lawrence berkeley national laboratory · 2019. 12. 19. · lawrence berkeley national laboratory...

73
Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis Vossos, Karl Johnson 1 , Margarita Kloss, Mukesh Khattar 2 , Daniel Gerber 3 , and Rich Brown 1 California Institute for Energy and Environment, University of California at Berkeley, 2 Electric Power Research Institute, 3 University of California at Berkeley Energy Technologies Area May, 2017 http://doi.org/10.7941/S9159Z LBNL-2001006

Upload: others

Post on 03-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

Lawrence Berkeley National Laboratory

Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis Vossos, Karl Johnson1, Margarita Kloss, Mukesh Khattar2, Daniel Gerber3, and Rich Brown 1 California Institute for Energy and Environment, University of California at Berkeley, 2 Electric Power Research Institute, 3 University of California at Berkeley Energy Technologies Area May, 2017

http://doi.org/10.7941/S9159Z LBNL-2001006

Page 2: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

ReviewofDCPowerDistributioninBuildings:

ATechnologyandMarketAssessment

May2017

VagelisVossos,KarlJohnson1,MargaritaKloss,MukeshKhattar2,DanielGerber3,andRichBrown

1CaliforniaInstituteforEnergyandEnvironment,UniversityofCaliforniaatBerkeley

2ElectricPowerResearchInstitute,3UniversityofCaliforniaatBerkeley

ThisworkwassupportedbytheCaliforniaEnergyCommission,ElectricProgramInvestmentCharge,underAgreementNo.EPC-14-015,andtheU.S.DepartmentofEnergy,OfficeofEnergyEfficiencyandRenewableEnergyunderContractNo.DE-AC02-05CH11231.

Page 3: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

1

Disclaimer

TheLawrenceBerkeleyNationalLaboratoryisanationallaboratoryoftheDOEmanagedbyTheRegentsoftheUniversityofCaliforniafortheU.S.DepartmentofEnergyunderContractNumberDE-AC02-05CH11231.ThisreportwaspreparedasanaccountofworksponsoredbytheSponsorandpursuanttoanM&OContractwiththeUnitedStatesDepartmentofEnergy(DOE).TheRegentsoftheUniversityofCalifornia,northeDOE,northeSponsor,noranyoftheiremployees,contractors,orsubcontractors,makesanywarranty,expressorimplied,orassumesanylegalliabilityorresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnotinfringeonprivatelyownedrights.Referencehereintoanyspecificcommercialproduct,process,orservicebytradename,trademark,manufacturer,orotherwise,doesnotnecessarilyconstituteorimplyitsendorsement,recommendation,orfavoringbyTheRegentsoftheUniversityofCalifornia,ortheDOE,ortheSponsor.TheviewsandopinionsofauthorsexpressedhereindonotnecessarilystateorreflectthoseofTheRegentsoftheUniversityofCalifornia,theDOE,ortheSponsor,oranyoftheiremployees,ortheGovernment,oranyagencythereof,ortheStateofCalifornia.ThisreporthasnotbeenapprovedordisapprovedbyTheRegentsoftheUniversityofCalifornia,theDOE,ortheSponsor,norhastheRegentsoftheUniversityofCalifornia,theDOE,ortheSponsorpassedupontheaccuracyoradequacyoftheinformationinthisreport.

Acknowledgments

Theauthorswouldlikethankthefollowingpeopleandorganizationsfortheircontributionstothisproject:

• ThevolunteermembersofourprojectTechnicalAdvisoryCommitteeforvaluableinputandfeedbackforthedurationofthisproject;

• theSouthernCaliforniaNationalElectricalContractorsAssociation/InternationalBrotherhoodofElectricalWorkersElectricalTrainingInstituteinCommerce,CAforhosting,andSouthernCaliforniaEdisonforsponsoring,ourstakeholderworkshop;

• theworkshopattendeesandpresenters,oursurveyandinterviewparticipants;• theEMergeAlliance,andBrianPattersoninparticular,fortheEmergeAlliancelistof

codesandstandardsrelatedtoDCpower;• andNiraliMerchant,formarketresearchonDC-readyproductsandconverter

efficiencies.ThisworkwassupportedbytheCaliforniaEnergyCommission’sElectricProgramInvestmentChargeprogramandbytheAssistantSecretaryforEnergyEfficiencyandRenewableEnergy,BuildingTechnologiesProgram,oftheU.S.DepartmentofEnergyunderContractNo.De-AC02-05CH11231.

Page 4: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

2

TableofContentsAcknowledgments.......................................................................................................................................1

ListofFigures...............................................................................................................................................3

ListofTables................................................................................................................................................4

1.IntroductionandBackground..................................................................................................................5

2.LiteratureReviewandInformation.........................................................................................................7

EnergySavings.........................................................................................................................................7

CaseStudiesandDemonstrationProjects...............................................................................................9

Cost........................................................................................................................................................11

Non-EnergyBenefitsandBarriers.........................................................................................................12

3.StakeholderInput..................................................................................................................................14

A.SummaryofStakeholderWorkshop..................................................................................................14

B.HighlightsofStakeholderSurveysandInterviews.............................................................................15

OnlineSurveys.......................................................................................................................................15

TelephoneInterviews............................................................................................................................25

4.SummaryandDiscussion.......................................................................................................................27

MarketAdoption...................................................................................................................................27

EnergySavings.......................................................................................................................................28

Non-EnergyBenefitsandBarriers.........................................................................................................29

Cost........................................................................................................................................................29

