lecture 2 0 fluid dynamics

Upload: ahmed-a-radwan

Post on 07-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    1/35

    Fluid Dynamics

    Dr. Hamdy A. Kandil

    Review: Fluid Kinematics -Acceleration Field

    Consider a fluid particle and Newton's second law,

    The acceleration of the particle is the time derivative of theparticle's velocity.

    However, particle velocity at a point is the same as the fluidvelocity,

    To take the time derivative of V, chain rule must be used because.

     particle part icle particleF m a

     par ticl e

     par ticl e

    dV a

    dt 

    , , particle particle particle particleV V x t y t z t  

     particle particle particle

     particle

    dx dy dzV dt V V V  a

    t dt x dt y dt z dt  

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    2/35

    Acceleration Field Since

    In vector form, the acceleration can be written as

    First term is called the local acceleration and is nonzero only forunsteady flows.

    Second term is called the advective acceleration and accountsfor the effect of the fluid particle moving to a new location in theflow, where the velocity is different.

     particle

    V V V V  

    a u v wt x y z

    , , particle particle particledx dy dz

    u v wdt dt dt  

    V V t 

    dt 

    V d t  z y xa

    )(),,,(  

    then

     z

     j

     y

    i

     x

    k w jviuV 

    Where:

    Acceleration Components

     z

    ww

     y

    wv

     x

    wu

    wa

     z

    vw

     y

    vv

     x

    vu

    va

     z

    uw

     y

    uv

     x

    uu

    ua

     z

     y

     x

    The components of the acceleration are:

     particle

    V V V V  a u v w

    t x y z

    Vector equation:

    x- component

    Y-component

    z-component

    Question: Give examples of steady flows with acceleration

    Incompressible Steady idealflow in a variable-area duct

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    3/35

    Streamlines   A Streamline is a curve thatis everywhere tangent to theinstantaneous local velocityvector.

    Consider an arc length

    must be parallel to thelocal velocity vector

    Geometric arguments resultsin the equation for astreamline

    dr dxi dyj dzk    

    dr 

    V ui vj wk      

    dr dx dy dz

    V u v w

    u

    v

    dx

    dy

    Properties of Streamlines A streamline can not have a sharp corner

    Two streamlines can not intersect or meet at a sharp corner

    No flow across a tube formed by streamlines (steam tube).

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    4/35

    Streaklines  A Streakline is the locus of fluid

    particles that have passedsequentially through aprescribed point in the flow.

    Easy to generate inexperiments: dye in a waterflow, or smoke in an airflow.

    Pathlines   A Pathline is the actual pathtraveled (traced) by anindividual fluid particle oversome time period.

    Same as the fluid particle'smaterial position vector

    Particle location at time t:

    Particle Image Velocimetry(PIV) is a modern experimentaltechnique to measure velocityfield over a plane in the flowfield.

    , , par ticle particle par ticle x t y t z t 

    start 

    start 

     x x Vdt   

    For steady flow, streamlines, pathlines, andstreaklines are identical.

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    5/35

    Which type of lines?

    Conservation of Mass Differential CV 

    Infinitesimal control volumeof dimensions dx, dy, dz  Area of right

    face = dy dz 

    Mass flow rate throughthe right face of thecontrol volume

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    6/35

    Conservation of Mass Differential CV

    Now, sum up the mass flow rates into and out of the 6 faces of the CV

    Plug into integral conservation of mass equation

    Net mass flow rate into CV:

    Net mass flow rate out of CV:

    Rate of change of the control volume mass:

    Conservation of Mass Differential CV

    After substitution,

    Dividing through by volume dxdydz 

    Or, if we apply the definition of the divergence of a vector

    k  z

     j y

    i x

    k w jviuV 

    where

    0)()()(

     z

    w

     y

    v

     x

    u

            

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    7/35

    Conservation of Mass: Alternative forms 

    Use product rule on divergence term

    k  z

     j y

    i x

    k w jviuV 

    Conservation of Mass: Cylindrical coordinates 

    There are many problems which are simpler to solve if theequations are written in cylindrical-polar coordinates

    Easiest way to convert from Cartesian is to use vector form anddefinition of divergence operator in cylindrical coordinates

