lecture 1

61
7/21/2019 Lecture 1 http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 1/61 1 S. Turteltaub Ae 2135-II - 2015  Ae 2135-II  Vibrations Faculty of Aerospace Engineering Delft University of Technology Sergio Turteltaub  

Upload: isabelle-el-hajj

Post on 10-Mar-2016

3 views

Category:

Documents


0 download

DESCRIPTION

vibrations intro lecture

TRANSCRIPT

Page 1: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 1/61

1

S. Turteltaub

Ae 2135-II - 2015

 Ae 2135-II

 Vibrations

Faculty of Aerospace EngineeringDelft University of Technology

Sergio Turteltaub 

Page 2: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 2/61

2

S. Turteltaub

Ae 2135-II - 2015

Course setup

AE2135-II Vibrations

Responsible Instructor Sergio Turteltaub

Contact [email protected]

NB2.24

Blackboard

Education Period 2

ECTS 3

Lectures Tuesdays [Theory]Instructions Thursdays [Practice]

Page 3: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 3/61

3

S. Turteltaub

Ae 2135-II - 2015

Course setup

AE2135-II Vibrations

Textbook Daniel J. Inman

Special TU Delft edition

ISBN 9781784344726

Exams Regular: Period 2 

[22 Jan 2016, 9:00-12:00]

Resit: Period 3

Allowed material during

exam

• Only official formula

sheet

• (Graphical) Calculator

Page 4: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 4/61

4

S. Turteltaub

Ae 2135-II - 2015

Course setup

You are here

You need to know this [yesterday!]

Page 5: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 5/61

5

S. Turteltaub

Ae 2135-II - 2015

What are vibrations?

Vibrations in solids are repetitive (or quasi-repetitive) motions 

of a structure or structural component

Page 6: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 6/61

6

S. Turteltaub

Ae 2135-II - 2015

What are vibrations?

Vibrations in solids are repetitive (or quasi-repetitive) motions 

of a structure or structural component

Page 7: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 7/61

7

S. Turteltaub

Ae 2135-II - 2015

Why do we study vibrations?

• To determine the internal loads on the structure

• To determine the movement (deformation) of thestructure

• To be able to investigate the fatigue lifetime of the

structure

• To be able to investigate possible noise issues withthe structure

Aerospace structures are commonly subjected to vibrationsduring operation. For analysis and design purposes it iscritical to model the response of a structure under free andforced loading conditions.

Page 8: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 8/61

8

S. Turteltaub

Ae 2135-II - 2015

Multiple degree of freedom (MDOF)

Definitions

Degree of freedom:

A degree of freedom (DOF) is a (variable) scalar quantity thatis used to specify the location of the system as a function oftime (“coordinates” such as distances, angles, etc.)

Single degree of freedom (SDOF)

Page 9: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 9/61

9

S. Turteltaub

Ae 2135-II - 2015

Forced vibration

Definitions

Forced vibration

A system is said to be subjected to forced vibrations if there is atime-varying external force applied to it (called the forcingload) that is independent of the motion of the system

Page 10: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 10/61

10

S. Turteltaub

Ae 2135-II - 2015

Forced vibration

Definitions

Free vibration

A system is said to be under free vibrations if it is not subjectedto a forcing load

Free vibration

Page 11: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 11/61

11

S. Turteltaub

Ae 2135-II - 2015

Definitions

Dissipation

A system is said to be dissipative if its total energy (potential +kinetic) decays as the system vibrates.

The energy dissipated is converted into another form (e.g.,heat) and transferred out of the system

In this course, dissipation is related to dampers and/orfrictional forces

Page 12: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 12/61

12

S. Turteltaub

Ae 2135-II - 2015

Course overview

From simple to more complex systems:

Beginning of the course: Undamped, single degree of freedom

under free vibrations

End of the course: Damped, multiple degrees of freedom underrandom external loading

Topic Simple Complex

Degrees of freedom Single Multiple

Loading “Free” vibrations Forced vibrations

Dissipation Undamped Damped

Forced vibrations Harmonic Random

Page 13: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 13/61

13

S. Turteltaub

Ae 2135-II - 2015

Course contents

1. Introduction to vibrations and modelling of structures.

2. Free vibrations in single degree-of-freedom models.

3. Harmonically forced vibrations.

4. Vibrations under general loading types: impulse loading,step loading, arbitrary transient loading.

5. Vibration concepts: eigenfrequency, resonance, critical,undercritical and overcritical damping, transfer function.

6. Multiple degree-of-freedom systems.

Page 14: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 14/61

14

S. Turteltaub

Ae 2135-II - 2015

Study goals and learning outcomes

The purpose of this course is to provide an introduction to

vibrations of structures and structural components. At the endof the course, students should be able to analyze basicvibration problems and be able to use this information fordesign purposes.

