lec1 maths[1]

Upload: rajpd28

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Lec1 Maths[1]

    1/52

    MATH ZC 161Engineering Mathematics-I

    Lecture-1By

    Dr. Deepmala Agarwal

  • 7/28/2019 Lec1 Maths[1]

    2/52

    Learning Objectives

    27/7/2011 MATH ZC161 EngineeringMathematics I

    2

    To understand :Operations on matricesSpecial types of matrices

    Use of matrices to study system of linear equationsRow echelon and row reduced echelon formsGaussian and Gauss-J ordan elimination as application.Rank using row reduced echelon form.

  • 7/28/2019 Lec1 Maths[1]

    3/52

    3

    2nd row

    2nd column

    27/7/2011 MATH ZC161 EngineeringMathematics I

    An m x n matrix has m rows and nColumns, as shown here.

    nm)(a

    :wayeAlternativ

    ij

  • 7/28/2019 Lec1 Maths[1]

    4/52

    4

    Row Vector

    vectorrowcalledis

    )(

    matrix1A

    21 naaaA

    n

    =

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    5/52

    5

    Column Vector

    vector.columncalledis

    2

    1

    =

    ma

    a

    a

    A

    matrix1A n

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    6/52

    6

    Square Matrix

    .33orderofmatrixsquareais

    312

    163

    745

    :exampleFor

    =B

    A matrix in which number of rowsis same as number of columns

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    7/52

    7

    Matrix Addition and Subtraction

    27/7/2011 MATH ZC161 EngineeringMathematics I

    size)Samehave(All)(

    ,)(

    thensize),(sameandIf

    nmijij

    nmijij

    nmijnmij

    baBA

    baBA

    )(bB)(aA

    =

    +=+

    ==

  • 7/28/2019 Lec1 Maths[1]

    8/52

    8

    Addition

    A = a11 a12

    a21 a22

    B = b11 b12

    b21 b22

    C = a11 +b11 a12 +b12a21 +b21 a 22 +b22

    If

    and

    then

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    9/52

    9

    Matrix Addition Example

    A + B = 3 4

    5 6

    +

    1 2

    3 4

    =

    4 6

    8 10

    = C

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    10/52

    1027/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    11/52

    1127/7/2011 MATH ZC161 EngineeringMathematics I

    scalar.acalledis

    .912

    15633435323

    34523

    :exampleFor

    .)(

    thennumber,complexorrealaisIf

    k

    kakA

    )(aAk

    nmij

    nmij

    =

    =

    =

    =

    :tionMultiplicaScalar

  • 7/28/2019 Lec1 Maths[1]

    12/52

    12

    Matrix Multiplication

    Matrices A and B have these dimensions:

    [r x c] and [s x d]

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    13/52

    13

    Matrix Multiplication

    Matrices A and B can be multiplied if:

    [r x c] and [s x d]

    c = s

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    14/52

    14

    Matrix Multiplication

    The resulting matrix will have the dimensions:

    [r x c] and [s x d]

    r x d

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    15/52

    1527/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    16/52

    1627/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    17/52

    1727/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    18/52

    1827/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    19/52

    1927/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    20/52

    2027/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    21/52

    2127/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    22/52

    2227/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    23/52

    23

    Zero Matrix

    0 0...... 0

    0 0...... 0

    0 0...... 00

    . . .

    . . .0 0...... 0

    =

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    24/52

    24

    Triangular Matrix

    1 2 3 4 1 0 0 0

    0 5 6 8 1 6 0 0

    0 0 11 5 7 9 3 0

    0 0 0 9 2 3 4 6

    Upper TriangularMatrix

    Lower TriangularMatrix

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    25/52

  • 7/28/2019 Lec1 Maths[1]

    26/52

    26

    Symmetric Matrix

    A matrix An n is said to be symmetric if

    AT

    = A

    Ex: A=

    1 2 7

    2 5 6

    7 6 4

    27/7/2011 MATH ZC161 EngineeringMathematics I

  • 7/28/2019 Lec1 Maths[1]

    27/52

    Systems of Linear Equations

    A system ofn linear equations in n variables,

    can be expressed as a matrix equationAx =b:

    Ifb =0, then system is homogeneous; otherwise it is

    nonhomogeneous.

    =

    nnnnnn

    n

    n

    b

    b

    b

    x

    x

    x

    aaa

    aaa

    aaa

    2

    1

    2

    1

    ,2,1,

    ,22,21,2

    ,12,11,1

    ,,22,11,

    2,222,211,2

    1,122,111,1

    nnnnnn

    nn

    nn

    bxaxaxa

    bxaxaxa

    bxaxaxa

    =+++

    =+++

    =+++

  • 7/28/2019 Lec1 Maths[1]

    28/52

  • 7/28/2019 Lec1 Maths[1]

    29/52

  • 7/28/2019 Lec1 Maths[1]

    30/52

  • 7/28/2019 Lec1 Maths[1]

    31/52

  • 7/28/2019 Lec1 Maths[1]

    32/52

    Matrix in Row Echelon form :

    1.1st non-zero entry of any non-zero row is 1.2.In consecutive non-zero rows, 1st entry 1 in the lowerrow appears to the right of 1st entry 1 of the upper row.3. Rows containing all 0s are at the bottom of the matrix.

    Matrix in Reduced Row Echelon form :

    This is matrix which is in row echelon form with further

    property that if a column contains a 1st

    entry 1 of anyrow then all other entries of that column are 0.