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    8/35

    Conservation of Mass: Cylindricalcoordinates 

    Conservation of Mass: Special Cases  Steady compressible flow

    Cartesian

    Cylindrical

    0)()()(

     z

    w

     y

    v

     x

    u      

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    9/35

    Conservation of Mass: Special Cases  Incompressible flow

    Cartesian

    Cylindrical

    = constant, and hence

    0

     z

    w

     y

    v

     x

    u

    k  z

     j y

    i x

    k w jviuV 

    Conservation of Mass In general, continuity equation cannot be used by itself to

    solve for flow field, however it can be used to

    1. Determine if a velocity field represents a flow.

    2. Find missing velocity component

    equation. continuity hesatisfy t torequired , w:Determine?

    flow ibleincompressanFor

    Example

    222

    w

     z yz xyv

     z y xu

    ),(2

    3:Solution2

     y xc z

     xzw  

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    10/35

    Conservation of MomentumTypes of forces:1. Surface forces: include all forces acting on the boundaries of a

    medium though direct contact such as pressure, friction,…etc.

    2. Body forces are developed without physical contact anddistributed over the volume of the fluid such as gravitationaland electromagnetic.

    The force F acting on A may be resolved into two components,one normal and the other tangential to the area.

    Stresses (forces per unit area)

    Double subscript notation for stresses.• First subscript refers to the surface• Second subscript refers to the direction• Use for normal stresses and for tangential stresses

    Surface ofconstant xSurface of

    constant -x

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    11/35

    Momentum Conservation From Newton’s second law: Force = mass * acceleration

    Consider a small element x  y z as shown

    The stresses at the center of the element are presented by thestress tensor:

    x

     y

    z

    The element experiences an acceleration

    DVm ( )

    Dt

    as it is under the action of various forces:

    normal stresses, shear stresses, and gravitational force.

    V V V V   x y z u v w

    t x y z   

     

     zz zy zx

     yz yy yx

     xz xy xx

       

       

       

    T

    Surface forces in the x direction acting on afluid element.

    Consider only the forces in the x direction acting on all six surfaces

     zz zy zx

     yz yy yx

     xz xy xx

       

       

       

    T

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    12/35

    Momentum Balance (cont.)

    yxxx zx

     Net force acting along the x-direction:

    x x x  x x y z x y z x y z g x y z

         

    Normal stress Shear stressesBody force

     z y xg y x z

     z

     y x z

     z

     z x y

     y

     z x y

     y z y

     x

     x z y

     x

     xF 

     x zx

     zx zx

     zx

     yx

     yx

     yx

     yx xx

     xx xx

     xx x

             

         

         

     

        

         

         

      

    )

    2

    ()

    2

    ()

    2

    (

    )2

    ()2

    ()2

    (

    bxsx x   F F F         

    )()(   a z

    uw

     y

    uv

     x

    uu

    u

     z y xg   zx

     yx xx x  

          

      

    The differential equation of motion in the x-direction is: xsxbx x x   maF F maF           

    Similar equations can be obtained for the other two directions

    Forces acting on the elementSurface forces

    Body forces

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    13/35

    Equation of Motion (momentum eq.s) 

    Velocities stresses ----- Unknowns

    fluid. aformotionof equationaldifferenti General

    )()(

    )()(

    )()(

    c z

    w

    w y

    w

    v x

    w

    ut 

    w

     z y xg

    b z

    vw

     y

    vv

     x

    vu

    v

     z y xg

    a z

    uw

     y

    uv

     x

    uu

    u

     z y xg

     zz yz xz z

     zy yy xy

     y

     zx yx xx x

         

      

         

      

         

      

     zszbz z z

     ysyby x x

     xsxbx x x

    maF F maF 

    maF F maF 

    maF F maF 

         

         

         

    Conservation of Linear Momentum

    Unfortunately, this equation is not very useful

    10 unknowns

    Stress tensor,  : 6 independent components

    Note:

    Density    

    Velocity, V : 3 independent components

    4 equations (continuity + 3 momentum) 6 more equations required to close problem!

     zz zy zx

     yz yy yx

     xz xy xx

       

       

       

    T

     zy yz zx xz yx xy   and             ,

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    14/35

    Navier-Stokes Equations For Newtonian fluids the stress tensor components have some

    definitions.

