lecture 18 - home.gwu.educhenhanning/lecture_18.pdf · physical chemistry (ii) lecture 18 chem...

18
Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Upload: others

Post on 21-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Physical Chemistry (II)

Lecture 18

CHEM 3172-80

Lecturer: Hanning Chen, Ph.D.04/03/2017

Molecular Vibrational Spectra

Page 2: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Quiz 17

5 minutes

Please stop writing when the timer stops !

Page 3: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Three Types of Molecular Motion

Translation Vibration Rotation

O

O

O

O

: center of massChange? Yes

d d

d : inter-particle distance

Change? No

d

: center of massChange? No

d : inter-particle distance

Change? Yes

: center of massChange? No

d : inter-particle distance

Change? Noone-dimensional box quantum tunneling rigid rotorone-dimensional

harmonic oscillator(hard to study due to frequent

molecular collisions)

Page 4: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

the Vibrations of Diatomic Molecules

equilibrium state: R = R0 : equilibrium bond length

vibrational state: R ' = R0 + ΔRlinear spring

Hooke’s law: F = −kΔRThe spring always tends to move the particle towards the equilibrium position.

k ↑ : stiff spring k ↓ : floppy spring

A B

vibrational energy: Evib R( ) = Evib (R0 )+∂Evib

∂R⎛⎝⎜

⎞⎠⎟ R=R0

R − R0( ) + 12

∂2Evib

∂R2⎛⎝⎜

⎞⎠⎟ R=R0

R − R0( )2 + ...

: bond distortion

0Evib R( ) ≈ 1

2∂2Evib

∂R2⎛⎝⎜

⎞⎠⎟ R=R0

ΔR2 = 12

− ∂F∂R

⎛⎝⎜

⎞⎠⎟ R=R0

ΔR2 = 12kΔR2harmonic approximation:

(Taylor expansion)

Page 5: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Quantum Harmonic Oscillator

system’s Hamiltonian:

A B

H = T + V = − !

2

2mA

d 2

dRA2 −!2

2mB

d 2

dRB2 +

12k(RA − RB )

2

effective mass: meff =mAmB

mA +mBif mA ≫ mB meff ≈ mB

seems like only B is moving

bond distortion: ΔR = RA − RB

rewritten Hamiltonian:

Heff = Teff + Veff = − !

2

2meff

d 2

dΔR2+ 12kΔR2

two-particle system:

effective one-particle harmonic oscillator

vibrational energy: Ev = nv +

12

⎛⎝⎜

⎞⎠⎟ !ω

nv : vibrational quantum number non − negative integerquantized

ω = kmeff

: characteristic frequency

Page 6: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Ladder of Energy Levels

nv = 0

nv = 1

nv = 2

nv = 3

nv = 4

equally spaced energy levels !

E nv = 0( ) = 1

2!ω zero point

energy

a quantum oscillator can NOT be entirely frozen !

Heinsberg uncertainty principle

Δx→ 0Δp→ 0×

ΔpΔx ≥ !

2

Ev = nv +

12

⎛⎝⎜

⎞⎠⎟ !ω

ΔE = !ω

ΔE = !ω

ΔE = !ω

ΔE = !ωnv = 0→ nv = 1 ΔE = !ω observednv = 0→ nv = 2 ΔE = 2!ω nevernv = 0→ nv = 3 ΔE = 3!ω nevernv = 1→ nv = 2 ΔE = !ω observednv = 1→ nv = 3 ΔE = 2!ω nevernv = 2→ nv = 3 ΔE = !ω

×

observed

Page 7: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Selection Rules for Vibrational TransitionsFermi’s Golden Rule:

Ti→ f =

2π!

