math1431/lectures/lecture02.pdf · Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August

Review Section 2.2 Section 2.3 Some Limit Theorems

Examples

Examples

limx→3

x3 − 3x2

1− x2=

(3)3 − 3(3)2

1− (3)2=

27− 27

1− 9= 0.

limx→1

x2

x − 1does not exist, lim

x→1−

x2

x − 1= −∞, lim

x→1+

x2

x − 1= ∞,

limx→3

x2 − x − 6

x − 3= lim

x→3

(x − 3)(x + 2)

x − 3= lim

x→3(x + 2) = (3) + 2 = 5

limx→1

√x − 1

x − 1= lim

x→1

(√

x − 1)(√

x + 1)

(x − 1)(√

x + 1)= lim

x→1

1√x + 1

=1

2

Jiwen He, University of Houston Math 1431 – Section 24076, Lecture 2 August 28, 2008 22 / 22