    Substituting the stress tensor components into the equation ofmotion with produce the well-known Navier-Stokes equationsthat are suitable only for Newtonian Fluids:

    Stress tensor components:

     z

    wV  p

     y

    vV  p

     x

    uV  p

     zz

     yy

     xx

       

       

       

    2)3

    2(

    2)3

    2(

    2)3

    2(

    )(

    )(

    )(

     y

    w

     z

    v

     z

    u

     x

    w

     y

    u

     x

    v

     zy yz

     zx xz

     yx xy

       

       

       

    &

    Navier-Stokes Equations

    )()]([

    )]([)].3

    22([

    a z

    u

     x

    w

     z

     y

    u

     x

    v

     yV 

     x

    u

     x x

     pg

     Dt 

     Du x

     

          

    )()]([

    )].3

    22([)]([

    b y

    w

     z

    v

     z

    V  y

    v

     y y

    u

     x

    v

     x y

     pg

     Dt 

     Dv y

     

          

    )()].3

    22([

    )]([)]([

    cV  z

    w

     z

     yw

     zv

     y zu

     xw

     x z pg

     Dt  Dw  z

     

          

    x-momentum

     y-momentum

    z-momentum

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    15/35

    Navier-Stokes Equations For incompressible fluids, constant µ:

    Continuity equation: .V = 0

    u z

    u

     y

    u

     x

    u

     z

    w

     y

    v

     x

    u

     x z

    u

     y

    u

     x

    u

     z x

    w

     y x

    v

     x

    u

     z

    u

     y

    u

     x

    u

     z

    u

     x

    w

     z y

    u

     x

    v

     y x

    u

     x

     z

    u

     x

    w

     z y

    u

     x

    v

     yV 

     x

    u

     x

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    22

    2

    2

    2

    2

    2

    2

    2

    2

    )(

    )()(

    )()(

    )]}[()][()]2[({

    )]([)]([)].3

    22([

      

      

      

     

       

    Navier-Stokes Equations For incompressible flow with constant dynamic viscosity:

    x- momentum

    Y- momentum

    z-momentum

    In vector form, the three equations are given by:

    )()(2

    2

    2

    2

    2

    2

    a z

    u

     y

    u

     x

    u

     x

     pg

     Dt 

     Du x

           

    )()(2

    2

    2

    2

    2

    2

    b z

    v

     y

    v

     x

    v

     y

     pg

     Dt 

     Dv y

           

    )()(2

    2

    2

    2

    2

    2

    c z

    w

     y

    w

     x

    w

     z

     pg

     Dt 

     Dw z

           

    V  pg Dt 

    V  D  

    2         Incompressible NSEwritten in vector form

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    16/35

    Navier-Stokes Equation The Navier-Stokes equations for incompressible flow in vector

    form:

    This results in a closed system of equations!

    4 equations (continuity and 3 momentum equations)

    4 unknowns (U, V, W, p)

    In addition to vector form, incompressible N-S equation can bewritten in several other forms including:

    Cartesian coordinates

    Cylindrical coordinates

    Tensor notation

    Incompressible NSEwritten in vector form

    Euler Equations For inviscid flow (µ = 0) the momentum equations are given by:

    x- momentum

    Y- momentum

    z-momentum

    In vector form, the three equations are given by:

    )()(   a x

     pg

     z

    uw

     y

    uv

     x

    uu

    u x

        

     pg Dt 

    V  D

     

         Euler equationswritten in vector form

    )()(   b y

     pg

     z

    vw

     y

    vv

     x

    vu

    v y

        

    )()(   c z

     pg

     z

    ww

     y

    wv

     x

    wu

    w z

        

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    17/35

    Differential Analysis of Fluid FlowProblems Now that we have a set of governing partial differential

    equations, there are 2 problems we can solve

    1. Calculate pressure (P ) for a known velocity field2. Calculate velocity (U, V, W ) and pressure (P ) for known

    geometry, boundary conditions (BC), and initial conditions(IC)

    There are about 80 known exact solutions to the NSE

    Solutions can be classified by type or geometry, for example:

    1. Couette shear flows

    2. Steady duct/pipe flows (Poisseulle flow)

    Exact Solutions of the NSE

    1. Set up the problem and geometry, identifying all relevantdimensions and parameters

    2. List all appropriate assumptions, approximations, simplifications,

    and boundary conditions3. Simplify the differential equations as much as possible4. Integrate the equations5. Apply BCs to solve for constants of integration6. Verify results

    Boundary conditions are critical to exact, approximate, andcomputational solutions.