ψ i"r ψ f

2ρ f density of final states

transition dipole moment !r : polarization direction of incident light

harmonic oscillator: ϕv = NvHv y( )e− y2 /2 y = ΔR

α,α = !2

meff k⎛

⎝⎜⎞

⎠⎟

14

ϕv ' = Nv 'Hv ' y( )e− y2 /2Hv : Hermite polynomials

Decomposition of total wavefunction: ψ =ϕvϕe ϕe ΔR( ) : electronic wavefunction

ϕe ΔR( ) =ϕe(Re )+dϕe

dR (R=Re )ΔR + ...variation of electronic wavefunction:

ψ i!r ψ f = ϕe(Re )

!r ϕe(Re ) ϕv ϕv ' +∂ ϕe(R)

!r ϕe(R)∂R

ϕv!r ϕv ' = ∂µ

∂R⎛⎝⎜

⎞⎠⎟ ϕv

!r ϕv ' ≠ 00Hermitian Hamiltonian

molecular dipole for allowed

transitions

(Born-Oppenheimer approximation)

δ vv '

Page 8: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Allowed Vibrational Transitions

µif = ψ i

!r ψ f = ∂µ∂R

⎛⎝⎜

⎞⎠⎟ ϕv

!r ϕv ' ≠ 0transition dipole moment:

1. ϕv!r ϕv ' ≠ 0

NvNv ' Hv y( ) !rHv ' y( )∫ e− y

2

dr ≠ 0

only satisfied when Δv = v − v ' = ±1A vibrational transition can ONLY occur between two neighboring vibrational states !

2. ∂µ∂R

⎛⎝⎜

⎞⎠⎟ ≠ 0

A vibrational transition is ONLY possible when changing molecule dipole moment !

!E

initial final initial

µi = 0

A

A A

A

finalµ f = 0 ΔH = 0

NO photon is absorbed in order to conserve the energyH =

!E i!µ

Page 9: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Anharmonicity of Molecular Vibration

H2

potential energy profile

experimental data

harmonic approximation

OK

terrible Evib R( ) = 12

∂2Evib

∂R2⎛⎝⎜

⎞⎠⎟ R=R0

ΔR2 + 16

∂3Evib

∂R3⎛⎝⎜

⎞⎠⎟ R=R0

ΔR3 + 124

∂4Evib

∂R4⎛⎝⎜

⎞⎠⎟ R=R0

ΔR4 + ...

higher-order terms are neededwhen ΔR is large

F ≠ −kΔR the restoring force is no longer linear !

Morse potential:

VMorse = De(1− e−αΔR )2 α =

meffω2

De

Morse parameter

for a perfect harmonic oscillator, α → 0,De →∞

E nv( ) = nv +

12

⎛⎝⎜

⎞⎠⎟ !ω − nv +

12

⎛⎝⎜

⎞⎠⎟2

xe!ω

corrected energy levels:

xe : anharmonicity constant

Page 10: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Vibrational OvertonesWith the help of anharmonicity:A vibrational transition is NO LONGER limited between two neighboring vibrational states !

ψ v!r ψ v ' ≠ 0 even when Δv = v − v ' ≠ ±1

ΔEnv→nv+2= 2!ω − (4nv − 6)xe!ω

Vibrational overtones:

ΔEnv→nv+3= 3!ω − (6nv −12)xe!ω ΔEnv→nv+4

= 4!ω − (8nv − 20)xe!ω

overtone intensity drops substantially with increasing Δv

ΔEnv→nv+1= !ω − (2nv − 2)xe!ω

why ΔE1→2 < ΔE0→1 ? redshift ?

ΔE0→1 = !ω + 2xe!ω ΔE1→2 = !ω

difference maker

greater redshifts for vibrational overtones

Page 11: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

the Birge-Sponer Plot

nv = 0

nv = 1

nv = 2

nv = 3

nv = 4

ΔE = !ω + 2xe!ω

ΔE = !ω

ΔE = !ω − 2xe!ω

ΔE = !ω − 4xe!ω ΔE = !ω − 8xe!ω

nv = 5 E nv( ) = nv +

12

⎛⎝⎜

⎞⎠⎟ !ω − nv +

12

⎛⎝⎜

⎞⎠⎟2

xe!ω

D0 = E0→1 + E1→2 + E2→3 + ...= Ei→i+1i=1

∑Dissociation energy of a chemical bond:

assuming all vibrational transitions are detectable:

In most experiments, only the first several transitions can be observed

linear assumption:

ΔEnv→nv+1= !ω + 2xe!ω( )− 2!ω xenv

y axis interception: !ω + 2xe!ω

x axis interception: 1+ 12xe

Sshade =

(2xe +1)2

4xe!ω ≈ D0

Page 12: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Vibration-Rotation SpectraCoupling between molecular vibration and molecular rotation

~ 10 TetraHertz (1013 / s) ~ 100 GigaHertz (1011 / s)In general, molecular vibration is ~100 times faster than molecular rotation

ΔEvib >> ΔErot

molecular vibrational energy gap is much much greater than that of molecular rotation !

