lecture 07 08 power flow analysis

Upload: serkan-senkal

Post on 09-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    1/68

    PowerFlowSolution

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    2/68

    Powerflow

    equations

    n

    k

    ikkikikii VVYP1

    )cos(

    n

    kikkiiii VVYQ 1 33 )sin(

    NetpowerenteringthenetworkatbusI

    CalculatedfromV, ,Y

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    3/68

    NonlinearSystemsMayHave

    MultipleSolutions

    or

    No

    Solution

    Example1:x2 2=0hassolutionsx=1.414

    Example2:

    x

    2

    +2=0has

    no

    real

    solution

    f(x)=x2 2 f(x)=x2 +2

    two

    solutions

    where

    f(x)

    =

    0

    nosolutionf(x)=0

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    4/68

    MultipleSolution

    Example

    3

    Thedcsystemshownbelowhastwosolutions:

    wherethe18watt

    loadisaresistive

    load

    2

    2

    Load

    Load

    Load

    The equation we're solving is

    9 voltsI 18 watts

    1 +R

    One solution is R 2

    Other solution is R 0.5

    Load Load

    R R

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    5/68

    GaussIteration

    There are a number of different iterative methods

    we can use. We'll consider two: Gauss and Newton.

    With the Gauss method we need to rewrite our

    equation in an implicit form: x = h(x)

    To iterate we fir

    (0)

    ( +1) ( )st make an initial guess of x, x ,

    and then iteratively solve x ( ) until we

    find a "fixed point", x, such that x (x).

    v vh x

    h

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    6/68

    GaussIteration

    Example

    ( 1) ( )

    (0)

    ( ) ( )

    Example: Solve - 1 0

    1

    Let k = 0 and arbitrarily guess x 1 and solve

    0 1 5 2.61185

    1 2 6 2.61612

    2 2.41421 7 2.61744

    3 2.55538 8 2.61785

    4 2.59805 9 2.61798

    v v

    v v

    x x

    x x

    k x k x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    7/68

    StoppingCriteria

    ( ) ( ) ( 1) ( )

    A key problem to address is when to stop the

    iteration. With the Guass iteration we stop when

    with

    If x is a scalar this is clear, but if x is a vector we

    need to generalize t

    v v v v x x x x

    ( )

    2i

    2 1

    he absolute value by using a norm

    Two common norms are the Euclidean & infinity

    max x

    v

    j

    n

    i ii

    x

    x

    x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    8/68

    GaussPower

    Flow

    *

    * * *i

    1 1

    * * * *

    1 1

    *

    *1 1,

    *

    *

    1,

    We first need to put the equation in the correct form

    S

    S

    S

    S1

    i i

    i

    i

    n n

    i i i ik k i ik k k k

    n n

    i i i ik k ik k k k

    n ni

    ik k ii i ik k

    k k k i

    ni

    i ik k

    ii k k i

    V I V Y V V Y V

    V I V Y V V Y V

    Y V Y V Y V

    V

    V Y V

    Y V

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    9/68

    GaussTwoBusPowerFlowExample

    A100MW,50Mvar loadisconnectedtoagenerator throughalinewithz=0.02+j0.06p.u.andlinechargingof5Mvar oneachend

    (100MVA

    base).

    Also,

    there

    is

    a25

    Mvar capacitor

    at

    bus

    2.

    If

    the

    generatorvoltageis1.0p.u.,whatisV2?

    SLoad= 1.0 + j0.5 p.u.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    10/68

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    11/68

    GaussTwo

    Bus

    Example,

    contd

    *2

    2 *

    22 1,2

    2 *2

    (0)2

    ( ) ( )2 2

    1 S

    1 -1 0.5( 5 15)(1.0 0)

    5 14.70

    Guess 1.0 0 (this is known as a flat start)