    BC’s used in analytical solutions are No-slip boundary condition

    Interface boundary condition

    Procedure for solving continuity and NSE

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    18/35

    boundary conditions

    For a fluid in contact with asolid wall, the velocity of thefluid must equal that of the

    wall

    When two fluids meet at aninterface, the velocity andshear stress must be thesame on both sides

    If surface tension effectsare negligible and thesurface is nearly flat

    Interface boundary condition

    No-slip boundary condition

    Interface boundary condition Degenerate case of the interface BC occurs at the free surface

    of a liquid. Same conditions hold

    Since air

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    19/35

    Example exact solution

    Fully Developed Couette Flow  For the given geometry and BC’s, calculate the velocity and

    pressure fields, and estimate the shear force per unit area

    acting on the bottom plate

    Step 1: Geometry, dimensions, and properties

    Fully Developed Couette Flow 

    Step 2: Assumptions and BC’s

    Assumptions

    1. Plates are infinite in x and z

    2. Flow is steady, /t = 03. Parallel flow, v = 0

    4. Incompressible, Newtonian, laminar, constant properties

    5. No pressure gradient

    6. 2D, w = 0, /z = 0

    7. Gravity acts in the -y direction,

    Boundary conditions1. Bottom plate (y=0) – no slip condition: u=0, v=0, w=0

    2. Top plate (y=h) : no slip condition: u=V, v=0, w=0

    gg jgg  y   ,ˆ

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    20/35

    Fully Developed Couette Flow 

    Step 3: Simplify 3 6

    Note: these numbers refer 

    to the assumptions on the

    previous slide

    This means the flow is “fully developed” or not changing in the direction of flow

    Continuity

    X-momentum

    2 Cont. 3 6 5 7 Cont. 6

    02

    2

     y

    Fully Developed Couette Flow 

    Step 3: Simplify, cont.Y-momentum

    2,3 3 3 3,6 3 33

    Z-momentum

    2,6 6 6 6 7 6 66

     yg y

     p  

    p = p(y)0 z

     p yg

    dy

    dp

     y

     p  

    p = p(y)

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    21/35

    Fully Developed Couette Flow 

    Step 4: Integrate

     y-momentum

    X-momentumintegrate integrate

    integrate

    gdy

    dp   3)(   C gy y p      

    Fully Developed Couette Flow 

    Step 5: Apply BC’s

    Y = 0, u = 0 = C1(0) + C2   C2 = 0

    Y = h, u =V =C1h C1 = V/h

    This gives

    For pressure, no explicit BC, therefore C3 can remain anarbitrary constant (recall only P appears in NSE).

    Let p = p0 at y = 0 (C3 renamed p0)

    1. Hydrostatic pressure

    2. Pressure acts independently of flowgy p y p     0)(

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    22/35

    Fully Developed Couette Flow 

    Step 6: Verify solution by back-substituting into differentialequations

    Given the solution (u,v,w)=(Vy/h, 0, 0)

    Continuity is satisfied

    0 + 0 + 0 = 0

    X-momentum is satisfied

    Fully Developed Couette Flow 

    Finally, calculate shear force on bottom plate

    Shear force per unit area acting on the wall

    Note that w is equal and opposite to theshear stress acting on the fluid  yx(Newton’s third law).

    h

     y

    u

     x

    v yx xy         

    )(u=V/h

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    23/35

    Parallel Plates (Poiseuille Flow) Given: A steady, fully developed, laminar flow of a Newtonian

    fluid in a rectangular channel of two parallel plates where thewidth of the channel is much larger than the height, h, betweenthe plates.

    Find: The velocity profile and shear stress due to the flow.

    Assumptions: Entrance Effects Neglected No-Slip Condition No vorticity/turbulence

    Additional and Highlighted ImportantAssumptions

    The width is very large compared to the height of the plate. No entrance or exit effects.