Standards...............................................................................................................................................29

5.ConclusionsandFutureResearch..........................................................................................................31

References.................................................................................................................................................33

AppendixA:ReferenceList........................................................................................................................36

AppendixB:ConverterEfficiencyCurves...................................................................................................49

PowerOptimizers..................................................................................................................................49

Microinverters.......................................................................................................................................49

StringInverters......................................................................................................................................50

BatteryInverters....................................................................................................................................51

ChargeControllers.................................................................................................................................51

DC/DCConverters..................................................................................................................................52

LEDDrivers.............................................................................................................................................53

Page 5: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

3

Rectifiers................................................................................................................................................53

AppendixC:StakeholderWorkshop..........................................................................................................55

AppendixD:SurveyandInterviewQuestions...........................................................................................62

SurveyQuestions...................................................................................................................................62

InterviewQuestions...............................................................................................................................66

InitialQuestionsforAll......................................................................................................................66

Researchers:......................................................................................................................................66

Industry(DCHardwareandApplianceManufacturers):...................................................................66

A&EFirms&Contractors(Architects,Engineers,ElectricalContractors,SecuritySystems,Telecom/NetworkInstallers):............................................................................................................66

UtilityStaffandUtilityRegulators.....................................................................................................67

EnvironmentalOrganizations............................................................................................................67

Close-outQuestionsforAll................................................................................................................67

AppendixE:EMergeAllianceReferenceListforDCCodesandStandards................................................68

ListofFigures

Figure1.DirectIntegrationofDCGenerationandEnd-UseLoads.............................................................5Figure2.WorldwideDCCaseStudies........................................................................................................11Figure3.NumberofRespondentActivities(Q1).......................................................................................16Figure4.TypesofRespondentActivities(Q1)...........................................................................................17Figure5.Respondents’AnticipatedInvolvementinDCPowerintheForeseeableFuture(Q2)...............18Figure6.Respondents’AnticipatedMarketDevelopmentofDCPowerintheForeseeableFuture(Q3) 18Figure7.Respondents’RatingforApplicationsofDCPowerinBuildingsfortheNext3–5Years(Q4)....19Figure8.Respondents’RatingforEndUsesofDCPowerinResidentialBuildingsfortheNext3–5Years(Q5)............................................................................................................................................................20Figure9.Respondents’RatingforEndUsesofDCPowerinCommercialBuildingsfortheNext3–5Years(Q6)............................................................................................................................................................20Figure10.Respondents’RatingofBenefitsAssociatedwithDCDistributioninBuildings(Q7)................21Figure11.Respondents’RatingofBarriersAssociatedwithDCDistributioninBuildings(Q8)................22Figure12.Respondents’RatingofDCSystemvs.ACSystemCost(Q9)....................................................23Figure13.CategorizationoftheCriticalNextStepstoAccelerateAdoptionofDCPowerinBuildings,basedonRespondents’Feedback(Q10)...................................................................................................24Figure14.Respondents’RankingtheIdealCaseStudiesforDCinBuildingsCategorizedbyBuildingType(left)andEnd-UseApplication(Q11).........................................................................................................25

Page 6: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

4

ListofTables

Table1.DCSystemElectricEnergySavingsEstimatesforResidentialandCommercialBuildings..............8Table2.PowerSystemComponentPeakEfficiencies.................................................................................8

Page 7: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

5

1.IntroductionandBackground

California’senergypolicyenvisionsafutureenergylandscapethatcanbestberealizedthroughahighlyintegratedandinteroperablegridwithveryenergyefficientendusescombinedwithon-siteenergygenerationandstorage.Directcurrent(DC)powerdistributionarchitectureshavebeenproposedasawaytointegratethevariouselectricalcomponentswithinbuildingsthatareneededtorealizethisvision,atalowercostthantraditionalalternatingcurrent(AC)powersystems.Thisreport’spurposeistosummarizethecurrentstateofknowledgeaboutthefeasibility,costeffectiveness,marketbarriers,customerneeds,andsavingspotentialforDCorhybridDC-ACsystemstopowerzeronetenergy(ZNE)residencesandcommercialbuildings,subdivisions,andcommunities.Particularfocusisonresidentialandlight-commercialbuildingapplications.Theall-ACpowersystemsinusetodayweredevelopedduringatimewhennearlyallpowergenerationandend-usedeviceswerenativelydesignedforACpower.Increasingly,however,ourpowersystemsneedtointegrateresourcesandloadsthatarenativelyDC:distributedgeneration,storage(batteries),andend-usedevices(electronics,DCmotorswithvariable-speeddrives,etc.).DCoffersanidealintegratingplatformforthesemodernpowercomponents;offeringenergysavingsandimprovedreliabilitywithpotentialforlowerfirstcost.Furthermore,theefficiency,reliability,andeaseofcontrolofDCpowerdistributioncouldbealow-costelementtoachievingZNEbuildings,thushelpingCaliforniameetitsZNEandglobalclimatechangegoals.