    0 1.000 0.000 3 0.9622 0.0556

    1 0.9671 0.0568 4 0.9622 0.0556

    2 0

    n

    ik k

    k k i

    v v

    V Y VY V

    jV j

    j V

    V

    v V v V

    j j

    j j

    .9624 0.0553j

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    12/68

    GaussTwo

    Bus

    Example,

    contd

    2

    * *1 1 11 1 12 2

    1

    0.9622 0.0556 0.9638 3.3

    Once the voltages are known all other values canbe determined, such as the generator powers and the

    line flows

    S ( ) 1.023 0.239

    In actual units P 102.3 MW

    V j

    V Y V Y V j

    1

    22

    , Q 23.9 Mvar

    The capacitor is supplying V 25 23.2 Mvar

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    13/68

    SlackBus

    InpreviousexamplewespecifiedS2 andV1 and

    thensolved

    for

    S1 and

    V2.

    WecannotarbitrarilyspecifySatallbusesbecausetotalgenerationmustequaltotalload+

    totallosses

    Wealsoneedananglereferencebus.

    Tosolvetheseproblemswedefineonebusasthe

    "slack"bus.

    This

    bus

    has

    afixed

    voltage

    magnitudeandangle,andavaryingreal/reactivepowerinjection.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    14/68

    Gausswith

    Many

    Bus

    Systems

    *( )( 1)

    ( )*1,

    ( ) ( ) ( )1 2

    ( 1)

    With multiple bus systems we could calculate

    new V ' as follows:

    S1

    ( , ,..., )

    But after we've determined we have a better

    estimate of

    i

    i

    nvv i

    i ik kvii k k i

    v v vi n

    vi

    s

    V Y VY V

    h V V V

    V

    its voltage , so it makes sense to use this

    new value. This approach is known as the

    Gauss-Seidel iteration.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    15/68

    GaussSeidel

    Iteration

    ( 1) ( ) ( ) ( )

    2 12 2 3( 1) ( 1) ( ) ( )

    2 13 2 3

    ( 1) ( 1) ( 1) ( ) ( )

    2 14 2 3 4

    ( 1) ( 1) ( 1)( 1) ( )2 1 2 3 4

    Immediately use the new voltage estimates:

    ( , , , , )( , , , , )

    ( , , , , )

    ( , , , ,

    v v v v

    nv v v v

    n

    v v v v v

    n

    v v vv vn n

    V h V V V V V h V V V V

    V h V V V V V

    V h V V V V V

    )

    The Gauss-Seidel works better than the Gauss, and

    is actually easier to implement. It is used instead

    of Gauss.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    16/68

    GaussTwo

    Bus

    Example,

    contd

    2

    * *1 1 11 1 12 2

    1

    0.9622 0.0556 0.9638 3.3

    Once the voltages are known all other values canbe determined, such as the generator powers and the

    line flows

    S ( ) 1.023 0.239

    In actual units P 102.3 MW

    V j

    V Y V Y V j

    1

    22

    , Q 23.9 Mvar

    The capacitor is supplying V 25 23.2 Mvar

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    17/68

    SlackBus

    InpreviousexamplewespecifiedS2 andV1 and

    thensolved

    for

    S1 and

    V2.

    WecannotarbitrarilyspecifySatallbusesbecausetotalgenerationmustequaltotalload+

    totallosses

    Wealsoneedananglereferencebus.

    Tosolvetheseproblemswedefineonebusasthe

    "slack"bus.

    This

    bus

    has

    afixed

    voltage

    magnitudeandangle,andavaryingreal/reactivepowerinjection.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    18/68

    Gausswith

    Many

    Bus

    Systems

    *( )( 1)

    ( )*1,

    ( ) ( ) ( )1 2

    ( 1)

    With multiple bus systems we could calculate

    new V ' as follows:

    S1

    ( , ,..., )

    But after we've determined we have a better

    estimate of

    i

    i

    nvv i

    i ik kvii k k i

    v v vi n

    vi

    s

    V Y VY V

    h V V V

    V

    its voltage , so it makes sense to use this

    new value. This approach is known as the

    Gauss-Seidel iteration.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    19/68

    GaussSeidel

    Iteration

    ( 1) ( ) ( ) ( )

