lecture 2 2012

19
Introduction to Chemical Reaction Engineering Lecture 2 General Mole Balance for Ideal Reactors

Upload: raza-hassan

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 1/19

Introduction to Chemical ReactionEngineering

Lecture 2

General Mole Balance for Ideal Reactors

Page 2: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 2/19

Lecture 2 Plan

• General mole balance equation for ideal reactors

• Assumptions used in ideal reactors

• Design equations for ideal reactors

Learning outcomes:  

• Describe the assumptions used in ideal reactors  

• Derive the general mole balance equation  • Apply the general mole balance equation to the 3 most common 

types of reactor 

Page 3: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 3/19

General Mole Balance for IdealReactors

In - Out + Generation = Accumulation

=

+

e)(moles/tim

 jof onaccumulati

 of Rate

e)(moles/tim

reaction

chemicalby jof 

 generation

of Rate

e)(moles/tim

out jof flow

of Rate

e)(moles/tim

in jof flow

of Rate

n  j0  - n  j  + G  j  =

dt dN  j

n  j  is the number of moles of species j 

Page 4: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 4/19

If all the system variables (e.g. temperature, concentration) are spatially uniformthroughout the volume then G is the product of reaction volume, V , and the rate offormation of j, r  j :

G  j  = r  j V 

volume.

etime.volum

moles

time

moles=

Determine the time (batch) or reactor volume (flow reactor) to convert a specifiedamount of reactants into products.

n j0  n j 

V  

Page 5: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 5/19

Reaction rate

• Reaction rate, r  j : moles of j appearing (or formed)because of the reaction per unit volume of reacting mixture per unit time (mol  j  /m 3 s) 

If j is reacting (disappearing), rate is –ve (i.e. = -r  j )

If j is product (appearing), rate is +ve (i.e. = r  j )

Several sign conventions – take care! 

Page 6: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 6/19

Rate Equation (or Rate Law)

A → products 

May be a linear function of concentration: -r A = kC A 

 A

 A A

C k 

C k r 

2

1

1+=−

The concentration dependence must be determined from experimental

observation

The rate equation is independent of the type of reactor (e.g. batch orcontinuous flow) in which the reaction is carried out. 

or it may be some other algebraic function of concentration: -r A = kC A2  

or

Page 7: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 7/19

Batch Reactors

V  

 N  A moles of A 

Assume: 

• Well-mixed

• Often assume constant V and

constant P

• All reactants in at t=0 and out at t=t

Page 8: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 8/19

Batch Reactors

Page 9: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 9/19

dt 

dN 

V r 

j

 j

1=

dt 

V  N d   j ) / (=

Apply Mole Balance:

No inflow or outflow

n  j0  = n  j  = 0

dt 

dN V r 

j

 j =

For constant V

dt 

dC  j=

Page 10: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 10/19

Consider A → B

t  

 N  A0 

 N  A 

 N  A1 

t 1  t  

 N  B 

 N  B1 

t 1 

Mole-time trajectories 

dt 

dN V r  A

 A = Rearranging:V r 

dN dt 

 A

 A=

Integrating with limits at t = 0, N A = N A0 and t = t 1, N A = N A1

∫=1

0

1

 A

 A

 N 

 N  A

 A

V r 

dN t 

Page 11: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 11/19

Substitute the rate law into previous equation:

-r A = kC A (1st-order)

-r AV = kC AV 

= k(N A /V)V 

= kN A

∫=0

1

1

 NA

 NA A

 A

kN 

dN t 

So:

1

0

1 ln1

 A

 A

 N 

 N 

k t  =

Page 12: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 12/19

CSTR

V  

C  A 

n A0 C  A0 

ν T0 (m3 /s) 

n A 

C  A 

ν T (m3 /s) 

Exit – representative of contents 

Assume: 

• Continuous supply of feed and product removal• Well-mixed

• Steady-state – reaction rate the same everywhere and time independent.

concentration the same everywhere so exit point the same

Page 13: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 13/19

Design equation for CSTR

Apply the mole balance with

state)(steady0=dt 

dN  j

So

n  j0  - n  j  + r  j V  = 0

 j

 j j

nnV 

−=

0

This is the reactor volume required to reduce the entering flow rate, n  j0  to n  j  when species j is disappearing at a rate, -r  j .

Page 14: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 14/19

Molar flow rate:

n  j  = C  j .ν   ν = volumetric flow

time

volume

volume

moles

time

moles=

Combining:

 j

 j j

C C V 

−=

ν ν  00

Page 15: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 15/19

Plug Flow Reactor (PFR)

reactants  products 

Assumes: 

• Plug flow – no radial variations in velocity, concentration or temperature (‘flat’

velocity profile)

• Steady state

• Continuous supply of feed and product removed

Page 16: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 16/19

Consider the mole balance on j in a differential segment of reactor volume ∆V

n j0  n j n j|V   n j|V+∆V  

V   V+∆V  

∆V  

Mole balance in a differential segment/volume ∆V:

In - out + generation = accumulation

n j|V - n j|V+∆V + r j∆V = 0

Divide by ∆V: 

 j

V  jV V  jr 

nn=

−∆+ ||

In the limit ∆V  → 0 

 j

 j

r dV 

dn

=

Page 17: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 17/19

Consider A → B 

n A0 

V  

n A n A1 

V 1 

What is the reactor volume V 1 necessary to reduce n A0 to nA?

 A

 A

dndV  =

Integrating with limits at V = 0, then n A = n A0 and V = V 1, n A = n A1

∫∫ −==

0

1

1

0

1

 A

 A

 A

 A

n

n A

 A

n

n A

 A

dn

dnV 

Page 18: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 18/19

For a 1st – order reaction, -r A = kC A

Also n A = C Aν 

∫∫ ==0

1

0

1

1

 A

 A

 A

 A

n

n A

 A

n

n A

 A

n

dn

k kC 

dnV 

ν 

 A

 A

 A

 A

k n

n

k V  00

1lnln ν ν  ==

Page 19: Lecture 2 2012

8/2/2019 Lecture 2 2012

http://slidepdf.com/reader/full/lecture-2-2012 19/19

Design equations for ideal reactors

 j

 j j

C C V −

−= ν ν  00

Batch reactor

Continuously stirredtank reactor (CSTR)

Plug flow reactor (PFR)

dt 

dN V r 

j

 j =

 j

 j

r dndV  =

Derived from mole balance