lcws05 stanford - p. le dû 1 what next snowmass menu basic parameters and constraints detector...

18
LCWS05 Stanford - P. Le Dû LCWS05 Stanford - P. Le Dû 1 What next Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data collection architecture model SoftwareTrigger concept Snowmass program suggestions By P. Le Dû LCWS05 Stanford [email protected]

Upload: vincent-warren

Post on 14-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 11

What next Snowmass

Menu

Basic parameters and constraintsDetector conceptsFront end electronics and read out issuesData collection architecture modelSoftwareTrigger conceptSnowmass program suggestions

By P. Le Dû

LCWS05 Stanford

[email protected]

Page 2: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 22

ConditionsConditions

2 x 16 km superconducting2 x 16 km superconductingLinear Linear independantindependant accelerators accelerators

2 interaction points2 interaction points 2 detectors2 detectors

Energy Energy – nominale : 500 Gevnominale : 500 Gev– maximum : 1 Tevmaximum : 1 Tev

IP beam size ~ few IP beam size ~ few mmL= 2. 10 L= 2. 10 3434 cm cm-1-1ss-1-1

Recent International decision: « cold » machine ‘ à la Tesla’

repetitian rate 5 bunches per train 2820 x 2 ?bunch separation 337 ns train length 950 nstrain separation 199 ms

-> long time between trains (short between pulses)

The LC is a pulsed machine

Machine parameters close to/ /

199 ms1ms

2820 bunches 5 Hz

Page 3: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 33

Jets & leptons are the fundamental quanta at the ILC. They Jets & leptons are the fundamental quanta at the ILC. They must be identified & measured well enough to must be identified & measured well enough to discriminate between Z’s, W’s, H’s, Top, and new states. discriminate between Z’s, W’s, H’s, Top, and new states. This requires improving jet resolution by a factor of This requires improving jet resolution by a factor of two. two. Not trivial!Not trivial!

Charged Particle tracking must precisely measure 500 Charged Particle tracking must precisely measure 500 GeV/c (5 x LEP!) leptons for Higgs recoil studies. …. GeV/c (5 x LEP!) leptons for Higgs recoil studies. …. This This requires 10 x better momentum resolution than requires 10 x better momentum resolution than LEP/SLC detectors and 1/3 better on the Impact LEP/SLC detectors and 1/3 better on the Impact Paramater of SLD!Paramater of SLD!

To catch multi-jet final states (e.g. t tbar H has To catch multi-jet final states (e.g. t tbar H has 8 jets8 jets), ), need need real 4real 4 solid angle solid angle coverage with full detector coverage with full detector capability. capability. Never been done such hermiticity & Never been done such hermiticity & granularity!granularity!

ILC vs LEP/SLDILC vs LEP/SLD

2 Jets separation

E%60E%30

LEP-like resolution

ILC goal

Page 4: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 44

ILC vs LHCILC vs LHC

Less demanding …..LC Detector doesn’t have to cope with multiple minimum bias events per crossing,high rate triggering for needles in haystacks, radiation hardness… hence many more technologies available, better performance is possible.

BUT LC Detector does have to cover full solid angle, record all the available CM energy, measure jets and charged tracks with unparalleled precision, measure beam energy and energy spread, differential luminosity, and polarization, and tag all vertices,… hence better performance needed, more technology development needed.

Complementarity with LHC discovery vs precisionThe ‘Particle flow’ paradigm in calorimeters ! LC should strive to do physics with all final states.

Charged particles in jets more precisely measured in trackerGood separation of charged and neutrals

Page 5: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 55

Detector conceptsDetector concepts

Large gaseous central tracking device (TPC)High granularity calorimetersHigh precision microvertex All inside 4T magnetic field

LDCGLCSiD

Si Strips SiW EM5 Tesla

Large Gazeous Tracker JET,TPCW/Scint EM calor.3 Teslas solenoid

Page 6: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 66

Evolution of basic parametersEvolution of basic parametersSociologySociologyExp.Exp.