Figure1.DirectIntegrationofDCGenerationandEnd-UseLoads

Page 8: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

6

VariousaspectsofDCelectricalsystems—includingDCmicrogrids,datacenters,residentialappliances,batteries,fuelcells,lighting,electronics,communications,andrenewablesources—havebeenstudiedorpromotedbyindustry.ThesestudiesandotherindustryeffortsgenerallyconcludethatDCpoweroffersenergysavings,potentialforlowercapitalcost,andpowerqualityandreliabilityimprovements.Theseresultsaresimilartothosefoundwithhigh-voltageDC(HVDC)transmissionsystemsusedintheUnitedStates,Europe,andAsia.However,thereisverylittleperformanceinformationonDCsystemsinU.S.residentialorcommercialbuildings.Thisreportfirststartswithareviewofexistingacademicandmarketliteratureonthedesign,availability,andperformanceofDCdistributionsystemsandequipmentinbuildings.Itthensummarizesnewinformationcollectedduringthecourseofthisstudythroughastakeholderworkshop,andasurveyandin-depthinterviewsconductedwithpowersystemresearchers,designers,andmanufacturers.Thereportconcludeswithasummaryofthefindingsandsuggestednextstepsbasedonalltheinformationcompiledandcollected.

Page 9: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

7

2.LiteratureReviewandInformation

TheresearchteamconductedareviewandanalysisofrecentexistingliteratureonDCpowerdistributioninbothentirelyandhybridAC-DCbuildings.Theliteraturereview,consistingofapproximately200references,focusedoninformationrelatedtoDCdemonstrationprojectsandbuildingcasestudies,energysavings,costs,non-energybenefits,currentmarketstatus,andmarketandtechnicalbarriers.Overall,wefoundthatalargenumberofstudiesconcentratedonestimatingpotentialenergysavingsfromDC,whilelessresearchhasbeenperformedonthecost-effectivenessofDCendusesandsystems,oronthequantificationofthelesstangible,non-energybenefitsofDCdistribution.Thischaptersummarizesourmainliteraturereviewfindingsrelatedtothesetopicsofinterest.SeeappendixAforalistofthereferencesusedinthisstudy.1

EnergySavings

SeveralstudieshaveinvestigatedthepotentialelectricalenergysavingsfromDCdistributioninbuildings,theresultsofwhicharebasedeitheronmodelingeffortsoronacombinationofanalyticalmodelsandmeasurementsinactualdemonstrationbuildingswhereenergyuseoftheDCsystemiscomparedside-by-sidetoanequivalentbuildingwithACdistribution.AsshowninTable1,energysavingsfromDCdistributioninbuildingsmayvary.Thepresenceofbatterystorage,whichisaDCsource,andEVsinthecommercialsector(primarilybecauseEVsarelargeDCloadsthatsynchronizewellwithPVgenerationinacommercialbuilding),canincreasesavings.Wealsonotethatmodelingstudiesproduceawiderrangeofenergysavingscomparedtoexperimentalstudies.Thisrangeinsavingsestimatesisdueprimarilytotheactualorassumedpowersystemcomponentefficiencies(AC/DC,DC/DC,DC/ACconverters),which,toalargeextent,determinetheenergysavingspotential.However,othersystemparameters,suchassystemconfiguration,DCvoltage,andcoincidenceofPVandbuildingloadsarealsoimportantfactorsforenergysavings.

Table2summarizesthepowersystemcomponentpeakefficienciesusedinenergysavingscalculationsfromrecentliterature,aswellasfromproductsurveys(seeappendixBformoredetailsontheconverterefficiencysurveys).Wenotethatconverterefficienciesaredependentbothonvoltageconversionlevels,aswellasconverterpowerratings.

1 These references are also publicly available at the project’s webpage: http://dc.lbl.gov/epic-research-project/reference-list

Page 10: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

8

Table1.DCSystemElectricEnergySavingsEstimatesforResidentialandCommercialBuildingsStudyType Scenario* ElectricitySavings

Modeling

GenericbuildingwithbatteryStorage 2%–3%[1]

All-DCbuilding(res.andcom.)Nobatterystorage

5%residential8%commercial[2]

All-DCresidentialbuilding

5%w/obattery14%w/battery[3]

All-DCresidentialbuilding 5.0%conventionalbuilding7.5%smartbldg.(PV-loadmatch)[4]

Experimental

LED**DCsystem(nobatterystorage) 2%measured5%potential[5]

LEDDCsystem(nobatterystorage) 6%–8%(modeled)[6]

All-DCofficebuilding;BatterystorageandEV 4.2%[7]

All-DCbuildingEV,Nobatterystorage 2.7%–5.5%dailyenergysavings[8]

*AllscenariosincludealocalDCsource,(typicallyPV).**LED=LightemittingdiodeNote:ReportedenergysavingsarecomparedforabuildingwithDCdistributionrelativetoabuildingwithACdistributionandequivalentenduses.

Table2.PowerSystemComponentPeak2Efficiencies

ComponentPeakEfficiencies(%)

LiteratureReview ProductSurveys(averagevalues)

AC-DCCentralRectifier 93.0[3],96.5[1],96.9[8],97.0[2][4],98.0[4] 97.5%(25kW)

DC-ACInverter 95.0[3],96.9[6],97.6[1] 96.9%

DC-DCConv.(380Vto24/48V) 95.0[3],[8]96.0[1] 90.6%(0-1kW)97.5%(1-5kW)

MPPT*andChargeController 97.4[5],97.6[1],[8],98.0[3] 98.3%

ApplianceAC-DCConv.(highwattage)

90.0[3],94.2[8],96.5[1] 93.7%

ApplianceAC-DCConv.(lowwattage)

87.0[3],87.9[7],91.7[8],95.0[1] 87.6%

LEDDriver 93.3[7],94.9[8],97–98[6] 92%

EVCharger 96.0[7],97.2[8] N/A*MPPT=maximumpowerpointtracker

2 Most studies use peak or nominal efficiencies when calculating potential DC system energy savings. For operational efficiencies, see appendix B, which includes efficiency curves for various converters.