  • 7/28/2019 Lec1 Maths[1]

    33/52

  • 7/28/2019 Lec1 Maths[1]

    34/52

    Elimination methods :

    We have two ways :

    1. Gaussian elimination : Use elementary row operations toconvert the augmented matrix to a row echelon form.Solve the resulting system corresponding to row echelonform using back substitution.These are solutions are the solutions of the original system.

    2. Gauss-Jordan Elimination : Use elementary row operations toconvert the augmented matrix to the reduced row echelon form.Advantage :No back substitution required to solve this system.

    27/7/2011 34MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    35/52

    Remark : In Gaussian elimination, the sequence ofrow operations required may not be unique, also

    the result, a row echelon form, may not be unique.

    In Gauss-J ordan elimination, the sequence of row

    operations may not be unique, bur reduced rowechelon form is unique.

    27/7/2011 35MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    36/52

    .113217532

    3111

    issystemtheofmatrixaugmentedThe.1132

    7532

    3exist.notdoessolutionshow the

    orsystemthesolvetoneliminatioJordan-Gauss

    orneliminatioGaussianeitherUse:

    321

    321

    321

    =+

    =++

    =

    xxx

    xxx

    xxx

    366)Ex.5(p

    27/7/2011 36MATH ZC161 Engineering Math. I

    lli i iG i

  • 7/28/2019 Lec1 Maths[1]

    37/52

    form.echelonrowaisThis.

    1100

    8410

    3111

    272700

    8410

    3111

    13750

    8410

    3111

    13750

    84103111

    8410

    137503111

    11321

    13750

    3111

    11321

    7532

    3111

    form.echelonrow

    amatrix toaugmentedisconvert thtooperations

    rowelementaryuseWe:

    27

    5

    2

    3

    232

    2313

    12

    R

    RRR

    RRR

    RR

    neliminatioGaussian

    27/7/2011 37MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    38/52

    also.systemoriginalsolnisThis.0giveseqn

    1stinvariables2theseofvaluesthengSubstituti

    .4getweeqn,2ndinthisngSubstituti.

    givesequationlaston,substitutibackbysolveTo

    .1

    84

    3

    isformechelon

    rowthistoingcorrespondsystemresultingThe

    1

    23

    3

    32

    321

    =

    =

    =

    ==

    x

    xx

    x

    xx

    xxx

    27/7/2011 38MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    39/52

    form.echelonrow

    reducedgettoneliminatioGaussianinobtained

    formechelonreduced-rowtheonoperationsrow

    elementaryuseWe:neliminatioJordan-Gauss

    soln.(same)get thedirectlyweandrequirednotis

    onsubstitutibackthatseeweneliminatioGaussianinas

    systemtheFormingform.echelonrowreducedisThis

    .

    1100

    4010

    0001

    1100

    8410

    0001

    1100

    8410

    5501

    1100

    8410

    3111

    3231

    21

    45

    R

    ++

    +

    RRRR

    R

    27/7/2011 39MATH ZC161 Engineering Math. I

    J dGli i tiG iU366)9(E

  • 7/28/2019 Lec1 Maths[1]

    40/52

    .

    4111-

    311-1

    81-1-1

    issystemtheofmatrixaugmentedThe

    4

    3

    8

    exist.notdoessolutionthe

    showorequationslinearofsystemthesolvetoneliminatio

    Jordan-GaussorneliminatioGaussianUse:

    321

    321

    321

    =++

    =+

    =

    xxx

    xxx

    xxx

    366)9(pEx

    27/7/2011 40MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    41/52

    form.echelonrowisThis10005/2-100

    81-1-1

    12000

    5/2-10081-1-1

    12000

    5-20081-1-1

    4111-

    5-200

    81-1-1

    4111-

    311-1

    81-1-1

    12

    2

    3

    2

    23

    12

    +

    R

    RRR

    RR

    Gaussian elimination : We use elementary row operations toconvert this augmented matrix to row echelon form.

    27/7/2011 41MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    42/52

    .102/5

    8

    isformechelonrow

    thistoingcorrespondequationslinearofsystemThe

    3

    321

    ==

    =

    x

    xxx

    The system has no solution, as the last equation can never besatisfied.

    Thus the original system is also inconsistent. (has no solution)

    Try Gauss-J ordan elimination yourself.27/7/2011 42MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    43/52

    27/7/2011 43MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    44/52

    Example

    .3,2

    7,

    2

    5

    solutiontrivialnonahas

    020342

    unknownsin threeequationstwoofsystemhomgeneousThe

    321

    321

    321

    ===

    =+

    =+

    xxx

    xxx

    xxx

    27/7/2011 44MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    45/52

    Rank using echelon form

    The definition of the rank of a matrix is more involved andunsuitable for our purpose. For all practical reasons we canuse its characterization involving Reduced row echelon form.

    Steps : To find rank of an m x n matrix AReduce A to the reduced row echelon formusing a sequence ofelementary row operations

    Count the number ofnon-zero rows in it to get the rank of A

    27/7/2011 45MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    46/52

    27/7/2011 46MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    47/52

    27/7/2011 47MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    48/52

    27/7/2011 48MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    49/52

    27/7/2011 49MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    50/52

    27/7/2011 50MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    51/52

    27/7/2011 51MATH ZC161 Engineering Math. I

  • 7/28/2019 Lec1 Maths[1]

    52/52

    Exercise.Try the following problems based on lectures 1On p 349: 38, 39, 40. On p 359: 8, 10 ,17 ,19. On p 364: 3, 4,6, 7, 8.

    27/7/2011 52MATH ZC161 Engineering Math I