Learning outcomes1. Represent an actual structure or structural component

using a mass-damper-spring model.

2. Formulate and solve the equation of motion associated tothe mass-damper-spring model.

3. Understand the influence of the main model parameters onthe structural response.

4. Interpret the results of the simulations in terms of globalcases such as resonance and under or over-damped responses.

Page 15: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 15/61

15

S. Turteltaub

Ae 2135-II - 2015

Topic 1

Modelling approach

Page 16: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 16/61

16

S. Turteltaub

Ae 2135-II - 2015

As an analyst, one must choose a modeling approach:

CompMechLab

Continuous:Flexible components modeled

e.g. via finite elements

Modelling approach

Ae 2135-II

Discrete:Interconnected masses

and/or rigid bodies

Components

Connectors

Support

Page 17: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 17/61

17

S. Turteltaub

Ae 2135-II - 2015

Lumped mass/ rigid body discrete models:

• Advantages:

Computational effort: relatively smallMight be solved in closed form in simple cases

Easy to modify for design/parametric analyses

• Limitations:

Might not be able to capture some critical effects

Requires experience to make proper assumptions

Modelling approach

Page 18: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 18/61

18

S. Turteltaub

Ae 2135-II - 2015

Basic modelling assumptions

Discrete:Interconnected masses

and/or rigid bodies

Components

Connectors

Modelling approach

1. Mass of the system is lumped inthe components only:• Point mass [translation] and/or• Rigid body [translation+rotation]

2. Connectors are assumed massless

3. Components do not deform (theyonly translate and/or rotate)

4. All deformations are lumped in theconnectors

5. Force and/or kinematic conditionsat the supports are known a priori

Support

Page 19: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 19/61

19

S. Turteltaub

Ae 2135-II - 2015

Supports

Page 20: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 20/61

20

S. Turteltaub

Ae 2135-II - 2015

Kinematic connectors

Page 21: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 21/61

21

S. Turteltaub

Ae 2135-II - 2015

Force connectors

Page 22: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 22/61

22

S. Turteltaub

Ae 2135-II - 2015

Force connectors

Spring stiffness

Torsional stiffness

Damping / viscosity

Page 23: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 23/61

23

S. Turteltaub

Ae 2135-II - 2015

Interconnected masses and/or rigid bodies

Each concentrated mass:In 3D: 3 scalars; in 2D: 2 scalars

• location of massEach rigid body:In 3D: 6 scalars; in 2D: 3 scalars

• location of one point• orientation of body

Degrees of freedom Types of connectors:1. Translational and/or

rotational spring and/or

damping2. Hinges,…

1

2

1. Identify main components2. Introduce connectors

Overview of modelling approach

Page 24: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 24/61

24

S. Turteltaub

Ae 2135-II - 2015

Interconnected masses and/or rigid bodies

Each concentrated mass:In 3D: 3 scalars; in 2D: 2 scalars

• location of massEach rigid body:In 3D: 6 scalars; in 2D: 3 scalars

• location of one point• orientation of body

Degrees of freedom Types of connectors:1. Information about forces 

transmitted between

components2. Kinematic constraints

1

2

1. Identify main components2. Introduce connectors

Overview of modelling approach

The size of the problem may bereduced by elimination ofdependent degrees of freedom

Page 25: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 25/61

25

S. Turteltaub

Ae 2135-II - 2015

Interconnected masses and/or rigid bodies

Equation(s) of motion

1

2

1. Identify main components2. Introduce connectors

Overview of modelling approach

Governing equations of motion are obtained from the balance oflinear and/or angular momentum (“Newton’s second law”)

Initial conditions

Initial position and velocity of all components

Boundary conditions

Information about the supports (external connections)