UA’sUA’s

LEPLEP

3 µsec3 µsec

10-20 µsec

10-20 µsec

--

250 - 500K250 - 500K

--

--

--

10 Mbit/sec

10 Mbit/sec

5-10 MIPS5-10 MIPS

100 MIPS100 MIPS

150-200150-200

300-500300-500

Collision rate

Channel count

L1Arate

Event building

Processing.Power

1980

1989

Year

LHCLHC

ILCILC

25 ns25 ns

330 ns330 ns

200 M*200 M*

900 M*900 M*

100 KHz100 KHz

3 KHz3 KHz

20-500 Gbit/s

20-500 Gbit/s

10 Gbit/s10 Gbit/s

>106 MIPS>106 MIPS

~105 MIPS~105 MIPS

2007

2015 ?

BaBarBaBar

Tevatron

4 ns4 ns

396 ns

150K150K

~ 800 K

2 KHz2 KHz

10 - 50 KHz

400 Mbit/s400 Mbit/s

4-10 Gbit/sec

1000 MIPS1000 MIPS

5.104 MIPS

400400

500500

1999

2002

20002000

> 2000 ?> 2000 ?

* including pixelsSub-Detector

Pixel

Microstrips

Fine grain trackers

Calorimeters

Muon

LHC

150 M

~ 10 M

~ 400 K

200 K

~1 M

ILC

800 M

~30 M

1,5 M

30 M

Page 7: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 77

Summary of present Summary of present thinkingthinking

The ILC environment poses new challenges & The ILC environment poses new challenges & opportunities which will need new technical advances opportunities which will need new technical advances in VFE and in VFE and RO electronicsRO electronics NOT LEP/SLD, NOT NOT LEP/SLD, NOT LHC !LHC !

Basic scheme: The FEE integrates everything Basic scheme: The FEE integrates everything From signal processing & digitizer to the RO BUFFER … From signal processing & digitizer to the RO BUFFER …

Very large number of channels to manage (Trakers & Very large number of channels to manage (Trakers & EM)EM)

should exploit power pulsing to cut power usage during interburstshould exploit power pulsing to cut power usage during interburst

New System aspects (boundaries ..New System aspects (boundaries .. GDN !) GDN !) Interface between detector and machine is Interface between detector and machine is

fundamentalfundamental optimize the luminosity optimize the luminosity consequence on the DAQ consequence on the DAQ

Burst mode allows a fully software trigger ! Burst mode allows a fully software trigger ! Looks like the Ultimate Trigger: Take EVERYTHING & sort later !Looks like the Ultimate Trigger: Take EVERYTHING & sort later !

GREAT! A sociological simplification!GREAT! A sociological simplification!

Page 8: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 88

Technology forecast (2005-2015)Technology forecast (2005-2015)

Systematic use of COTS products make decision at T0 minus 2-3 years!

FPGA for signal processing and bufferingFPGA for signal processing and buffering– Integrates receiver links, PPC, DSPs and memory ….Integrates receiver links, PPC, DSPs and memory ….

Processors and memoriesProcessors and memories– Continuous increasing of the computing power Continuous increasing of the computing power

More’s law still true until 2010! Expect x 64 by 2015!More’s law still true until 2010! Expect x 64 by 2015!

Memory size quasi illimited !Memory size quasi illimited !Today : 256 MBToday : 256 MB

2010 : > 1 GB … then ?2010 : > 1 GB … then ?

Links & Networks: Links & Networks: – Commercial telecom/computer standardsCommercial telecom/computer standards– 10 -30- 100 GBEthernet !10 -30- 100 GBEthernet !

É -É -

Page 9: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 99

Software trigger concept Software trigger concept No hardware trigger !No hardware trigger !

Sub-Detectors FE Read-outSignal processing – digitization, no trigger interrupt

Sparcification,cluster finding and/or data compressionBuffering

Sub-Detectors FE Read-outSignal processing – digitization, no trigger interrupt

Sparcification,cluster finding and/or data compressionBuffering

Data Collection is triggered by every train crossing

Full event building of one bunch train Trigger :Software Event Selection using full information of a

complete train (equivalent to L1-L2-L3 …) with off line algorithms

Select ‘Bunch Of Interest’Event classification according to physics, calibration &

machine needs

Data Collection is triggered by every train crossing

Full event building of one bunch train Trigger :Software Event Selection using full information of a

complete train (equivalent to L1-L2-L3 …) with off line algorithms

Select ‘Bunch Of Interest’Event classification according to physics, calibration &

machine needs

On-line processing & monitoring On-line processing & monitoring

S1 S2 S3 S4 Sn

1 ms

200 ms

Few sec

Data streams

Read-OutBuffer

Network

DetectorFront End

ProcessorFarm(s)