Page 11: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

9

CaseStudiesandDemonstrationProjects

TherearenumerousemergingcasestudiesanddemonstrationsforDCsystemsinbuildings.Afewnotableexamplesaredescribedbelow,andshowngeographicallyinFigure2:

1. Bosch,incollaborationwiththeCaliforniaLightingTechnologyCenter(CLTC),isdevelopingademonstrationprojectinChino,California,fundedbytheCaliforniaEnergyCommission’sElectricProgramInvestmentCharge(EPIC)program.Theproject’sgoalistodemonstratethebenefitsofDCdistributionincommercialbuildingsbyimplementingaPVpowered,direct-DC,380Vdistributionsystempoweringlightingandforkliftchargers.[9]

2. TheAllianceforSustainableColoradoisdevelopingaretrofitofa40,000squarefootcommercialbuildingfromACtoDCdistributioninsidethebuilding.ThebuildingwillbefedbyPVpowerandotherrenewableDCsources,willincludebatterystorage,andwillbecapabletoactasaDCmicrogrid.Thisproject’sgoalistocreateascalabledemonstrationthatwillshowcasethebenefitsofDCdistributionincommercialbuildings.[10]

3. NextHomeinDetroit,Michigan,isademonstrationDCtestbeddevelopedbyNextEnergy,featuringPV-supplieddirect-DCpowerforLEDlighting,ceilingfans,aDCcomputingcenter,floorheating,homeappliances,batterystorage,andbi-directionalEVcharging.TheNextHomefeaturesaPVarrayprovidingdirect-DCviaamainDCbusoperatingat380Vtoa13.2kilowatt-hourbattery,steppeddownto24VDCattheloadlevel.[11]

4. AquionEnergy,anenergystoragecompany,andIdealPower,apowerconvertermanufacturer,havepartneredtoinstallamicrogridshowcasingtheirtechnologiesatStoneEdgeFarm,anorganicwineryinSonoma,CA.Thesystemincludesa32kWPVarray,a350kWhcapacityofbatterystorageprovidedbyAquion,anda30kWmulti-portconverterfromIdealPower.ThissystemdoesnotpowerDCend-uses,butusesaDC-coupledconfigurationbetweenthePVarray,themulti-portconverter,andthebatteries.[12]

5. BoschhasimplementedaDCmicrogriddemonstrationproject,fundedbytheU.S.DepartmentofDefense,inFortBragg,NorthCarolina,whichincludesa15kilowatt(kW)PVarraypowering44DCinductionlights,4DCceilingfans,anda100kWlithium-ion(Li-ion)batterystoragesystem.Aside-by-sideequivalentACsystemreportedlyuses8percentmoreelectricitycomparedtotheDCmicrogrid.AhighlightoftheBoschDCpowersystemconfigurationisthatmaximumpowerpointtracking(MPPT)isnotapplieddirectlyafterthePVarray,butratherattheAC/DCgatewayconverter,allowingforhighersystemefficiency.[6]

6. TheHawaiiNaturalEnergyInstituteisdevelopingahybrid500kWDC/ACmicrogridattheMokuoLo’e(Coconutisland)inHawaii.[13]TheprojectincludesDCpowersources(PV,fuelcells,wind)andbatterystorage,anddistributesDCandACpowertovariousDCandACend-useloads.ItsPartnersincludeNextekPowerSystems,theOkinawaInstituteofScienceandTechnology,andtheNavalResearchLab,andisexpectedtobecompletedby2018.

Page 12: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

10

7. PhilipsisdevelopingaPoE-poweredlightingsystematClemsonUniversity,whichwillincludemorethan45,000lightpoints.Thesystemisexpectedtoleadtoa70percentenergysavingsovertraditionallightingsystemsinsimilarbuildingsandwillfeatureluminaire-integratedcontrols,whichwillbeaccessibleandcontrollableremotelyviaawebinterface.[14]

8. ARDAPowerhasdesignedaDCmicrogridwhichwillbebuiltinBurlington(Ontario),Canada.Theprojectwillshowcaseamicrogridforamanufacturingandofficebuilding,andincludesDC(16kWPV)andAC(10kWdiesel/gasgenerator,microturbine),batterystorage,a30kWbi-directionalinverter,ACandDCloads.[15]

9. Philipshasimplementedagrid-connected,PV-poweredDCtestbedinstallationforanofficeLEDlightingsystemattheEindhoven(Netherlands)HighTechCampus,andcompareditsenergyperformanceagainstanequivalentACsystem.Thesitehasdemonstrated2percentelectricitysavingsand5percentpotentialsavingsfortheDCsystem.[5]

10. FraunhoferhasbuiltaDCofficebuildingtestbed,whichincludesagrid-connected,380Vdirect-DCsystem,batterystorage,DClighting,EVcharger,anda24VDCnanogridforelectronicloads.TheDCsystemdemonstratedelectricitysavingsrangingfromapproximately2.7percentto5.5percentoveranequivalentACsystem.[8]

11. TheBeijingUniversityofCivilEngineeringandArchitecture(BUCEA)isconductingresearchtodemonstratetheenergyandnon-energybenefitsofDCdistributioninbuildings.ResearchersatBUCEAhaveestimated11percentsavingsfromshiftingtoanall-DCsystemfromthecurrentACsystem.[16]

