lecture 2. respiratory control & adaptations

Upload: gregwellsphd

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    1/28

    All Slides Greg D. Wells, Ph.D. (2009), All Rights ReservedWeb: www.per4m.ca Email: [email protected] Tel: 416-710-4618

    Greg Wells, Ph.D.The University of Toronto

    www.per4m.ca

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    2/28

    Part 1: The Ventilatory Responseto Exercise

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    3/28

    Organization of the Control of Breathing

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Feed Forward Feed Back

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    4/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Wakefulness drive (cerebralcortex)

    Movements signals

    (cerebellum)

    Type III, IV afferents (MSNA

    hypothesis)

    H+, PCO2, SID

    (medullary surface)

    H+, PCO2, PO2, K+, La-

    (carotid body)

    Pulmonary stretch receptors

    PCO2, PO2*

    *

    *

    Basal ventilation

    (medulla)

    Cross-activation

    (neuronal network)

    Drives to Ventilation

    * Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    5/28

    Physiology During Incremental Exercise

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    6/28

    Ventilation During Constant Load Exercise

    Mateika, J. H. and J. Duffin (1995). A review of the control of breathing during exercise. Eur J Appl

    Physiol 71(1): 1-27.

    *

    *

    *

    *

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    7/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Wakefulness drive (cerebralcortex)

    Movements signals

    (cerebellum)

    Type III, IV afferents (MSNA

    hypothesis)

    H+, PCO2, SID

    (medullary surface)

    H+, PCO2, PO2, K+, La-

    (carotid body)

    Pulmonary stretch receptors

    PCO2, PO2*

    *

    *

    Basal ventilation

    (medulla)

    Cross-activation

    (neuronal network)

    Drives to Ventilation

    *

    * Shows areas where

    training may have

    an effect.

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    8/28

    Part 2: Adaptations of theRespiratory System to Training

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    9/28

    Organization of the Control of Breathing

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Adaptation #1: Peripheral Chemoreflex

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    10/28

    Ventilation vs. Predicted PCO2

    0

    10

    20

    30

    40

    50

    60

    70

    80

    30 35 40 45 50 55 60

    Predicted PCO2 (mmHg)

    VentilationBTPS(L. min-1)

    Basal Ventilation

    1st VE Threshold

    2nd VE Threshold

    1st VE Sensitivity

    2nd VE Sensitivity

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    11/28

    Ventilation vs. End-Tidal PCO2

    0

    10

    20

    30

    40

    50

    60

    70

    30 35 40 45 50 55

    End-Tidal PCO2 (mmHg)

    Ventilation

    BTPS(L. min-1)

    Pre-training

    Pre-training fitted

    Post-training

    Post-training fitted

    Example of typical chemoreflex response pre- and post-training. The increase in

    chemoreflex threshold is indicated.

    EV ThresholdsChemoreflex

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    12/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Exercise Limiting Factors

    Exercise induced arterial hypoxemia Increased work of breathing Respiratory muscle fatigue Dyspnoea

    Adaptation #1: Peripheral Chemoreflex

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    13/28

    Organization of the Control of Breathing

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Adaptation #2: Pulmonary Function

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    14/28

    Results Pulmonary FunctionFEV - 1

    3.0

    3.2

    3.4

    3.6

    3.8

    4.0

    4.2

    -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Time (wk)

    Volume(L)

    F E: T2 - T3 *

    F E: T2 - T4 *

    F C: T2 - T4 *

    F C: T2 - T3 *

    2.8

    3.0

    3.2

    3.4

    3.6

    3.8

    4.0

    4.2

    4.4

    -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Time (wk)

    Volume(L)

    *

    F E: T2 - T4 *

    F E: T2 - T3 *

    FIV - 1

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    15/28

    Results Pulmonary FunctionForced Vital Capacity

    3.5

    3.7

    3.9

    4.1

    4.3

    4.5

    4.7

    4.9

    5.1

    -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

    Time (wk)

