lec7 clean

Upload: denisttn

Post on 02-Mar-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Lec7 Clean

    1/25

    Lecture 7 Spring 2006 1

    Thermodynamics of hydrogel swelling

    Applications of hydrogels in bioengineering

    Announcements:

    Last Day: Structure of hydrogels

    Today: bioengineering applications of hydrogelsThermodynamics of hydrogel swelling

    Reading: N.A. Peppas et al., Physicochemical foundations and structural design of hydrogels inmedicine and biology,Annu. Rev. Biomed. Eng., 2, 9-29 (2000).

    Supplementary Reading: P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, pp. 464-469, pp. 576-581 (Statistical thermodynamics of networks and network swelling)

    P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, pp. 495-507 (Entropy of polymer-solvent mixing)

  • 7/26/2019 Lec7 Clean

    2/25

    Lecture 7 Spring 2006 2

    hydrogels

  • 7/26/2019 Lec7 Clean

    3/25

    Lecture 7 Spring 2006 3

    Thermodynamics of hydrogel swelling

    Vr

    Vsswelling

    Move to a

    new, larger

    aqueous

    bath

    polymerize

  • 7/26/2019 Lec7 Clean

    4/25

    Lecture 7 Spring 2006 4

    Thermodynamics of hydrogel swelling

    Vr

    Competing driving forces determine total swelling:

    Vs

    swelling

  • 7/26/2019 Lec7 Clean

    5/25

    Lecture 7 Spring 2006 5

    Description of cross-linked network

    Vs

    VrCross-linking

    (relaxed)

    swelling

    Expansion factor:

    x

    y

    z= 3 = V

    s/Vr = (V

    2+ n

    1v

    m,1)/V

    r

    2,s = V2/(V2 + n1vm,1) volume fraction of polymer in swollen gel

    2,r= V2/Vr volume fraction of polymer in relaxed gel

  • 7/26/2019 Lec7 Clean

    6/25

    Lecture 7 Spring 2006 6

    Free energy of mixing in the network:

    Starting point: thermodynamic description of simple polymer-solvent mixing:

    Seek to derive an expression for the free energy of mixing:

    Gmix

  • 7/26/2019 Lec7 Clean

    7/25

    Lecture 7 Spring 2006 7

    Free energy of mixing in the network:

    Lattice model description of polymers: (Flory/Huggins)

    ENTHALPY OF MIXING:

    12

    Energy of contacts:

  • 7/26/2019 Lec7 Clean

    8/25

    Lecture 7 Spring 2006 8

    Free energy of mixing in the network:

    Lattice model description of polymers: (Flory/Huggins)

    ENTHALPY OF MIXING:

  • 7/26/2019 Lec7 Clean

    9/25

    Lecture 7 Spring 2006 9

    Free energy of mixing in the network:

    Lattice model description of polymers: (Flory/Huggins)

    ENTROPY OF MIXING:

  • 7/26/2019 Lec7 Clean

    10/25

    Lecture 7 Spring 2006 10

    Free energy of mixing in the network:

    Lattice model description of polymers: (Flory/Huggins)

    ENTROPY OF MIXING:

    Image removed due to copyright

    reasons. Please see: Figure 110

    in Flory, P. J. Principles ofPolymer Chemistry. Ithaca, NY:

    Cornell University Press, 1953.

  • 7/26/2019 Lec7 Clean

    11/25

    Lecture 7 Spring 2006 11

    Free energy of mixing in the network:

    Lattice model description of polymers: (Flory/Huggins)

  • 7/26/2019 Lec7 Clean

    12/25

    Lecture 7 Spring 2006 12

    Description of cross-linked network

    Assume cross-links are randomly placed; on average, allare equidistant:

    = number of subchains in cross-linked network

    e

    = number of effective subchains: tethered at both

    ends

    M = MW of original chains

    Mc = MW of subchains = MW between cross-links

    A

    Example: assume polymer chains have a molecular

    weight M = 4A and each subchain has molecular weight

    A:Two useful relationships:

    = V2/vsp,2Mc

    e = (1 - 2(Mc/M))

  • 7/26/2019 Lec7 Clean

    13/25

    Lecture 7 Spring 2006 13

    Elastic contribution to hydrogel free energy:

    GelAccount for entropic retraction force that restrains swelling:

    Gel > 0

  • 7/26/2019 Lec7 Clean

    14/25

    Lecture 7 Spring 2006 14

    Elastic contribution to hydrogel free energy:

    Gel

  • 7/26/2019 Lec7 Clean

    15/25

    Lecture 7 Spring 2006 15

    Elastic contribution to hydrogel free energy:

    Gel

  • 7/26/2019 Lec7 Clean

    16/25

    Lecture 7 Spring 2006 16

    Complete expression for the free energy of the

    gel:

  • 7/26/2019 Lec7 Clean

    17/25

    Lecture 7 Spring 2006 17

    Complete expression for the free energy of the

    gel:

    C l i f h f f h

  • 7/26/2019 Lec7 Clean

    18/25

    Lecture 7 Spring 2006 18

    Complete expression for the free energy of the

    gel:

    C l t i f th f f th

  • 7/26/2019 Lec7 Clean

    19/25

    Lecture 7 Spring 2006 19

    Complete expression for the free energy of the

    gel:

    C l t i f th f f th

  • 7/26/2019 Lec7 Clean

    20/25

    Lecture 7 Spring 2006 20

    Complete expression for the free energy of the

    gel:

    P di ti f Fl /P th

  • 7/26/2019 Lec7 Clean

    21/25

    Lecture 7 Spring 2006 21

    Predictions of Flory/Peppas theory

    Varying2,r:

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0 10000 20000 30000 40000 50000

    Mc (g/mole)v

    olumefraction

    polymerinsw

    ollen

    state

    0.2

    0.1

    0.05

    0

    20

    40

    60

    80

    100

    120

    0 10000 20000 30000 40000 50000

    Mc (g/mole)

    S=

    Vs/Vdry

    0.20.1

    0.05

    Predictions of Flor /Peppas theor

  • 7/26/2019 Lec7 Clean

    22/25

    Lecture 7 Spring 2006 22

    Predictions of Flory/Peppas theory

    Varying :

    hydrogel swelling vs. solvent quality

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0 10000 20000 30000 40000 50000

    Mc (g/mole)

    volum

    efraction

    polym

    erin

    swollen

    state

    0.5

    0.4

    0.2

    hydrogel swelling vs. solvent quality

    0

    20

    40

    60

    80

    100

    120

    0 10000 20000 30000 40000 50000

    Mc (g/mole)

    S

    0.5

    0.4

    0.2

  • 7/26/2019 Lec7 Clean

    23/25

    Lecture 7 Spring 2006 23

    Model parameters1

    bath chemical potential of water in external bath ( = 1

    0)

    1 chemical potential of water in the hydrogel1

    0 chemical potential of pure water in standard state

    w12 pair contact interaction energy for polymer with waterz model lattice coordination numberx number of segments per polymer moleculeM Molecular weight of polymer chains before cross-linking

    Mc Molecular weight of cross-linked subchainsn1 number of water molecules in swollen gel

    polymer-solvent interaction parameterkB Boltzman constantT absolute temperature (Kelvin)vm,1 molar volume of solvent (water)

    vm,2 molar volume of polymervsp,1 specific volume of solvent (water)vsp,2 specific volume of polymerV2 total volume of polymerVs total volume of swollen hydrogelVr total volume of relaxed hydrogel

    number of subchains in networke number of effective subchains in network

    1 volume fraction of water in swollen gel

    2,s volume fraction of polymer in swollen gel

    2,r volume fraction of polymer in relaxed gel

    Key properties of hydrogels for bioengineering

  • 7/26/2019 Lec7 Clean

    24/25

    Lecture 7 Spring 2006 24

    Key properties of hydrogels for bioengineering

    applications:

    Further Reading

  • 7/26/2019 Lec7 Clean

    25/25

    Lecture 7 Spring 2006 25

    Further Reading

    1. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling.J. Chem. Phys.11, 521-526 (1943).

    2. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity.J.Chem. Phys.11, 512-520 (1943).

    3. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels - Reinforcement of Radiation-Crosslinked Networksby Crystallization. Journal of Polymer Science Part a-Polymer Chemistry14, 441-457 (1976).

    4. Flory, P. J. Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).5. An, Y. & Hubbell, J. A. Intraarterial protein delivery via intimally-adherent bilayer hydrogels.J Control Release64,

    205-15 (2000).

    6. Brannonpeppas, L. & Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels.ChemicalEngineering Science46, 715-722 (1991).

    7. Chiellini, F., Petrucci, F., Ranucci, E. & Solaro, R. in Biomedical Polymers and Polymer Therapeutics(eds.Chiellini, E., Sunamoto, J., Migliaresi, C., Ottenbrite, R. M. & Cohn, D.) 63-74 (Kluwer, New York, 1999).

    8. Hubbell, J. A. Hydrogel systems for barriers and local drug delivery in the control of wound healing.Journal ofControlled Release39, 305-313 (1996).

    9. Jen, A. C., Wake, M. C. & Mikos, A. G. Review: Hydrogels for cell immobilization.Biotechnology and

    Bioengineering50, 357-364 (1996).10. Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications.Biomaterials23,4307-14 (2002).

    11. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H. & Zhang, J. Physicochemical foundations and structuraldesign of hydrogels in medicine and biology.Annu Rev Biomed Eng2, 9-29 (2000).