    2 12 2 3( 1) ( 1) ( ) ( )

    2 13 2 3

    ( 1) ( 1) ( 1) ( ) ( )2 1

    4 2 3 4

    ( 1) ( 1) ( 1)( 1) ( )2 1 2 3 4

    Immediately use the new voltage estimates:

    ( , , , , )( , , , , )

    ( , , , , )

    ( , , , ,

    v v v v

    nv v v v

    n

    v v v v vn

    v v vv vn n

    V h V V V V V h V V V V

    V h V V V V V

    V h V V V V V

    )

    The Gauss-Seidel works better than the Gauss, and

    is actually easier to implement. It is used instead

    of Gauss.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    20/68

    ThreeTypes

    of

    Power

    Flow

    Buses

    Therearethreemaintypesofpowerflow

    buses Load(PQ)atwhichP/Qarefixed;iterationsolves

    forvoltagemagnitudeandangle.

    Slackat

    which

    the

    voltage

    magnitude

    and

    angle

    arefixed;iterationsolvesforP/Qinjections

    Generator(PV)atwhichPand|V|arefixed;iterationsolvesforvoltageangleandQinjection

    specialcodingisneededtoincludePVbusesintheGaussSeideliteration

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    21/68

    Inclusionof

    PV

    Buses

    in

    G

    S

    i

    i

    * *

    1

    ( )( ) ( )*

    1

    ( ) ( )

    To solve for V at a PV bus we must first make a

    guess of Q :

    Hence Im

    In the iteration we use

    k

    n

    i i ik k i ik

    nvv v

    i i ik k

    v vi i i

    S V Y V P jQ

    Q V Y V

    S P jQ

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    22/68

    Inclusionof

    PV

    Buses,

    cont'd

    ( 1)

    ( )*( )( 1)

    ( )*1,

    ( 1)i i

    Tentatively solve for

    S1

    But since V is specified, replace by V

    i

    vi

    v nvv i

    i ik kvii k k i

    vi

    V

    V Y VY V

    V

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    23/68

    TwoBus

    PV

    Example

    Bus 1

    (slack bus)

    Bus 2V1 = 1.0 V2 = 1.05

    P2 = 0 MW

    z = 0 .02 + j 0.06

    Considerthesametwobussystemfromtheprevious

    example,excepttheloadisreplacedbyagenerator

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    24/68

    TwoBus

    PV

    Example,

    cont'd

    *2

    2 21 1*

    22 2* *

    2 21 1 2 22 2 2

    2

    ( ) ( 1) ( 1)2 2 2

    1

    Im[ ]

    Guess V 1.05 0

    0 0 0.457 1.045 0.83 1.050 0.83

    1 0 0.535 1.049 0.93 1.050 0.932 0 0.545 1.050 0.96 1.050 0.96

    v v v

    SV Y V

    Y V

    Q Y V V Y V V

    v S V V

    j

    jj

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    25/68

    GeneratorReactive

    Power

    Limits

    Thereactivepoweroutputofgeneratorsvariestomaintaintheterminalvoltage;onarealgenerator

    this

    is

    done

    by

    the

    exciter

    Tomaintainhighervoltagesrequiresmorereactivepower

    Generatorshave

    reactive

    power

    limits,

    which

    aredependentuponthegenerator'sMWoutput

    These

    limits

    must

    be

    considered

    during

    the

    powerflow

    solution.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    26/68

    GeneratorReactive

    Limits,

    cont'd

    Duringpowerflowonceasolutionisobtainedchecktomakegeneratorreactivepoweroutputiswithin

    its

    limits

    Ifthereactivepowerisoutsideofthelimits,fixQatthemaxorminvalue,andresolvetreatingthe

    generatoras

    aPQ

    bus

    thisisknowas"typeswitching"

    alsoneedtocheckifaPQgeneratorcanagainregulate

    Ruleof

    thumb:

    to

    raise

    system

    voltage

    we

    need

    tosupplymorevars

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    27/68

    AcceleratedGSConvergence

    ( 1) ( )

    ( 1) ( ) ( ) ( )

    (

    Previously in the Gauss-Seidel method we were

    calculating each value x as

    ( )

    To accelerate convergence we can rewrite this as

    ( )

    Now introduce acceleration parameter

    v v

    v v v v

    v

    x h x

    x x h x x

    x

    1) ( ) ( ) ( )

    ( ( ) )With = 1 this is identical to standard gauss-seidel.