    Fully developed flow. THEREFORE…

    Velocity can only be dependent on vertical location in theflow (u )

    v = w = 0 The pressure drop is constant and in the x-direction only.

    .inlengthaiswhere, p

    Constant p

     x L L x

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    24/35

    Boundary Conditions No Slip Condition Applies

    Therefore, at y = -a and y = +a, u=v=w = 0

    The bounding walls in the z direction are often ignored. If wedon’t ignore them we also need: z = -W/2 and z = +W/2, u=v=w = 0, where W is the width of

    the channel.

    Fixed plate

    Fixed plate

    Fluid flow direction2ax 

    a y 

    a y  

    Incompressible Newtonian StressTensor

     

     

     

     

     

      

     

     

      

     

      

        

       

     

      

     

     

      

     

     z

    w

     z

    v

     y

    w

     z

    u

     x

    w

     zv

     yw

     yv

     yu

     xv

     z

    u

     x

    w

     y

    u

     x

    v

     x

    u

       

       

       

    2

    2

    2

    τ

    Now, we cancel terms out based

    on our assumptions.This results in our new tensor:

     

     

     

     

     

     

     

     

     

      

     

    000

    00

    00

     y

    u

     y

    u

    T     

     

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    25/35

    gvvvv

             

     

     

     

      2 p

    Navier-Stokes EquationsIn Vector Form for incompressible flow:

     z

     y

     x

    g z

    w

     y

    w

     x

    w

     z z

    ww

     y

    wv

     x

    wu

    w

    g

     z

    v

     y

    v

     x

    v

     y z

    vw

     y

    vv

     x

    vu

    v

    g z

    u

     y

    u

     x

    u

     x z

    uw

     y

    uv

     x

    uu

    u

         

         

         

     

      

     

     

     

     

     

     

      

     

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

     p

    :component-z

     p

    :component-y

     p

    :component-x

    Which we expand to component form:

     z

     y

     x

    g z

    w y

    w x

    w z z

    ww ywv

     xwu

    t w

    g z

    v

     y

    v

     x

    v

     y z

    vw

     y

    vv

     x

    vu

    v

    g

     z

    u

     y

    u

     x

    u

     x z

    uw

     y

    uv

     x

    uu

    u

         

         

         

      

      

     

      

     

     

     

     

     

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

     p

    :component-z

     p

    :component-y

     p

    :component-x

    Reducing Navier-Stokes

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    26/35

    Reducing Navier-Stokes This reduces to:

    Including our constant pressure drop:

    2

    2

    Pressure Modified

     p0 y

    u

     x 

    2

    2 p0

     y

    u

     L 

     

      

     

    2

    2 p0

    : becomesequationtheTherefore b

    dy

    ud 

     L

     yuuut 

     

    N-S equation therefore reduces to

    02

    2

      xg y

    u

     x

     p   

    0

      yg y

     p  

    0

      zg z p

      

    Ignoring gravitational effects, we get

    02

    2

     y

    u

     x

     p 

    0

     y

     p

    0

     z

     pp is not a function of z 

    x - component:

     y - component:

    z - component:

    x - component:

     y - component:

    z - component:

    p is not a function of y 

    p is a functionof x only

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    27/35

    Rewriting (4), we get

    (5)

    u is a function of y only and therefore LHS is afunction of y only

    p is a function of x only and is a constant andtherefore RHS is a function of x only

     

     

    LHS = left hand side of the equationRHS = right hand side of the equation

    function of (y) = function of (x)Therefore (5) gives,

     x p

     L p

     x

     p

     y

    u

     

    12

    2

    = constant

    It means = constant

    That is, pressure gradient in the x -direction is a constant.

    Rewriting (5), we get

    where is the constant pressure gradient in the

    x-direction

    Since u is only a function of y, the partial derivative becomes anordinary derivative.