12. XiamenUniversityinChinaimplementedaDCmicrogrid.Thedirect-DCsystemconsistsofa150kWPVarray,30kWairconditioningsystem,40kWEVchargingstation,and20kWLEDlighting.ResearchersconcludedthatefficientDCmicrogridapplicationsshouldincludeabi-directionalinverterandbatterystorage,andthatahybridDC-ACbuildingdistributionsystemwouldbemoresuitablefortoday’scommercialbuildings.[17]

13. NTTFacilitiesisdevelopingademonstrationDCmicrogridforanofficebuildinginHokkaido,Japan.TheDCsystemincludesaPVarray,Li-ionbatterystorage,LEDlighting,arefrigerator,electronics,andanEV.NTTresearchersreportthattheDCsystemyields4.2percentelectricitysavingscomparedtothesamesystempoweredbyAC.[7]

14. TheIslandCityinFukuoka,Japan,hasmadeavailableademonstrationAC/DCresidentialproject.TheSmartHouseusesACdistributiontopowerelectricloadsthroughaninverterthatisinterfacingwiththeACgridanda380VDCsystemconsistingofaPVarray,windturbine,andbatterystorage.[18]

WenotethatthemajorityofthesedemonstrationprojectsarefocusedeitheronshowcasingbuildingDCdistributionsystemsasaproofofconcept,oronestimatingelectricitysavings.Asdiscussedinthenextsections,fewofthesestudiesaddresscostissues,orattempttoquantifynon-energybenefitsoftenassociatedwithDCdistribution,suchashigherpowerquality,reliability,andresiliency.

Page 13: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

11

Figure2.WorldwideDCCaseStudies

Cost

Arelativelysmallbutgrowingnumberofstudieshaveaddressedthecost-effectivenessofDCdistributiononretrofitornewconstructioninresidentialorcommercialbuildings.MoststudiescomparetherelativecostdifferenceofthepowersystemcomponentsrequiredbyACandDCsystems.Forexample,WillemsandAerts[4]madethiscomparisonandfoundthattheoverallhardwarecostfortheACsystemisslightlyhigherthantheonefortheDCsystem,mainlyduetothepresenceofAC/DCpowerconvertersattheappliancelevelandaPVarrayinverter(insteadofacheaperMPPT)fortheACsystem.However,theauthorsalsonotedthatacentralbi-directionalrectifierfortheDCsystemwasnotaccountedforinthecostcalculation.AnotherstudybyFosterPorteretal.[19]foundthatinamatureDCmarket,DCdistributionforelectronicendusesisbeneficialnotonlyfromanoperatingcostperspective,butalsofromtheperspectiveofcapitalupfrontcost.However,lighting,motor,andresistiveenduseswerenotcost-effectiveforconventional,code-compliantbuildings.ForZNEbuildings,duetothepresenceofthePVsystemandtheinverterfortheACsystem,allendusesotherthanresistiveloadswerecost-effective.Overall,thisstudyfoundthatelectronics,followedbyheating,ventilationandairconditioning(HVAC)werethemostcost-effectiveapplicationsforDCpowerinbuildings.Furthermore,accordingtoPlanasetal.[20],meteringcosts,converters,anddistributioncostsarelowerforDCsystems,althoughduetogenerallylowervoltagedistributionandtechnologymaturityinACsystems,systemprotectioncostsarehigherforDCsystems.

KingandBrodrick[21]reportthatelectricianstypicallychargebythenumberofreceptaclesintheresidentialsectorandstatethatduetoNECrequirementsfortherelativedistancebetweenreceptacles,thenumberofreceptaclesinaDChousewouldbesimilartotheoneforanAChouse,whileelectricianretrofitcosts(ofconvertinganexistingACbuildingtoDC)wouldbe

Page 14: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

12

higherthannewconstructioncosts.Regardingretrofitcosts,Glasgoetal.[22]estimatedthatthecostofanAC-toDCresidentialretrofitisapproximately$6,000to$10,000,andconcludedthatthehighcapitalcostsofsuchaconversionwouldnotberecoveredbytheenergycostsavingsofDCdistribution.Forlow-voltagedistribution(<50V),costscanpossiblybereducedbecausetheDCdistributionsystemcanuselessexpensivecablingandinstallationlaborthanatraditionalACsystem.

DClightingproductsandsystems,suchastheArmstrong24VDCcommercialceilinggrid[23],havebeeninthemarketforaboutadecade,andmayalreadybecost-competitiveinsomeapplications.Specifically,PoElightingsystemswithoccupancy,daylighting,temperature,andothercontrolscurrentlydevelopedandmarketedbyPhilips,Cisco,NuLEDS,andEaton,amongothers,claimsignificantcostsavingscomparedtotraditionalACsystems.AccordingtoPhilips,PoElightingcanleadtoa25percentreductionininstallationcostdueto87.5percentlessmainswiringcomparedtoconventionalwiringsystemsforlighting[24].Similarly,EatonclaimsthattheirPoEDClightingsystemscanleadtoa40percentreductioninmaterialsandinstallationscosts[25].