Page 26: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 26/61

26

S. Turteltaub

Ae 2135-II - 2015

1

2

All equations are assembled in a system of equations

Equations of motion for each component:

Linear momentum

Overview of modelling approach

Free body diagram and kinetic diagramfor each component

Angular momentum (rigid body)

Page 27: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 27/61

27

S. Turteltaub

Ae 2135-II - 2015

Discrete force connectorsMassless force connector: sum of forces and moments is zero(formally like equilibrium since inertial term is assumed zero)

Page 28: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 28/61

28

S. Turteltaub

Ae 2135-II - 2015

Discretizing continuous force connectors1. Axial stiffness of a (continuous) beam:• Beam of length L, cross section A and Young’s modulus E

subjected to an axial force F at its tip.

• The tip displaces a distance δ axially.

Page 29: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 29/61

29

S. Turteltaub

Ae 2135-II - 2015

Discretizing continuous force connectors1. Axial stiffness of a (continuous) beam:• Beam of length L, cross section A and Young’s modulus E

subjected to an axial force F at its tip.

• The tip displaces a distance δ axially.

• Equivalent discrete

system? 

Page 30: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 30/61

30

S. Turteltaub

Ae 2135-II - 2015

Discretizing continuous force connectors1. Axial stiffness of a (continuous) beam:• Neglecting the mass of the beam, it exerts an axial force equal

to F  at the tip• Equivalent spring should exert the same force

Page 31: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 31/61

31

S. Turteltaub

Ae 2135-II - 2015

Discretizing continuous force connectors1. Axial stiffness of a (continuous) beam:• Neglecting the mass of the beam, it exerts an axial force equal

to F  at the tip• Equivalent spring should exert the same force

Page 32: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 32/61

32

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors1. Axial stiffness of a (continuous) beam: Equivalent spring

Page 33: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 33/61

33

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors2. Axial stiffness of two beams in parallel:• Two beams of length L, cross sections A

1 , A

2 and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• The tip displaces a distance δ axially.

Page 34: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 34/61

34

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors2. Axial stiffness of two beams in parallel:• Two beams of length L, cross sections A

1 , A

2 and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• The tip displaces a distance δ axially.

• Equivalent discrete

system? 

Page 35: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 35/61

35

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors2. Axial stiffness of two beams in parallel:• Two beams of length L, cross sections A

1 , A

2 and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• Equivalent spring should exert the same force

Page 36: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 36/61

36

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors2. Axial stiffness of two beams in parallel:• Two beams of length L, cross sections A

1 , A

2 and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• Equivalent spring should exert the same force

Page 37: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 37/61

37

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors2. Axial stiffness of two beams in parallel: Equivalent spring

Page 38: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 38/61

38

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors3. Axial stiffness of two beams in series:• Two beams of lengths L

1 , L

2 , cross section A and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip. • The tip displaces a distance δ axially. Beams 1 and 2 contract δ

and δ2

respectively

Page 39: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 39/61

39

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors3. Axial stiffness of two beams in series:• Two beams of lengths L

1 , L

2 , cross section A and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip. • The tip displaces a distance δ axially. Beams 1 and 2 contract δ

and δ2

respectively

• Equivalent discrete

system? 

Page 40: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 40/61

40

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors3. Axial stiffness of two beams in series:• Two beams of lengths L

1 , L

2 , cross section A and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• Equivalent spring should exert the same force

Page 41: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 41/61

41

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors3. Axial stiffness of two beams in series:• Two beams of lengths L

1 , L

2 , cross section A and Young’s

moduli E 1 , E 2 subjected to an axial force F at its tip.

• Equivalent spring should exert the same force

Page 42: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 42/61

42

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors3. Axial stiffness of two beams in series: Equivalent spring

Page 43: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 43/61

43

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors4. Torsional stiffness of a (continuous) rod:• Rod of length L, (polar) moment of inertia J  and shear modulus

G subjected to a torque T at its tip.

• The rod rotates an angle ϕ.

Page 44: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 44/61

44

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors4. Torsional stiffness of a (continuous) rod:• Rod of length L, (polar) moment of inertia J  and shear modulus

G subjected to a torque T at its tip.

• The rod rotates an angle ϕ.

• Equivalent discrete system? 

