lecture 2. ccqe -...

55
Lecture 2. CCQE M.O. Wascko 45 th Karpacz Winter School

Upload: others

Post on 02-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Lecture 2. CCQEM.O. Wascko 45th Karpacz Winter School

Page 2: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Lecture 2: CCQE

• Introduction

• Event kinematics and topology

• Experimental Searches

• Event Selections

• Efficiencies and Systematics

• Extracted parameters

• Upcoming measurements

K2K (SciFi & SciBar),

MiniBooNE, SciBooNE

2

Page 3: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CCQE Intro

• Terminology:

• Charged current quasi-elastic

• Simple reaction kinematics

• Dominant reaction at 1 GeV

3

νµ

n

µ−

W+

p

p

µn

eνµ

12C

Page 4: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CCQE Intro

• Terminology:

• Charged current quasi-elastic

• Simple reaction kinematics

• Dominant reaction at 1 GeV

3

νµ

n

µ−

W+

p

p

µn

eνµ

12C

Page 5: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CCQE Intro

• Determine flux (in near detector)

• Reconstruct neutrino energy using outgoing lepton

• Energy reconstruction is important for neutrino oscillation measurements

4

Page 6: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 7: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 8: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 9: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 10: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 11: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

• 2 fundamental parameters

• Δm2 ↔ period

• θ12 ↔ magnitude

• 2 experimental parameters

• L = distance travelled

• E = neutrino energy

• Choose L&E to target ranges of Δm2 and θ

• Neutrinos disappear and appear

5

P(!µ! !e) = sin2 2"12 sin2(1.27#m212

LE

)

Page 12: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CCQE Topology

• Final state particles in detector:

• Outgoing lepton

• Key to measurement

• Muons can be tagged with penetration, PID or decay electron

• Recoil nucleon

• Usually below Cherenkov threshold

• Recoil nucleus

• Effectively invisible

6

p

µn

eνµ

12C

Main background comes from CC1π+ with unobserved pion

Page 13: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Axial Form Factor• Recall CCQE cross section written in Llellwyn

Smith formalism:

• Axial form factor usually parameterized as a dipole function:

7

Page 14: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Q2(GeV/c)2dσ

/dq2

(10-

38cm

2/(G

eV/c

)2)

MA=1.2 GeVMA=1.1 GeVMA=1.0 GeV

Shape only

AbsoluteCross-section

(includes normalization)

8

Importance of MA

MA=1.0 GeVMA=1.1 GeVMA=1.2 GeV

Q2(GeV/c)2

R. Gran

Page 15: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Basic Data Reduction

9

Number of muons

Number of tracks

Particle identification

Energy depositaround the vertex

Timing and fiducial volume cuts

1,2, multi tracks

Neutrino Data Sample

Raw Data Sample

Charged, Neutral Current

MIP, shower, proton

untracked particles?

Page 16: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

SciBooNE CCQE

Page 17: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CC Inclusive

11

• µ's easily identified if penetrate MRD• 96% pure CC• 21,431 stopped ν events

•Normalisation set by •MRD-matched events

Y. Nakajim

a

SciBar MRDEC

µ

ν

Page 18: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CC Inclusive

12

SciBar MRDEC

µ

ν

pµ resolution = 50 MeV/cθµ resolution = 0.90

Angular discrepancy is not detector

effect→physics?