Combined energy term:

Etotal = Evib + Erot = v + 1

2⎛⎝⎜

⎞⎠⎟ !ω + BJ(J +1)

hω >> Bv : vibrational quantum number J : rotational quantum number

Page 13: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Spectral Branchesselection rules for rotational spectra:

ΔJ = 0,±1ΔJ = −1: P branch

ΔJ = +1: R branch

ΔJ = 0 : Q branch

EP = ΔEvib + ΔErot = !ω − 2BJ

ER = ΔEvib + ΔErot = !ω + 2B(J +1)

EQ = ΔEvib + ΔErot = !ωSeparation of the three branches yields

B : rotational constant

Page 14: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Combinational Differences

vibrational excitation

nv

BI 'A BI ''↑

A

the rotational “constant” B is actually a function of vibrational quantum number,

I ' ≠ I ''

EP = !ω − (B '+ B '')J + (B ''− B)J 2Corrected spectral differences: B '(B '') for the initial(final) vibrational state

ER = !ω + (B '+ B '') J +1( ) + (B ''− B) J +1( )2

EQ = !ω + B ''− B '( )J(J +1)Combinational differences:

ER J( )− EP J( ) = 4B'' (J + 12)

starting from the same rotational state

ER J −1( )− EP J +1( ) = 4B '(J + 12)

ending at the same rotational state

Page 15: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Energy Diagram of Combinational Differences

B '

B ''E R

J ()

E PJ ()

E PJ+1

()

E RJ−1

()

ER J( )− EP J( ) = 4B'' (J + 12)

ER J −1( )− EP J +1( ) = 4B '(J + 12)

J

JJ −1

J +1

J −1

J +1

For example, in HCl

Bv=0' : 10.440 cm−1 Bv=1

' : 10.136 cm−1

apparently due to the bond elongation

the reduction of B was also observed in DCl

Bv=0' : 5.392 cm−1 Bv=1

' : 5.280 cm−1

~ 3% reduction

~ 2% reduction

the bond distortion is less prominent in the heavier DCl

Page 16: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Review of Homework 6Review of Homework 1712.7 The microwave spectrum of 16 O12 CS gave absorption lines (in GHz) as follows:

J 1 2 3 4

32S 24.32592 36.48882 48.65164 60.81408

34S 23.73233 47.46240

Use the expressions for moments of inertia in Table 12.1 and assume that the bond lengths are unchanges by substitution; calculate the CO and CS bond lengths in OCS.

RCO = R1 and RCS = R2

I = mOmS

mOCS

R1 + R2( )2 + mC mOR12 +mSR2

2( )mOCS

!v = 2B J +1( ) = "2πcI

J +1( )

I = !2πc!v

J +1( )

Page 17: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Review of Homework 6Review of Homework 17

I(16O12C32S)=1.38 ×10−45kgm2 I(16O12C34S)=1.42 ×10−45kgm2

I = mOmS

mOCS

R1 + R2( )2 + mC mOR12 +mSR2

2( )mOCS

R1 = RCO = 1.16Å R2 = RCS = 1.56Å

Page 18: Lecture 18 - home.gwu.educhenhanning/Lecture_18.pdf · Physical Chemistry (II) Lecture 18 CHEM 3172-80 Lecturer: Hanning Chen, Ph.D. 04/03/2017 Molecular Vibrational Spectra

Homework 18

Reading assignment: Chapters 12.8, 12.9, 12.10, 12.11 and 12.12

Homework assignment: Exercises 12.20 Problems 12.9

Homework assignments must be turned in by 5:00 PM, April 4th, Tuesday

to my mailbox in the Department Main Office located at Room 4000, Science and Engineering Hall