Storage

3000 Hz

30Hz1 MBytes Average

event size

Data Flow

up to 1 ms active pipeline

(full train) Dead time free

Page 10: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1010

Advantages Advantages all all

Flexible– fully programmable – unforeseen backgrounds and physics rates easily

accomodated– Machine people can adjust the beam using background

events Easy maintenance and cost effective

– Commodity products : Off The Shelf products (Links, memory,switches, processors)

– Commonly OS and high level languages– on-line computing ressources usable for « off-line »

Scalable : – modular system

Looks like the ‘ ultimate trigger ’ satisfy everybody : no loss and fully programmable

Page 11: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1111

Physics Rate :– e+ e- X 0.0002/BX– e+ e- e+ e- X 0.7/BX

e+ e- pair background :– VXD inner layer 1000 hits/BX– TPC 15tracks/BX

-> Background is dominating the rates !

Estimates Rates and data Estimates Rates and data volumevolume

High Level-1 Trigger(1 MHz)

105

104

103

102

LHCb

KLOE

HERA-B

CDF/DO II

CDF

H1ZEUS

UA1

LEP

NA49ALICE

Event Size (bytes)

104 105 106

ATLASCMS

106

107

BtevKtev

ILC

Page 12: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1212

Tesla Architecture (TDR 2003)Tesla Architecture (TDR 2003)

VTX SIT FDT ECALFCHTPC HCAL MUON LCALLAT

799 M 1.5 M40 M300 K 40 K75 K200 K32 M20 K 20 K

20 MB 1 MB 3 MB90 MB110 MB2 MB 1 MB1 MB 1 MB 1 MB

P PPPP PPPP PPPPP P P

Computing ressources (Storage & analysis farm)

Event buildingNetwork

10 Gbit/sec

Processor farm (one bunch train per processor)

Event manager & Control

Detector Buffering (per bunch train in Mbytes/sec)

Detector Channels

(LHC CMS 500 Gb/s)

30 Mbytes/sec 300TBytes/year

Links

Select Bunch Of Interest

Page 13: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1313

About systems boundaries …..moving due About systems boundaries …..moving due to ! to !

evolution of technologies,sociology ….. evolution of technologies,sociology …..

Subdetectors

FE Read out

Signal processingLocal FE Buffer

MachineSynchronization

Detector feedbackBeam BT adjustment

Data Collection (ex T/DAQ)Bunch Train Buffer RO

Event BuildingControl - supervisorOn line Processing

SW trigger & algorithmsGlobal calibration ,monitoring and physics

Local (temporary) Data logging (Disks)

Full Integration of Machine DAQ

In the data collection system

NEW !

Global Detector Nerwork(worlwide)

Detector IntegrationRemote Control Rooms (3)– Running modes

Local stand alone Test Global RUN

– Remote shiftsSlow controlDetector Monitoring

Physics & data analysis Physics & data analysis (ex On- Off line)(ex On- Off line)

– FarmsFarms– GRID …GRID …

Final Data storageFinal Data storage

Read out Node Partitionning

(physical and logical)

Read out Node Partitionning

(physical and logical)

Uniform interface

Page 14: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1414

Possible common RO architecture Possible common RO architecture model model

PreampliShaperDigitizer

VTXCCDMAPS

DEPFET…..

TRKSiTPC

ECALSiWOther

HCALDigitalAnalog

MuonRPCScint

VFD

Detectors technology

FPGA

ReceiverSignal Processing

Buffer

LocalData collection

Node

Standard links & protocolUSB,Firewire …..

LaptopPC Board

Intelligent mezzaninePC…

NETWORK

Ethernet

Services SynchroCalibrationMonitoring

? Integration

To be studied!

On detectorVery FE

LOCAL

BUFFER

Common/uniformInterface

Page 15: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1515

ILC ‘today’ Data Collection Network ILC ‘today’ Data Collection Network modelmodel

Run Control

MonitoringHistograms

Event Display

DCS

Databases

...

AnalysisFarm

Mass storage Data logging

ConfigManager

Local/worldwide

Remote(GDN)

Synchro

NO On line – Off line boundary

Local/Global Network(s)Wordlwide!