Y. Nakajima

Normalised to MRD matched events

MRD stopped events

Page 19: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CC Inclusive - Fe

13

SciBar MRDEC

µν

Y. Nakajima

Page 20: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

μ+p

w/o activityw/ activity

>2track1track

14

CC event classification

MRD-stoppedCC analysis

samples

Define MCnormalization

Number of tracks

Particle identification

Energy depositaround the vertex

SciBar-MRD matched sample

MRD-stopped

2track

μ+π

Page 21: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

μ+p

w/o activityw/ activity

>2track1track

14

CC event classification

MRD-stoppedCC analysis

samples

Define MCnormalization

Number of tracks

Particle identification

Energy depositaround the vertex

SciBar-MRD matched sample

MRD-stopped

2track

μ+π

MRD-penetrated

Same selection

MRD-penetratedCC analysis

sample

Page 22: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

SciBar Cuts

15

• Additional track parameters used to distinguish interaction signatures

• Vertex separation

• 2nd track angle

• Δθp

p

μμμ

n

p

Page 23: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

SciBar Cuts

15

• Additional track parameters used to distinguish interaction signatures

• Vertex separation

• 2nd track angle

• Δθp

μν

pΔθp

CCQE

K. Hiraide

Page 24: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K. Hiraide

MIP-like

SciBar PID

Cut at MuCL>0.05 for 2nd tracks:84% π+ efficiency~90% p rejection

16

Energy depositused as PID

K. Hiraide

K. Hiraide

Page 25: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

-50 0 50 100 150 200 250 300

-150

-100

-50

0

50

100

150

CCQE - 1 track

1 track events 67% pure CCQE

Prelim

inary

Stat.

err. o

nly

J. Alcaraz-Aunion

µ

using NEUT (MA=1.1 GeV)

SciBooNE data

17

W+

νµ,e

n p

µ-,e-

Page 26: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

CCQE - 2 track

W+

νµ,e

n p

µ-,e-

2 track events 81% pure CCQE(µ + proton using PID)

µ

p

J. Alcaraz-Aunion

Prelim

inary

Stat.

err. o

nlySciBooNE data

18using NEUT (MA=1.1 GeV)

Page 27: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

SciBar MRDEC

µ

ν

CCQE - SciBar only

• Events can remain in SciBar only• Look for muon decay to

tag the muon tracks

• Different kinematic regions

• Different systematics on pµ measurement

19

ν

J. Walding

Page 28: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

SciBar MRDEC

µ

ν

CCQE - SciBar only

• Events can remain in SciBar only• Look for muon decay to

tag the muon tracks

• Different kinematic regions

• Different systematics on pµ measurement

19

τµ = 2.003 ± 0.047 (stat) µsexpected = 2.026 ± 0.001 µs

Suzuki, et al., PRC35, 2122 1987

Prelim

inary

Stat.

err. o

nly

J. Walding

Page 29: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K CCQE

Page 30: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

To Muon Range Detector

Muon in the Muon Range Detector must have pmuon > 600 MeV/c

Recoil proton threshold isthree layers in SciFi

pproton > ~ 600 MeV/c

SciFi CCQE

1-track events with muon only2-track events with muon plus either proton or pion

21

Page 31: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

1 track event 2 track event

Event Selection

Neutrino interaction on H2O target (+ 20% Aluminum)

Typical two-track event showing the muon and second track

22

Page 32: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

use the location of proton track to separate events

into three subsamples:

1-track (no proton) 60% QE 2-track QE enhanced 60% QE

2-track nQE 85% nonQE, 15% QE(NEUT)

2 track events

23

R. Gran

Page 33: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Basic Distributions, Pµ, θµ for Scifi Detector

Overall agreement is good

One-track events (60% QE, NEUT)Muon momentum Muon angle

Pµ θµ

24

R. Gran

Page 34: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Reconstructed Q2 distribution in SciFi detector

1 track sample

Q2 (GeV/c)2

2 track non-QE

Q2 (GeV/c)2

2 track QE enhanced

Q2 (GeV/c)2

25

R. Gran

Page 35: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Quasi Elastic fraction

Monte Carlo best fit

Fit only Q2 > 0.2 region

-> Q2 cut

Most significant uncertainties due to Pauli

blocking and choice of nuclear model, coherent pion, correction to DIS

Reconstructed Q2 (GeV/c)2

26

QE signal and inelastic backgroundare treated the same way

R. Gran

Page 36: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Free nucleon (no Pauli Blocking)