    Larger values of may result in faster convergence.

    v v v

    x h x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    28/68

    AcceleratedConvergence,

    contd

    ( 1) ( ) ( ) ( )

    Consider the previous example: - 1 0

    (1 )Comparison of results with different values of

    1 1.2 1.5 2

    0 1 1 1 1

    1 2 2.20 2.5 3

    2 2.4142 2.5399 2.6217 2.4643 2.5554 2.6045 2.6179 2.675

    4 2.59

    v v v v

    x x

    x x x x

    k

    81 2.6157 2.6180 2.596

    5 2.6118 2.6176 2.6180 2.626

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    29/68

    GaussSeidel

    Advantages

    Eachiterationisrelativelyfast(computational

    orderis

    proportional

    to

    number

    of

    branches

    +

    numberofbusesinthesystem

    Relativelyeasytoprogram

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    30/68

    GaussSeidel

    Disadvantages

    Tendstoconvergerelativelyslowly,although

    thiscan

    be

    improved

    with

    acceleration

    Hastendencytomisssolutions,particularlyon

    largesystems

    Tendstodivergeoncaseswithnegative

    branchreactances(commonwith

    compensatedlines)

    Needtoprogramusingcomplexnumbers

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    31/68

    NewtonRaphson

    Algorithm

    Thesecondmajorpowerflowsolution

    methodis

    the

    Newton

    Raphson

    algorithm

    KeyideabehindNewtonRaphsonistouse

    sequentiallinearization

    General form of problem: Find an x such that

    ( ) 0f x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    32/68

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    33/68

    NewtonRaphson

    Method,

    contd

    ( )( ) ( )

    ( )

    1( )( ) ( )

    3. Approximate ( ) by neglecting all terms

    except the first two

    ( )( ) 0 ( )

    4. Use this linear approximation to solve for

    ( )( )

    5. Solve for a new estim

    vv v

    v

    vv v

    f x

    df x f x f x x

    dx

    x

    df x x f x

    dx

    ( 1) ( ) ( )

    ate of x

    v v v x x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    34/68

    NewtonRaphson

    Example

    2

    1( )( ) ( )

    ( ) ( ) 2

    ( )

    ( 1) ( ) ( )

    ( 1) ( ) ( ) 2

    ( )

    Use Newton-Raphson to solve ( ) - 2 0

    The equation we must iteratively solve is

    ( )( )

    1(( ) - 2)

    2

    1(( ) - 2)

    2

    vv v

    v v

    v

    v v v

    v v v

    v

    f x x

    df x x f x

    dx

    x xx

    x x x

    x x xx

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    35/68

    NewtonRaphson

    Example,

    contd

    ( 1) ( ) ( ) 2

    ( )

    (0)

    ( ) ( ) ( )

    3 3

    6

    1(( ) - 2)

    2Guess x 1. Iteratively solving we get

    v ( )

    0 1 1 0.5

    1 1.5 0.25 0.08333

    2 1.41667 6.953 10 2.454 10

    3 1.41422 6.024 10

    v v v

    v

    v v v

    x x x

    x

    x f x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    36/68

    SequentialLinear

    Approximations

    Function is f(x) = x2 - 2 = 0.Solutions are points wheref(x) intersects f(x) = 0 axis

    At eachiteration theN-R methoduses a linearapproximationto determine

    the next valuefor x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    37/68

    NewtonRaphson

    Comments

    Whenclosetothesolutiontheerror

    decreasesquite

    quickly

    method

    has

    quadraticconvergence

    f(x(v))isknownasthemismatch,whichwe

    wouldlike

    to

    drive

    to

    zero

    Stoppingcriteriaiswhenf(x(v))

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    38/68

    MultiVariable

    Newton

    Raphson

    1 1

    2 2

    Next we generalize to the case where is an n-

    dimension vector, and ( ) is an n-dimension function( )

    ( )

    ( )

    ( )

    Again define the solution so ( ) 0 and

    n n

    x f

    x f

    x f

    x

    f xx

    x

    x f x

    x

    x f xx

    x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    39/68

    Multi

    Variable

    Case,

    contdi

    1 11 1 1 21 2

    1

    n nn n 1 2

    1 2

    n

    The Taylor series expansion is written for each f ( )

    f ( ) f ( )f ( ) f ( )

    f ( )higher order terms

    f ( ) f ( )

    f ( ) f ( )

    f ( )higher order terms

    nn

    n

    n

    x xx x

    x

    x

    x xx x

    x

    x

    x

    x xx x

    x

    x x

    x x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    40/68

    Multi

    Variable

    Case,

    contd

    1 1 1

    1 21 1

    2 2 2

    2 21 2

    1 2

    This can be written more compactly in matrix form

    ( ) ( ) ( )

    ( )( ) ( ) ( )

    ( )( )

    ( )( ) ( ) ( )

    n

    n

    n

    n n n

    n

    f f f x x x

    f x f f f

    f x x x x

    f f f f

    x x x

    x x x

    xx x x

    xf x

    xx x x

    higher order terms

    nx

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    41/68

    Jacobian

    Matrix

    1 1 1

    1 2

    2 2 2

    1 2

    1 2

    The n by n matrix of partial derivatives is known

    as the Jacobian matrix, ( )( ) ( ) ( )

    ( ) ( ) ( )

    ( )

    ( ) ( ) ( )

    n

    n

    n n n

    n

    f f f

    x x x

    f f f

    x x x

    f f f

    x x x

    J xx x x

    x x x

    J x

    x x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    42/68

    Multi

    Variable

    N

    R

    Procedure

    1

    ( 1) ( ) ( )

    ( 1) ( ) ( ) 1 ( )

    ( )

    Derivation of N-R method is similar to the scalar case

    ( ) ( ) ( ) higher order terms( ) 0 ( ) ( )

    ( ) ( )

    ( ) ( )

    Iterate until ( )

    v v v

    v v v v

    v

    f x f x J x xf x f x J x x

    x J x f x

    x x x

    x x J x f x

    f x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    43/68

    Multi

    Variable

    Example1

    2

    2 21 1 2

    2 22 1 2 1 2

    1 1

    1 2

    2 2

    1 2

    xSolve for = such that ( ) 0 where

    x

    f ( ) 2 8 0

    f ( ) 4 0

    First symbolically determine the Jacobian

    f ( ) f ( )

    ( ) =f ( ) f ( )

    x x

    x x x x

    x x

    x x

    x f x

    x

    x

    x x

    J xx x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    44/68

    Multi

    variable

    Example,

    contd1 2

    1 2 1 2

    11 1 2 1

    2 1 2 1 2 2

    (0)

    1(1)

    4 2( ) =

    2 2Then

    4 2 ( )

    2 2 ( )

    1Arbitrarily guess

    1

    1 4 2 5 2.1

    1 3 1 3 1.3

    x x

    x x x x

    x x x f

    x x x x x f

    J x

    x

    x

    x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    45/68

    Multi

    variable

    Example,

    contd1

    (2)

    (2)

    2.1 8.40 2.60 2.51 1.8284

    1.3 5.50 0.50 1.45 1.2122

    Each iteration we check ( ) to see if it is below our

    specified tolerance0.1556

    ( )0.0900

    If = 0.2 then we wou

    x

    f x

    f x

    ld be done. Otherwise we'd

    continue iterating.

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    46/68

    NR

    Application

    to

    Power

    Flow

    *

    * * *i

    1 1

    We first need to rewrite complex power equations

    as equations with real coefficients

    S

    These can be derived by defining

    Recal

    i

    n n

    i i i ik k i ik k k k

    ik ik ik

    j

    i i i i

    ik i k

    V I V Y V V Y V

    Y G jB

    V V e V

    jl e cos sinj

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    47/68

    Real

    Power

    Balance

    Equations* *

    i1 1

    1

    i1

    i1

    S ( )

    (cos sin )( )

    Resolving into the real and imaginary parts

    P ( cos sin )

    Q ( sin cos

    ikn n

    ji i i ik k i k ik ik

    k k

    n

    i k ik ik ik ik k

    n

    i k ik ik ik ik Gi Dik

    n

    i k ik ik ik ik

    P jQ V Y V V V e G jB

    V V j G jB

    V V G B P P

    V V G B

    )k Gi DiQ Q

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    48/68

    Newton

    Raphson

    Power

    Flow

    i1

    In the Newton-Raphson power flow we use Newton's

    method to determine the voltage magnitude and angleat each bus in the power system.

    We need to solve the power balance equations

    P ( cosn

    i k ik ik k

    V V G

    i1

    sin )

    Q ( sin cos )

    ik ik Gi Di

    n

    i k ik ik ik ik Gi Dik

    B P P

    V V G B Q Q

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    49/68

    Power

    Flow

    Variables

    2 2 2

    n

    2

    Assume the slack bus is the first bus (with a fixed

    voltage angle/magnitude). We then need to determine

    the voltage angle/magnitude at the other buses.

    ( )

    ( )

    G

    n

    P P

    V

    V

    x

    x f x

    2

    2 2 2

    ( )

    ( )

    ( )

    D

    n Gn Dn

    G D

    n Gn Dn

    P

    P P P

    Q Q Q

    Q Q Q

    x

    x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    50/68

    N

    R

    Power

    Flow

    Solution

    ( )

    ( )

    ( 1) ( ) ( ) 1 ( )

    The power flow is solved using the same procedure

    discussed last time:Set 0; make an initial guess of ,

    While ( ) Do

    ( ) ( )

    1

    End While

    v

    v

    v v v v

    v

    v v

    x x

    f x

    x x J x f x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    51/68

    Power

    Flow

    Jacobian

    Matrix

    1 1 1

    1 2

    2 2 2

    1 2

    1 2

    The most difficult part of the algorithm is determining

    and inverting the n by n Jacobian matrix, ( )( ) ( ) ( )

    ( ) ( ) ( )

    ( )

    ( ) ( ) ( )

    n

    n

    n n n

    n

    f f f

    x x x

    f f f

    x x x

    f f f

    x x x

    J xx x x

    x x x

    J x

    x x x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    52/68

    Power

    Flow

    Jacobian

    Matrix,

    contd

    i

    i

    i 1

    Jacobian elements are calculated by differentiating

    each function, f ( ), with respect to each variable.

    For example, if f ( ) is the bus i real power equation

    f ( ) ( cos sin )n

    i k ik ik ik ik Gik

    x V V G B P P

    x

    x

    i

    1

    i

    f ( )( sin cos )

    f ( )( sin cos ) ( )

    Di

    n

    i k ik ik ik ik

    i kk i

    i j ik ik ik ik

    j

    xV V G B

    xV V G B j i

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    53/68

    Two

    Bus

    Newton

    Raphson

    Example

    Line Z = 0 .1j

    One Two1.000 pu 1.000 pu

    200 MW

    100 MVR

    0 MW

    0 MVR

    For the two bus power system shown below, use tNewton-Raphson power flow to determine the

    voltage magnitude and angle at bus two. Assumethat bus one is the slack and SBase = 100 MVA.