    (6)

    Therefore, (5) becomes

    (7)

     L

     p

     x

     p

     y

    u

      

    1

    2

    2

     x

     p

     L

     p

     L

     p

    dy

    ud 

     

    2

    2

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    28/35

    Integrating (6), we get

    (8)

    where C1 and C2 are constants to bedetermined using the boundary

    conditions given below:

    Substituting the boundary conditions in (8), we get

    Fixed plate

    Fixed plate

    Fluid flow direction

    2ax 

    a yu   at0a yu   at0

    a y 

    a y  

    21

    2

    2C  yC 

     y

     L

     pu  

     

    01

     C 2

    2

    2

    a

     L

     pC 

     

    and

    Therefore, (8) reduces to 222

     ya L

     pu  

     Parabolicvelocity profile

    }no-slipboundarycondition

    R. Shanthini15 March 2012

    Fixed plate

    Moving plateat velocity U 

    Fluid flow direction

    2ax 

    Steady, incompressible flow of Newtonian fluid in an infinite channelwith one plate moving at uniform velocity- fully developed plane Couette-Poiseuille flow

    where C1 and C2 are constants to bedetermined using the boundary conditionsgiven below:

    a y 

    a y  

    21

    2

    2C  yC 

     y

     L

     pu  

     

    a yu   at0

    a yU u   at

    Substituting the boundary conditions in (8), we get

    and

    Therefore, (8) reduces toa

    U C 

    2

    22

    2

    2

    a

     L

     pU C 

     

       yaa

    U  ya

     L

     pu  

    22

    22

     

    (8)

    }no-slipboundarycondition

    Parabolic velocity profileis super imposed on alinear velocity profile

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    29/35

    R. Shanthini15 March 2012

    Fixed plate

    Moving plateat velocity U 

    Fluid flow direction

    2ax 

    Steady, incompressible flow of Newtonian fluid in an infinite channelwith one plate moving at uniform velocity- fully developed plane Couette-Poiseuille flow

    a y 

    a y  

       yaa

    U  ya

     L

     pu  

    22

    22

     

    If zero pressure gradient is maintained inthe flow direction, then ∆p = 0.

    Therefore, we get

     yaa

    U u  

    2Linear velocity profile

    Points to remember:- Pressure gradient gives parabolic profile- Moving wall gives linear profile

    Starting from plane Coutte-Poiseuille flow

    Let us get back to the velocity profile offully developed plane Couette-Poiseuille flow

       yaa

    U  ya

     L

     pu  

    22

    22

     

    Let us non-dimensionalize it as follows:

      

      

      

      

    a

     yU 

    a

     y

     L

     pau 1

    21

    2 2

    22

     Rearranging gives

    Dividing by U gives

    Introducing non-dimensional variables and , we get

    a

     y y 

       y y LU 

     pau  

    1

    2

    11

    2

    22

     

    uu 

     

      

       

      

     

    a

     y

    a

     y

     LU 

     pa

    u1

    2

    11

    2 2

    22

     

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    30/35

    R. Shanthini

    15 March 2012-1

    0

    1

    -0.5 0 0.5 1 1.5

    1

    0.25

    0

    -0.25

    -1

       y y LU 

     pau  

    1

    2

    11

    2

    22

     

    2/2   a LU 

     p

     

    a

     y y 

    uu 

    Plot the non-dimensionalized velocity profile of thefully developed plane Couette-Poiseuille flow

    R. Shanthini

    15 March 2012-1

    0

    1

    -0.25 0.75

    0

    -0.5

       y y LU 

     pau  

    1

    2

    11

    2

    22

     

    2/2   a LU 

     p

     

    a y y 

    uu 

    BACK FLOW

    Plot the non-dimensionalized velocity profile of thefully developed plane Couette-Poiseuille flow

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    31/35

    R. Shanthini

    15 March 2012-1

    0

    1

    -1 0 1

    0

    -0.25

    -0.5

    -1.5

       y y LU 

     pau  

    1

    2

    11

    2

    22

     

    2/2   a LU 

     p

     

    a

     y y 

    uu 

    Plot the non-dimensionalized velocity profile of thefully developed plane Couette-Poiseuille flow

       yaa

    U  ya

     L

     pu  

    22

    22

     

    Let us determine the volumetric flow ratethrough one unit width fluid film along z -direction, using the velocity profile

    Fixed plate

    Moving plateat velocity U 

    Fluid flow direction

    2a x

     y

    a y 

    a y  

      a

    a

    a

    a

    a

    a

     yay

    a

    U  y ya

     L

     pdy ya

    a

    U  ya

     L

     pudyQ

     

      

     

     

      

     

    223222

    23222

      

      

      

      

      

      

      

      