210kf = 225

235MeV/c

We Cut here

Uncertainty in QE cross section due to Pauli Blocking

in the Q2 < 0.2 regiona Fermi-gas model with different Fermi-momenta kf

27

R. Gran

Page 37: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K SciFi MA fit

1 Track 2 Track QE 2 Track nQE

Reconstructed Q2

28

Fit the 1track, 2track (QE), and 2track (nonQE) simultaneouslyK2K-I: 8114 events total 4310 Q2>0.2 in fit

K2K-IIa: 5967 events total 2525 Q2>0.2 in fit

MA = 1.20 ± 0.03 stat ± 0.12 systBodek/Yang DIS correction and Marteau Coherent Pi cross-section

R. Gran

Page 38: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Systematic Errors

29

Source UncertaintyEnergy scale 0.08

LG density 0.02

Escale/LC correlation 0.04

Escale-MA correlation 0.03

MA-1pi 0.03

nQE/QE 0.03

Statistics 0.012

TOTAL 0.12

Page 39: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K: SciBar• Event selection similar to SciBooNE’s

• (actually, SciBooNE’s was based on K2K’s)

30

Sample Q2>0.0 Purity Q2>0.2 Purity

1-trk 7405 54% 4032 59%

2-trk QE

1264 77% 1142 80%

2-trk non-QE

1537 19% 923 28%

TOTAL 10206 52% 6097 59%

F. Sanchez

Page 40: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K: SciBar

• Fit 3 data samples, allowing these parameters to float:

• Overall normalization

• MA

• Ratio of nonQE/QE

• Ratio of 2-trk/1-trk

• Ratio of 2-trk nonQE/2-trk QE

• 4 energy bins constrained by PIMON data

31

Page 41: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K: SciBar

32

MA = 1.144 ± 0.077 (fit) +0.078 -0.072 (syst)

F. Sanchez

Page 42: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

K2K: SciBar Systematics

• Systematics

33

Page 43: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

MiniBooNE CCQE

Page 44: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

MiniBooNE Cuts

35

p

µn

eν12C

74% pure CCQE (NUANCE)

Page 45: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

MiniBooNE Data/MC

• MA fitting

36

T. Katori

Page 46: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

37

Page 47: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

38

Page 48: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Effect of MA and κ

39

T. Katori

Page 49: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

After Fitting

40

T. Katori

Page 50: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

After fitting

41

T. Katori

Page 51: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Is κ necessary?

• Only MA is allowed to vary in this fit

• Such a fit cannot improve over all phase space

• (Additional experimental information would allow different tests)

42

T. Katori

Page 52: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

MB CCQE Systematics

43

Source δMA(GeV) δκ

Data statistics 0.03 0.003

neutrino flux 0.04 0.003

neutrino cross section 0.06 0.004

detector model 0.10 0.003

CCpi+ background shape 0.02 0.007

TOTAL 0.20 0.011

Page 53: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Comparisons

44

• MiniBooNE has nearly flat acceptance in Q2

• But no resolution of protons

• SciBooNE (with MRD) falls off quickly because we require a forward going muon

• SciBar contained analysis is needed!

MiniBooNE

SciBooNE (MRD)

T. Katori

J Alcaraz

Page 54: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

Summary

45

Page 55: Lecture 2. CCQE - wng.ift.uni.wroc.plwng.ift.uni.wroc.pl/karp45/presentations/Wascko-CCQE_intro.pdf · Lecture 2: CCQE • Introduction • Event kinematics and topology • Experimental

References

• SciFi: Phys.Rev. D74 (2006) 052002, hep-ex/0603034v1

• SciBar: NuInt07 proceedings

• MinBooNE: Phys.Rev.Lett 100:032301 (2008) arXiv:0706.0926v2 [hep-ex]

• NOMAD: arXiv:0812.4543v3 [hep-ex]

• MA= 1.05 ± 0.02(stat) ± 0.06(syst) GeV.46

I didn’t mention: