lecture 02 - 1 sep 2010 - thermo

Upload: ppham27

Post on 10-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    1/19

    1

    Thermodynamics

    BIOCHEM 227 SUMMER 2010

    Lecture 2

    Wednesday, September 1, 2010

    TODAY

    Continue: example from last lecture

    Chemical elements in biochemistry

    Review of functional groups

    Review of basic thermodynamics

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    2/19

    2

    An Example: Enzyme Design

    Nature 453: 190 (2008)

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    3/19

    3

    Enzyme Design Example

    Design an enzyme to carry out the Kempelimination

    abstract a proton via a general base

    no natural enzyme for this reaction

    How? Asp or Glu sidechain

    His positioned by Asp

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    4/19

    4

    Enzyme Design Example

    Design parameters

    structure: catalytic residues, other residues

    pKa

    quantum calculations

    need a protein scaffold

    Result: functional catalysts for both designs

    Activity confirmed by assays

    Structure confirmed by crystallography

    Enzyme Design Example

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    5/19

    5

    Comparison of design (grey) and actual (cyan):

    Enzyme Design Example

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    6/19

    6

    Enzyme Design Example

    Implication: possibility of designing customcatalysts

    pharmaceuticals

    energy

    chemical industry etc

    Chemical Elements andFunctional Groups

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    7/19

    7

    Chemical Composition

    ~300026Macromolecules (proteins, nucleicacids, and polysaccharides)

    ~3000.2Other small molecules

    501Fatty acids and precursors

    1000.4Nucleotides and precursors

    1000.4Amino acids and precursors

    2501Sugars and precursors

    201Inorganic ions

    170Water

    NUMBER OF TYPES OFEACH MOLECULE

    PERCENT OFTOTAL CELL

    WEIGHT

    Constituent

    Chemical Composition

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    8/19

    8

    Chemical Composition Chemical Composition

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    9/19

    9

    Chemical Composition Chemical Composition

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    10/19

    10

    Chemical Composition Chemical Composition

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    11/19

    11

    Review of Thermodynamics

    Thermodynamics

    Why are we concerned with thermo?

    What can it tell us?

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    12/19

    12

    Life: Not in Equilibrium!

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    13/19

    13

    Equilibrium Constants

    [products]

    [reactants]eqK =

    at equilibrium

    Reaction Quotient

    [products]

    [reactants]

    Q =

    not at equilibrium

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    14/19

    14

    Le Chteliers Principle

    If a reaction at equilibrium is subjected to achange in conditions that displaces it fromequilibrium, it adjusts to a new equilibrium.

    Free Energy

    STHG =

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    15/19

    15

    Free Energy

    lnG G RT Q = +

    lnG G RT Q = +

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    16/19

    16

    lnG G RT Q = +

    ( ln )ln

    G G RT Q dQG Q RTQ RTQ Q C

    = += + +

    Free Energy

    ln eqG RT K =

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    17/19

    17

    Activation Energy & Catalysis Activation Energy & Catalysis

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    18/19

    18

    Arrhenius Equation

    aE

    RTk Ae

    =

    where, from transition-state theory:

    A = kbT/h

    Ea = G

    Coupling of Processes

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010

  • 8/8/2019 Lecture 02 - 1 Sep 2010 - Thermo

    19/19

    19

    THINGS TO KNOW

    Be familiar with which elements have roles inbiology, roughly what those roles are and why

    Be familiar with functional groups found inbiological molecules

    Thermo Understand basic thermo discussed today

    (We will revisit the enzyme design paper)

    BCH 227 FALL 2010 LECTURE 2: THERMODYNAMICS 1 SEP 2010