Non-EnergyBenefitsandBarriers

SeveralstudiesclaimthatDCsystemsinbuildingshaveimportantbenefits,suchaspowerquality,reliabilityandcontrollability,resilienceduringgridoutages,interoperability,andothers,comparedtoACsystems[2],[26]–[29].Sanninoetal[30]statethatDCsystemsofferthepotentialforbetterreliability,astheyareusuallycapableofbeingdecoupledfromthegrid.Inaddition,AlLeeandTschudi[31]claimthat,byeliminatingpowerdistributionunitsandtheinverterontheoutputoftheuninterruptiblepowersupply(UPS)system,datacentersusinga380VDCdistributionsystemare200to1,000percentmorereliable(whenestimatinguptime)thanequivalentACsystemswhenadirectconnectiontothebatterybusisavailable,andcitetelecommunicationssystems(operatingat48VDC)asanexample.However,regardingpowerquality,althoughDCdistributionsystemsinbuildingsareoftentoutedforfewerharmonicsandlowervoltagedistortioncomparedtoequivalentsystemswithACdistribution,Whaiteetal.[32]notethatDCdistributionsystemsmayalsoexperienceharmonicsduetothepresenceofpowerconvertersconnectingtheDCbustoanACgrid,orevenbyscalingupordownDCvoltagewiththeuseofbi-directionalDC/DCconverters.TherearemanyfundamentalandsystemicbarriershinderingthemarkettransformationtoDCandhybridelectricsystems:

• Safetyandfaultprotection:PerMonadietal.[33],faultdetectionandfaultresistancedetectionmethodsapplicabletoACsystemsarenotalwaysapplicabletoDCsystems.Therefore,theyrecommendfurtherresearchonprotectionschemes,groundingmethods,andDCcircuitbreakers(ofmediumtohighvoltage).

• Thelackofmaturestandardsandguidelines,whicharealsoanimpedimentfortheapplicationofprotectionschemesinDCsystems[20].

• LackofDC-readyappliances[19],[26],[28]andpowerdistributionsystemcomponents.

Page 15: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

13

• MarketandawarenessbarriersstemmingfromtheentrenchedACdistributionsystem.Customers,installersandcontractors,standardsandcodebodies,aswellaspolicymakersarelessfamiliarwithDCsystems,andthereforeunlikelytoembracethem.Anecdotally,arecentefforttodevelopaDCdemonstrationprojectinFortCollins,Colorado[34],washaltedwhenthecontractorfortheprojectcouldnotgetbonded,becauseoftheDCnatureofthedistributionsystem.Instead,theprojectproceededwithACdistributioninthebuilding.

Page 16: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

14

3.StakeholderInput

A.SummaryofStakeholderWorkshop

TheprojectteamheldastakeholderworkshoponMarch15,2016,attheLosAngelesElectricalTrainingInstitute(operatedbytheInternationalBrotherhoodofElectricalWorkers).Approximately30stakeholdersfromavarietyofinstitutions,includingmanufacturers,policymakers,non-profits,andresearchorganizations,attendedtheworkshop.Theworkshopsolicitedinputandadviceonthetechnology,policy,andmarketdevelopmentneedsforadoptionofDCandAC-DChybridsystemsinresidentialandcommercialbuildings.ItfocusedonZNEbuildingswithphotovoltaics(PV),batterystorage,andelectricvehicle(EV)charging.Keyfindings,recommendations,andquestionsfromtheworkshoparelistedbelow.Formoredetailsontheworkshopproceedings,seeappendixC

• StandardsandopenprotocolsshouldbedevelopedtojumpstartproductionofDCproductsbyindustry.Then,asdemandforDCproductsgrows,economiesofscalewillresultinreducedcoststoconsumers.

• StakeholdersneedtoreachagreementonDCvoltages,sothatproductscanbedesignedaroundinternationalDCstandards.Commonvoltagelevelsare24volt(V),48V,125V,and380V.

• DemonstrationsarecriticallyneededtoshowcaseDCperformanceatbothend-useapplicationsandtheZNEsystemsapplications.Also,realmeteringdataareneededtoresolvedifferingviewsaboutsavingspotentialofDCorhybridDC/ACversusall-ACbuildings.

• BatterystorageandEVs,duetotheirinherentlyDCnature,havesignificantadvantagesforintegratingwithZNEbuildingswithPVsandinterconnectingwithsmartgridsystems.

• MoreresearchisneededtounderstandandresolvepowerqualityissuesinbothACandDCsystems.

• Theindustryshouldexploit“Trojanhorses”(e.g.,plugloads,residentialelectronics,emergencylighting)togetDCintouseandexpandfamiliarityandcomfortofendusers.Fortheforeseeablefuture,largeACloadsmayneedtoremainonthegrid.

• PoweroverEthernet(PoE)lightingandotherapplicationsareemergingwithseveralcompanies(NuLEDS,VoltServer,Lumencache,andothers)offeringsolutionsthattakeadvantageofthedigitalpowerandembeddeddatacapabilities.

• IssuesrelatedtoZNEbuildingsincludetheneedtoagreeonacommondefinitionofZNE3,theenergyuserequirementsforZNEoverthebuilding’slifetime,thesizingofbatterystorage(i.e.,initialrequirementversuslikelyrequirementoverthelifeofthebuilding),andtheallocationofsharedrenewablesincommunity-scaleprojects.

3 We note that a report on this specific issue (A Common Definition for Zero Energy Buildings) was published in 2015. https://energy.gov/sites/prod/files/2015/09/f26/bto_common_definition_zero_energy_buildings_093015.pdf

Page 17: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

15

• Akeychallengeforretrofitsistheneedtodeveloptransformationalschemesforretrofits,whichmustinvolvetheentiresupplychainforbuildingretrofits,fromequipmentmanufacturersanddistributors,todesignersandarchitects,tobuildingcontractorsandtrades.Industryshouldtakeadvantageoflessintrusivetechnologiesandsolutions,suchasusingexistingwiringforDCdistribution.