    VitalCapa

    city(L)

    F E: T2 - T3 *

    F C: T2 - T3 *

    F C: T2 - T4 *

    F E: T2 - T4 *

    Audrey Ferreras

    She reached a depth of 412.5

    feet (125 meters) in 2minutes, 3 seconds. Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    16/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary Tract

    Reticular Activating System

    (Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Performance Limiting Factors

    Exercise induced arterial hypoxemia Increased work of breathing Respiratory muscle fatigue Dyspnoea

    Adaptation #2: Pulmonary Function

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    17/28

    Organization of the Control of Breathing

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Adaptation #3: Respiratory Muscle Function

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    18/28

    Back

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    19/28

    Mechanics at Rest

    -6 -2-10 -832

    36

    40

    44

    48

    52

    % VC

    Intrapleural Pressure cm H 2O

    -6 -4 -2 0 -10 -8 -4 0

    lung lungthorax

    wall

    INSPIRATION EXPIRATION

    thorax

    wall

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    20/28

    Mechanics During ExerciseW to overcome ER Lungs W to overcome ER CW

    W to overcome FR CWW to overcome L flow resist.

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    21/28

    RMT Mechanisms: Q Legs

    Harms, C. A., M. A. Babcock, et al. (1997). Respiratory muscle work compromises leg blood flow

    during maximal exercise. J Appl Physiol 82(5): 1573-83.

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    22/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary Tract

    Reticular Activating System

    (Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limb & RM)

    Performance Limiting Factors

    Exercise induced arterial hypoxemia Increased work of breathing Respiratory muscle fatigue Dyspnoea

    Adaptation #3: Respiratory Muscle Function

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    23/28

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes&

    Lung / Airway Afferents

    Nucleus of the Solitary Tract

    Reticular Activating System

    (Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Performance Limiting Factors

    Exercise induced arterial hypoxemia Increased work of breathing Respiratory muscle fatigue Dyspnoea

    Adaptation #4: Dyspnoea

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    24/28

    Pulmonary stretch

    receptors

    Central & peripheral

    chemoreceptorsType I afferents M+ spindles

    (length ~ volume)

    Type II afferents GTO (tension

    ~ pressure: Pdi / Pmax)

    Type III afferents M+ spindles

    (contraction ~ V, Fb, Ti:Te)

    Type IV afferents M+ spindles

    (metaboreceptors ~ H+, K+)

    Dyspnoea Mechanisms

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    25/28

    Dyspnoea Typical Application

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    26/28

    Pulmonary stretch

    receptors

    Central & peripheral

    chemoreceptors

    Type I afferents M+ spindles(length ~ volume)

    Type II afferents GTO (tension

    ~ pressure: Pdi / Pmax)

    Type III afferents M+ spindles

    (contraction ~ V, Fb, Ti:Te)

    Type IV afferents M+ spindles(metaboreceptors ~ H+, K+)

    Pathogenesis of Dyspnoea

    Hypoxia / hypercapnia

    Dynamic hyperinflation

    Dynamic hyperinflation

    Dynamic hyperinflation

    (lose mechanical adv)

    RM weakness (Pmax)

    Hyperventilation

    RM fatigue

    Greg D. Wells, Ph.D. (2009)

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    27/28

  • 8/14/2019 Lecture 2. Respiratory Control & Adaptations

    28/28

    Organization of the Control of Breathing

    Respiratory Rhythm Generator

    (pre-Botz, VRG, NA)

    Spinal Motoneurones (via

    VRG & DRG)

    Respiratory Muscles Lung (Pulmonary Ventilation)

    Peripheral Chemoreflexes &

    Lung / Airway Afferents

    Nucleus of the Solitary TractReticular Activating System(Reticular Formation & Raphe)

    Central Command

    Central Chemoreflex

    Afferent Feedback (Limbs)

    Summary

    Greg D. Wells, Ph.D. (2009)