    2

    2

    10 10

    10 10bus

    j j

    V j j

    x Y

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    54/68

    Two

    Bus

    Example,

    contd

    i1

    i1

    2 2 1 2

    22 2 1 2 2

    General power balance equations

    P ( cos sin )

    Q ( sin cos )

    Bus two power balance equations

    P (10sin ) 2.0 0

    ( 10cos ) (10) 1.0 0

    n

    i k ik ik ik ik Gi Dik

    n

    i k ik ik ik ik Gi Dik

    V V G B P P

    V V G B Q Q

    V V

    Q V V V

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    55/68

    Two

    Bus

    Example,

    contd2 2 2

    2

    2 2 2 2

    2 2

    2 2

    2 2

    22

    2 2 2

    2 2 2 2

    P ( ) (10sin ) 2.0 0

    ( ) ( 10cos ) (10) 1.0 0

    Now calculate the power flow Jacobian

    P ( ) P ( )

    ( )Q ( ) Q ( )

    10 cos 10sin

    10 sin 10cos 20

    V

    Q V V

    VJ

    V

    V

    V V

    x

    x

    x x

    xx x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    56/68

    Two

    Bus

    Example,

    First

    Iteration(0)

    2 2(0)

    22 2 2

    2 2 2(0)

    2 2 2 2

    (1)

    0Set 0, guess

    1

    Calculate

    (10sin ) 2.0 2.0f( )

    1.0( 10cos ) (10) 1.0

    10 cos 10sin 10 0( )

    10 sin 10cos 20 0 10

    0 10 0Solve

    1 0 10

    v

    V

    V V

    V

    V V

    x

    x

    J x

    x

    12.0 0.2

    1.0 0.9

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    57/68

    Two

    Bus

    Example,

    Next

    Iterations(1)

    2

    (1)

    1

    (2)

    0.9(10sin( 0.2)) 2.0 0.212f( )

    0.2790.9( 10cos( 0.2)) 0.9 10 1.0

    8.82 1.986( )

    1.788 8.199

    0.2 8.82 1.986 0.212 0.2330.9 1.788 8.199 0.279 0.8586

    f(

    x

    J x

    x

    (2) (3)

    (3)2

    0.0145 0.236)

    0.0190 0.8554

    0.0000906f( ) Done! V 0.8554 13.52

    0.0001175

    x x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    58/68

    Two

    Bus

    Solved

    Values

    Line Z = 0.1j

    One Two1.000 pu 0.855 pu

    200 MW100 MVR200 .0 MW168 .3 MVR

    -13.522 De g

    200.0 MW

    168.3 MVR

    -200.0 MW

    -100.0 MVR

    Once the voltage angle and magnitude at bus 2 areknown we can calculate all the other system values

    such as the line flows and the generator reactivepower output

    Two Bus Case Low Voltage Solution

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    59/68

    TwoBusCaseLowVoltageSolution

    (0)

    2 2(0)

    22 2 2

    This case actually has two solutions! The second

    "low voltage" is found by using a low initial guess.

    0Set 0, guess

    0.25

    Calculate

    (10sin ) 2.0f( )

    ( 10cos ) (10) 1.0

    v

    V

    V V

    x

    x

    2 2 2(0)

    2 2 2 2

    2

    0.875

    10 cos 10sin 2.5 0( )

    10 sin 10cos 20 0 5

    V

    V V

    J x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    60/68

    Low

    Voltage

    Solution,

    cont'd1(1)

    (2) (2) (3)

    0 2.5 0 2 0.8Solve

    0.25 0 5 0.875 0.075

    1.462 1.42 0.921( )

    0.534 0.2336 0.220

    x

    f x x x

    Line Z = 0.1j

    One Two1.000 pu 0 .261 pu

    200 MW

    100 MVR

    200.0 MW

    831.7 MVR

    -49.914 Deg

    200 .0 MW

    831 .7 MVR

    -200.0 MW

    -100.0 MVR

    Low voltage solution

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    61/68

    PV

    BusesSincethevoltagemagnitudeatPVbusesis

    fixed

    there

    is

    no

    need

    to

    explicitly

    include

    thesevoltagesinx orwritethereactive

    powerbalanceequations

    thereactive

    power

    output

    of

    the

    generator

    variestomaintainthefixedterminalvoltage

    (withinlimits)

    optionallythese

    variations/equations

    can

    be

    includedbyjustwritingtheexplicitvoltage

    constraintforthegeneratorbus

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    62/68

    Three

    Bus

    PV

    Case

    Example

    Line Z = 0.1j

    Line Z = 0.1j Line Z = 0.1j

    One Two1.000 pu

    0.941 pu

    200 MW

    100 MVR170.0 MW

    68.2 MVR

    -7.469 Deg

    Three 1.000 pu

    30 MW

    63 MVR

    2 2 2 2

    3 3 3 3

    2 2 2

    For this three bus case we have

    ( )

