lecture 19 chapter 11 electromagnetics. conventional electrical production motor/generator turbines...

19
Lecture 19 Chapter 11 Electromagnetics

Post on 15-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Lecture 19 Chapter 11

Electromagnetics

Page 2: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Conventional Electrical Production

• motor/generator

• Turbines

• Perspective on voltage

• Cogeneration

Page 3: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Generator - Fig. 11-10, p. 366

DC Motor - Fig. 11-7, p. 364

Page 4: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-11, p. 367

Page 6: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration
Page 7: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-16a, p. 372

Fig. 11-16b, p. 372

Page 8: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Table 11-1, p. 373

Page 9: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Health Hazards

Extended exposure to electromagnetic fields (electropollution) is proposed to cause health risks by some medical professionals

cancerbirth defectsdepression learning disabilitiesChronic Fatigue SyndromeAlzheimer's diseaseSudden Infant Death Syndrome

Page 10: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Sources of Electropollution

• power lines and transformers• household wiring• microwave ovens• computers• televisions• clock radios• cellular phones• electric blankets• other electrical appliances

Page 11: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Table 11-2, p. 375

Page 12: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-19, p. 377

Page 13: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Pumped Storage Reservoir

Page 14: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration
Page 15: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration
Page 16: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-20, p. 379

Page 17: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

California • Castaic Dam, (1978) 1,566 MW

• John S. Eastwood, (1988) 200 MW

• San Luis Dam (William R. Gianelli), (1968) 424 MW

• Pyramid Lake, (1973) 1,495 MW

• Helms, (1984) 1,200 MW

• Iowa Hill, (Proposed 2010) 400 MW

• Edward C. Hyatt, (1968) 780 MW

Colorado • Cabin Creek (1967), 324 MW

• Mount Elbert 200 MW, 1,212 MW

Connecticut Rocky River, (1929) 31 MW

Georgia • Rocky Mountain Pumped Storage Station 848 MW

• Wallace Dam (operated by GA. Power) Lake Oconee/Lake

Sinclair 4 x 52 MW reversible units

Massachusetts • Bear Swamp, (1972) 600 MW

• Northfield Mountain, (1972) 1,080 MW

Michigan Ludington, (1973) 1,872 MW

Missouri • Clarence Cannon dam, (1983) 58 MW (pump-back capability

tested twice in 1984 and not used since)

• Taum Sauk, pure pump-back 450 MW (out of operation as of Dec, 2005)

New Jersey •Mt. Hope 2,000 MW

•Yards Creek Generating Station (1965) 400MW

New York •Blenheim-Gilboa, (1973) 1,200 MW

•Lewiston Pump-Generating Plant (Niagara), (1961) 240 MW

Oklahoma Salina Pumped Storage (Grand River Dam Authority)

(1971) 260MW

Pennsylvania •Muddy Run 1,071 MW

•Seneca 435 MW

South Carolina •Bad Creek, (1991) 1,065 MW, fed by Lake Jocassee.

•Lake Jocassee, (1973) 610 MW

Tennessee Raccoon Mountain, (1978) 1,530 MW

Virginia •Bath County 2,100 MW

•Smith Mountain Lake and Leesville Lake

Washington Grand Coulee Dam, (1981) 314 MW

Page 18: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-21, p. 380

Page 19: Lecture 19 Chapter 11 Electromagnetics. Conventional Electrical Production motor/generator Turbines Perspective on voltage Cogeneration

Fig. 11-22, p. 381

Combined Cycle