Page 45: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 45/61

45

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors4. Torsional stiffness of a (continuous) rod:• Rod of length L, (polar) moment of inertia J  and shear modulus

G subjected to a torque T at its tip.• Equivalent torsional spring should exert the same torque

Page 46: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 46/61

46

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors4. Torsional stiffness of a (continuous) rod:• Rod of length L, (polar) moment of inertia J  and shear modulus

G subjected to a torque T at its tip.• Equivalent torsional spring should exert the same torque

Page 47: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 47/61

47

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors4. Torsional stiffness of a (continuous) rod: equivalent torsionalstiffness

Page 48: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 48/61

48

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors5. Bending stiffness of a (continuous) beam:• Beam of length L, moment of inertia I  and Young’s modulus E

subjected to a transverse force F at its tip.

• The tip displaces a distance δ transversely.

Page 49: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 49/61

49

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors5. Bending stiffness of a (continuous) beam:• Beam of length L, moment of inertia I  and Young’s modulus E

subjected to a transverse force F at its tip.

• The tip displaces a distance δ transversely.

• Equivalent discrete system? 

Page 50: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 50/61

50

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors5. Bending stiffness of a (continuous) beam:• Neglecting the mass of the beam, it exerts a transverse force

equal to F  at the tip• Equivalent (transverse) spring should exert the same force

Page 51: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 51/61

51

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors5. Bending stiffness of a (continuous) beam:• Neglecting the mass of the beam, it exerts a transverse force

equal to F  at the tip• Equivalent (transverse) spring should exert the same force

Page 52: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 52/61

52

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors5. Bending stiffness of a (continuous) beam: Equivalent spring

Page 53: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 53/61

53

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors6. Bending stiffness with torsional spring• Neglect mass of the beam and torsional spring

Page 54: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 54/61

54

S. TurteltaubAe 2135-II - 2015

6. Bending stiffness with torsional spring• Neglect mass of the beam and torsional spring

• Equivalent (transverse) spring should exert the same (reaction)force

Discretizing continuous force connectors

f

Page 55: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 55/61

55

S. TurteltaubAe 2135-II - 2015

6. Bending stiffness with torsional spring• Neglect mass of the beam and torsional spring

• Equivalent (transverse) spring should exert the same (reaction)force• Relation between angle ϕ and force F

Discretizing continuous force connectors

i i i i f

Page 56: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 56/61

56

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors6. Bending stiffness with torsional spring• Neglect mass of the beam and torsional spring

• Equivalent (transverse) spring should exert the same (reaction)force• Transverse deflection

i i i i f

Page 57: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 57/61

57

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors6. Bending stiffness with torsional spring• Neglect mass of the beam and torsional spring

• Equivalent (transverse) spring should exert the same (reaction)force

Di i i i f

Page 58: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 58/61

58

S. TurteltaubAe 2135-II - 2015

Discretizing continuous force connectors6. Bending stiffness with torsional spring

Modelling and solution steps

Page 59: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 59/61

59

S. TurteltaubAe 2135-II - 2015

Formulation of the problem:

Discrete:Interconnected masses

and/or rigid bodies

Components

Connectors

Modelling and solution steps

1. Identify the system that needs tobe analyzed

2. Discretize the system: components,internal connectors andinteractions with the environment

3. Introduce coordinates (DOFs) tofully describe the system4. Use free body diagrams and

kinetic diagrams to set up theequation(s) of motion

5. Identify the initial conditions and

the boundary conditions6. Solve the problem7. Test your solutionSupport

Modelling and solution steps

Page 60: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 60/61

60

S. TurteltaubAe 2135-II - 2015

Issues to take into account in order to choose a solutionmethod:

Discrete:Interconnected masses

and/or rigid bodies

Components

Connectors

Modelling and solution steps

• How many independent degrees-of-freedom does the system have?

• Is the system forced or free tovibrate?

• Is the system undamped or damped?

• How to test the correctness of thesolution? (i.e., how to check that itmakes sense?)

Support

Topic Simple Complex

DOF Single Multiple

Loading “Free” Forced

Dissipation Undamped Damped

Forcing Harmonic Random

A id thi

Page 61: Lecture 1

7/21/2019 Lecture 1

http://slidepdf.com/reader/full/lecture-1-56e10651ab73f 61/61

61

Avoid this

A good design is important