    ( ) ( ) 0

    V ( )

    G D

    G D

    D

    P P P

    P P P

    Q Q

    x

    x f x x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    63/68

    Modeling

    Voltage

    Dependent

    LoadSo far we've assumed that the load is independent of

    the bus voltage (i.e., constant power). However, the

    power flow can be easily extended to include voltage

    depedence with both the real and reactive l

    Di Di

    1

    1

    oad. This

    is done by making P and Q a function of :

    ( cos sin ) ( ) 0

    ( sin cos ) ( ) 0

    i

    n

    i k ik ik ik ik Gi Di ik

    n

    i k ik ik ik ik Gi Di ik

    V

    V V G B P P V

    V V G B Q Q V

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    64/68

    Voltage

    Dependent

    Load

    Example

    22 2 2 2

    2 22 2 2 2 2

    2 2 2 2

    In previous two bus example now assume the load is

    constant impedance, so

    P ( ) (10sin ) 2.0 0

    ( ) ( 10cos ) (10) 1.0 0

    Now calculate the power flow Jacobian

    10 cos 10sin 4.0( )

    10

    V V

    Q V V V

    V VJ

    x

    x

    x

    2 2 2 2 2sin 10cos 20 2.0V V V

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    65/68

    Voltage

    Dependent

    Load,

    cont'd(0)

    22 2 2(0)

    2 22 2 2 2

    (0)

    1(1)

    0Again set 0, guess

    1

    Calculate

    (10sin ) 2.0 2.0f( )

    1.0( 10cos ) (10) 1.0

    10 4( )

    0 120 10 4 2.0 0.1667

    Solve1 0 12 1.0 0.9167

    v

    V V

    V V V

    x

    x

    J x

    x

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    66/68

    Voltage

    Dependent

    Load,

    cont'd

    Line Z = 0.1j

    One Two1.000 pu

    0.894 pu

    160 MW

    80 MVR

    160 .0 MW

    120.0 MVR

    -10.304 Deg

    160.0 MW120 .0 MVR

    -160.0 MW-80.0 MVR

    With constant impedance load the MW/Mvar load atbus 2 varies with the square of the bus 2 voltagemagnitude. This if the voltage level is less than 1.0,the load is lower than 200/100 MW/Mvar

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    67/68

    Solving

    Large

    Power

    SystemsThemostdifficultcomputationaltaskis

    inverting

    the

    Jacobian

    matrix invertingafullmatrixisanordern3 operation,

    meaningtheamountofcomputationincreases

    with

    the

    cube

    of

    the

    size

    size thisamountofcomputationcanbedecreased

    substantiallybyrecognizingthatsincetheYbus isa

    sparse

    matrix,

    the

    Jacobian

    is

    also

    a

    sparse

    matrix usingsparsematrixmethodsresultsina

    computationalorderofaboutn1.5.

    thisis

    asubstantial

    savings

    when

    solving

    systems

    Newton Raphson Power Flow

  • 8/8/2019 Lecture 07 08 Power Flow Analysis

    68/68

    NewtonRaphsonPowerFlow

    Advantages

    fastconvergence

    as

    long

    as

    initial

    guess

    is

    close

    to

    solution

    largeregionofconvergence

    Disadvantages eachiterationtakesmuchlongerthanaGauss

    Seideliteration

    morecomplicated

    to

    code,

    particularly

    when

    implementingsparsematrixalgorithms

    Newton

    Raphson

    algorithm

    is

    very

    common

    in