• DC/ZNEbuildingshavemultiplestakeholders.Utilities,governmentagencies,andregulatorscanraiseconsumerawarenessanddemandthroughincentives(e.g.,rebates).Also,designers,builders,installers,andoperatorswillrequiretrainingandeducationinordertoacceptandimplementDCdistributioninbuildings.

ToprovideinsightabouttheimportantissueofcodesandstandardsforDCpower,BrianPattersonoftheEMergeAllianceprovidedasummaryofthecurrentstateofcodesandstandards.HefirstpointedoutthatDCandhybridAC/DCstandardsandsystemsarecommonforanumberofapplicationssuchastelecomfacilities,off-gridsystems,andmobiletransportation,includinglargeships(bothcommercialandmilitary).Mr.PattersonpointedoutthatcodesalreadyallowDCsystemsinanindirectway,throughthebasicelectricaldesigncriteria,butcomplianceforDCsystemsrequiresextracalculationandeffort,soitisimportantthatDCstandardsareadoptedexplicitlyintothecodebooks.Fortypicalbuildingsystems,specificDCstandardsarenowlistedintheInstituteforElectricalandElectronicsEngineers(IEEE),theInternationalElectrotechnicalCommission(IEC),andtheNationalElectricalCode(NEC).Thesestandardshavebeendevelopedinthelast10years,withtheEMergeAllianceleadingthewayinNorthAmerica.

B.HighlightsofStakeholderSurveysandInterviews

Asonepartofthisresearcheffort,wetappedtheknowledgeandexperienceofDCpowerexperts,thoughtleaders,andstakeholderstoidentifythestateofDCadoption,includingDCequipmentsuppliers,customers,designers,builders,industry,government,environmentalorganizations,regulatorybodies,policymakers,andutilities.Thisinformationgatheringhelpedtoassessthestateoftheartandidentifyindustryandcustomerneedsandbarriers.

OnlineSurveys

Wedevelopedacomprehensivestakeholderlist,ande-mailedtheseindividuals,askingthemiftheywouldliketovolunteertorespondtoanonlinequestionnaire(11questions).4Wereceived39surveyresponses,ofwhichfourwereincomplete.Asummaryoftheonlinesurveyresultsispresentedbelow.Toprofileandunderstandthespectrumofsurveyrespondents,thefirstquestionaskedaboutactivitiesrelatedtoDCpowerdistributionandaboutendusesinbuildingsinwhichtherespondentortheirorganizationwasinvolved.Activitiesincludedresearch,product

4 The survey questionnaire is available in Appendix D

Page 18: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

16

development,manufacturing,fielddeployment/installation,sales,codesandstandards/policies,other,andnotapplicable.ManyoftherespondentswereinvolvedinmultipleaspectsofDCpower,asreflectedbythefactthat39respondentsclaimedparticipationinover92activities.Onaverage,respondentswereinvolvedinmorethantwoactivities,andasmanyassix,although16respondentsindicatedthattheywereinvolvedinjustasingleactivity.(SeeFigure3.)

Figure3.NumberofRespondentActivities(Q1)

Figure4breaksdownthepercentageforeachtypeofactivity,asidentifiedbythesurveyrespondents.Nearly33percentoftherespondentsparticipateinresearchactivities,and17percentareactiveincodesandstandards/policies.Approximately15percentofrespondentsparticipateinfielddeployment/installationandproductdevelopment.Sales,manufacturing,and“other”eachtalliedunder20percentoftheresponses.

Page 19: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

17

Figure4.TypesofRespondentActivities(Q1)

Questions2and3ofthesurveyaddressedrespondents’anticipatedinvolvementinDCpoweractivities,aswellastheirperceptionofhowDCmarketswillevolveintheforeseeablefuture(overthenextonetotwoyearsandthreetofiveyears).

• Question2Responses:Respondentsanticipatethattheirparticipationwillincreaseinthenextonetotwoyears,andfurtheraccelerateinthenextthreetofiveyears.

Page 20: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

18

Figure5.Respondents’AnticipatedInvolvementinDCPowerintheForeseeableFuture(Q2)

• Question3Responses:Inthenextonetotwoyears,30percentofrespondents

anticipatea10to20percentincreaseinmarkets.Inthenextthreetofiveyears,approximately40percentoftherespondentsexpecta25percentormoreincreaseinmarkets.

Figure6.Respondents’AnticipatedMarketDevelopmentofDCPowerintheForeseeableFuture(Q3)

Page 21: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

19

Question4focusedonapplicationsforDCpowerinthebuildingsector,andquestions5and6askedaboutrespondents’ratingofDCpowerbyend-useapplicationinresidentialandcommercialbuildings,respectively.

• Question4Responses:Respondentsbelievethatnewconstruction(includingZNE),commercialbuildings,AC-DChybridbuildings,andoff-gridsystemsholdthemostpromise,whileretrofitsandall-DCbuildingsfacechallengessuchascost,availabilityofcomponents,andothers.

Figure7.Respondents’RatingforApplicationsofDCPowerinBuildingsfortheNext3–5Years(Q4)

• Question5Responses:RespondentsselectedEVcharging,backupandemergency

systems,andlightingasaffordingthegreatestDCopportunityinthenextthreetofiveyearsinresidentialbuildings;electronicswasaclosefourth.Notably,clothes/dishwashinganddrying,andwaterheatingwerelast.