Machine BxBT feedback

Local partition

Data collectionSw triggers

Sub DetectorRead-Out

Node (COTS boards)

FPGA

receiver Buffer

FPGA

receiver Buffer

FPGA

receiver Buffer

Proc

receiver Buffer

Data link(s) Services

Networking Hub

On detector Front EndOn detector Front End

FPGA

Page 16: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1616

What next (1) ? What next (1) ? Snowmass SnowmassUnderstanding in details Detectors Read out schemesUnderstanding in details Detectors Read out schemes

– Data Collection (DAQ) is starting at the Detector levelData Collection (DAQ) is starting at the Detector level– By Subdetectors By Subdetectors Independently of detector concepts Independently of detector concepts– Detector concepts SiD,LDC,GLD Detector concepts SiD,LDC,GLD what are the particularities? what are the particularities?– Propose a common architecture ( VTX,TRACK, CALORs,Muon …)Propose a common architecture ( VTX,TRACK, CALORs,Muon …)– Do not forget the Very Forward !Do not forget the Very Forward !– Influence of technical aspects Influence of technical aspects Power cycling & beam RF pick-up …. Power cycling & beam RF pick-up ….

Refine the s/w trigger concept Refine the s/w trigger concept ILC T/DAQ model ILC T/DAQ model– Special triggers (Calibration,Tests,cosmics …)Special triggers (Calibration,Tests,cosmics …)– Hardware Preprocesing ?Hardware Preprocesing ?

Interface with machineInterface with machine– Which infos are needed?Which infos are needed?– Integration of Beam Train feedbackIntegration of Beam Train feedback

Define clearly the ‘boundaries’ Define clearly the ‘boundaries’ functional block diagram functional block diagram– Integration of GDN Integration of GDN – ‘‘Slow controls’ and monitoringSlow controls’ and monitoring– SynchronizationSynchronization– Partitionning …..Partitionning …..

Page 17: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1717

What next (2) What next (2) Snowmass SnowmassMilestone for 2005 ( CDR) Milestone for 2005 ( CDR) Baseline ILC document Baseline ILC document– Define a list of technical issues and challenges to be addressedDefine a list of technical issues and challenges to be addressed– Which prototyping is needed? Which prototyping is needed? – Practicing state of the art technologies (FPGAs, Bussless,wireless?,networking hubs …)Practicing state of the art technologies (FPGAs, Bussless,wireless?,networking hubs …)

Toward a realistic costing model for the CDR (end 2005)Toward a realistic costing model for the CDR (end 2005)– Global to the 3 detectors conceptsGlobal to the 3 detectors concepts– Table of parameters: Estimate number of channels, bandwidth ….Table of parameters: Estimate number of channels, bandwidth ….– Estimate quantity of hardware (interfaces, processors, links … ), software ? and Estimate quantity of hardware (interfaces, processors, links … ), software ? and

manpower ( is LHC a good model?)manpower ( is LHC a good model?)– Cost effective, upgradable, modular …..Cost effective, upgradable, modular …..

Build a wordwide ‘international ‘long term’ strong teamBuild a wordwide ‘international ‘long term’ strong team– Seniors with LEP/SLD,Hera/LHC/Tevatron,Babar/Belle/KEK experienceSeniors with LEP/SLD,Hera/LHC/Tevatron,Babar/Belle/KEK experience– Younger with enthousiasm!Younger with enthousiasm!– Europ,North America and Asia Europ,North America and Asia common meetings common meetings – Include long term sociology Include long term sociology NOT reinventing the wheel! NOT reinventing the wheel!

Build ONLY what is needed ! Not competing with industry!....Build ONLY what is needed ! Not competing with industry!....

Page 18: LCWS05 Stanford - P. Le Dû 1 What next  Snowmass Menu Basic parameters and constraints Detector concepts Front end electronics and read out issues Data

LCWS05 Stanford - P. Le DûLCWS05 Stanford - P. Le Dû 1818

OthersOthers

Modelling using ‘simple tools’ ?Modelling using ‘simple tools’ ?– Quantitative evaluation of the size of the Quantitative evaluation of the size of the

systemsystem

Trigger criteria & algorithms Trigger criteria & algorithms trigger trigger scenariosscenarios

What about GRID ??? LHC experienceWhat about GRID ??? LHC experience