       22322232

    2

    2

    3

    3

    2

    2

    3

    3   aaa

    U aa L

     paaa

    U aa L

     pQ  

    Ua L

     paQ  

     3

    2 3

    Determine the volumetric flow rate of thefully developed plane Couette-Poiseuille flow

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    32/35

    -2

    -1

    0

    1

    2

    3

    4

    -4 -2 0 2 4

    Plot the non-dimensionalized volumetric flow rate of thefully developed plane Couette-Poiseuille flow

     LU 

     pa

    Ua

    Q

     

    2

    3

    21

    Ua

    Q

     pa

     

    2

    Why the flow rate becomes zero?

    Non-dimensionalizing Q, we get

    Steady, incompressible flow of Newtonian fluid in a pipe- fully developed pipe Poisuille flow

    Fixed pipe

    Fluid flow direction 2a 2a

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    33/35

    Laminar Flow in pipes

    .of linear ais pressure..

    0

     zeidz

    dp

     z

     p

    r vv

    vv

     z z

       

    Assumptions:

    Now look at the z -momentum equation.

     

      

       

     

      

     

    2

    2

    2

    2

    2

    11

    )(

    dz

    vv

    r r 

    vr 

    r r dz

    dp

     z

    vv

    v

    v

    vv

    v

     z z z

     z z

     z zr 

     z

      

           

    Steady Laminar pipe flow.

    The above “assumptions” can be obtained from the singleassumption of “fully developed” flow.

    In fully developed pipe flow, all velocity components are assumed to

    be unchanging along the axial direction, and axially symmetric i.e.:

    Results from Mass/Momentum

    Or rearranging, and substituting for the pressure gradient:

    The removal of the indicated terms yields:

    011

     

      

     

    vr 

    r r dz

    dp  z

     

    In a typical situation, we would have control over dp/dz . That is,we can induce a pressure gradient by altering the pressure at one

    end of the pipe. We will therefore take it as the input to thesystem (similar to what an electrical engineer might do in testinga linear system).

    dz

    dp

    dr 

    dvr 

    dr 

     z

     

    11

     

      

     

    dz

    dpr 

    dr 

    dvr 

    dr 

    d   z

     

     

      

     

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    34/35

    Laminar flow in pipes

    But at r = 0 velocity = max or dvz/dr = 0 C1 = 0

    Integrating once gives:

    Integrating one more time gives:

    1

    2

    2 C dz

    dpr 

    dr 

    dv

      z

     

     

     

      

    dz

    dpr 

    dr 

    dvr    z

     2

    2

     

      

     dz

    dpr 

    dr 

    dv z

     2

     

      

     Divide by r

    2

    2

    4C 

    dz

    dpr v z  

     

    at pipe wall r = a velocity = 02

    2

    40   C 

    dz

    dpa

        dz

    dpaC 

     4

    2

    2  

    Laminar flow in pipesSubstituting in the velocity equation gives:

    )4

    (44

    2222

       

    r a

    dz

    dp

    dz

    dpa

    dz

    dpr v z

    Volume flow rate is obtained from:

    tioncross

     z dAvQsec

       

      ar 

    r   z dr rvQ

    02 

     

      ar 

    r dr r ar dz

    dp

    Q0

    22

    2

    )(

     

     

    dz

    dpaQ

     

     

    8

    4

    dz

    dp DQ

     

     

    128

    4

  • 8/18/2019 Lecture 2 0 Fluid Dynamics

    35/35

    Laminar flow in pipesAverage velocity, vav= Q/area

    Maximum velocity at r = 0:

    dzdp D D

    dz

    dp D

    v ave z  

     

     

     

    324/128

    224

    ,

    )16

    ()4

    (22

    max,  

     D

    dz

    dpa

    dz

    dpv z  

    vavergae = ½ vmax

    Shear stress:

    )(8)4

    ()4

    2)((

    ,

     D

    v D

    dz

    dpa

    dz

    dp

    dr 

    dv   ave zar 

     z   

      

         

    Laminar flow in pipes

    Coefficient of friction: f = 4 Cf

    eave

    ave

    ave

    w f 

     R Dv

    v

    v

    C 1616

    2

    1 22

      

     

      

     

    Drag Coefficient:

    e R f 

    64