Page 22: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

20

Figure8.Respondents’RatingforEndUsesofDCPowerinResidentialBuildingsforthe

Next3–5Years(Q5)

• Question6Responses:Respondentsmostfrequentlyselectedlighting,EVcharging,backupandemergencysystems,andelectronicsasthemostpromisingend-useapplicationsforcommercialbuildings.Spacecooling/heating,refrigeration,andsmallapplianceswereinthemiddle,andwaterheatinganddish/clotheswashinganddryingwerelast.

Figure9.Respondents’RatingforEndUsesofDCPowerinCommercialBuildingsforthe

Next3–5Years(Q6)

Page 23: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

21

• Question7Responses:Question7askedrespondentstoordertheimportanceofrolesthatDCdistributioncanplaytoacceleratechangeinbuildings.Respondentsrateddeploymentofrenewableenergysources,energystorage,andreductionofenergyusageandpercapitacarbonfootprintasthemostcriticalreasonstodevelopDCdistributioninbuildings.ImprovingreliabilityandflexibleinstallationofplugloadsandlightingwererankedastheleastpressingrolesforDCdistributioninbuildings.

Figure10.Respondents’RatingofBenefitsAssociatedwithDCDistributioninBuildings(Q7)

• Question8Responses:Question8askedrespondentstoordertherelativeimportance

ofbarriersinhibitingdevelopmentofDCsystemsinbuildings.Respondentsratedlackofmarket-readyDCappliancesandequipment,anentrenchedACdistributionsystem,thehighcostofaDCsystemandoverallretrofit,andlackoftechnologyandefficiencystandardsasthemostchallengingobstaclesimpedingdevelopmentofDCsystemsinbuildings.Lackofpowersystemcomponents,wirelossesatlowvoltages,andelectricalsafetyissueswererankedaslesspressingbarriersforDCdistributioninbuildings.

Page 24: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

22

Figure11.Respondents’RatingofBarriersAssociatedwithDCDistributioninBuildings(Q8)

Questions9,10,and11requestedopen-endedresponsesfromsurveyrespondents.

• Question9Responses:RegardingtherelativecostofDCsystemscomparedtoACsystems,ofthe31respondents,14statedthatDCfirstcostswouldbehigherthanAC;9thoughtthatDCsystemswouldhavehigheroperatingcostsbutloweroperatingorlife-cyclecosts,and4respondedthatDCsystemswouldhavelowerlife-cyclecostscomparedtoACsystems.Respondentsanticipatedcostsrangingfromsavingsof30percenttoincreasingcostsat500percent.SeeFigure12fordetails.

Page 25: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

23

Figure12.Respondents’RatingofDCSystemvs.ACSystemCost(Q9)

• Question10Responses:RegardingthenextcriticalstepstoaccelerateadoptionofDC

powerinbuildings,wereceived31responses.ThetopcategorieswerethedevelopmentofDC–readyproductsandcodes&standards,followedbytheneedforadditionaldemonstrationprojects.OtherrecommendedstepswerethedevelopmentofacompellingmarketpropositionforDC,theremovalofmarketbarriers,developmentandimprovementofpowerconvertersforDCsystems,andtheavailabilityofincentives.SeeFigure13.

Page 26: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

24

Figure13.CategorizationoftheCriticalNextStepstoAccelerateAdoptionofDCPowerinBuildings,

basedonRespondents’Feedback(Q10)

• Question11Responses:RegardingtheidealcasestudyfordeploymentofDCpowerinbuildings,thetopcasestudieschosenbyrespondentsfordeploymentofDCpowerwerecommercialbuildingsandwarehouses(includingbigboxretail,mediumtolargeofficebuildings,buildingswithlargerooftopareaforPVintegration,officebuildings),followedbyZNEbuildings(commercialandresidential),residentialbuildings,datacenters,andoff-gridapplications.Withregardtotheidealend-useloads,lightingwasthedominatingenduse,followedbybatterystorage,HVAC,EVs,andelectronics&plugloads.NotethatPVintegrationwasanoverarchingthemethroughoutresponses.

Page 27: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

25

Figure14.Respondents’RankingtheIdealCaseStudiesforDCinBuildingsCategorizedbyBuilding

Type(left)andEnd-UseApplication(Q11)

TelephoneInterviews

Attheendofthesurveyquestionnaire,participantswereprovidedafurtheroptiontoparticipateinanin-depthtelephoneinterview.5Fromtheindividualswhoelectedtobeconsideredforatelephoneinterview,weselected10respondents,representingarangeofbackgrounds.

Severalrespondentsmentionedcostasoneofthemainareaswherefurtherdataandresearchareneeded.TheyalsoidentifieditasoneofthemainfactorsthatwilldetermineDCadoptionintheforeseeablefuture.Forexample,anarchitectworkingonaDCretrofitproject,highlightedtheneedforcostinformationsincebuildingownersandinstitutionsmaketheirdecisionsprimarilybasedonfirstcost.AccordingtoJohnWangofABB,inprinciple,thecostofDCconvertersshouldbelessthantheirACcounterparts,butthisisnotalwaysthecaseinpracticebecauseexistingcomponenttopologiesandconfigurationsmayrequireredesign,whilethelackofdemandforDCproductsdoesnotcreatethenecessaryeconomiesofscaletoreducemanufacturingcosts.Inaddition,StevePantanoofCLASPnotedthatoneofthepotentialbenefitsofDCsystemsarefewercomponents(namely,AC/DCpowersupplieswithinappliances),whichcouldleadtoreducedmanufacturing,shipping,andconsumercosts.PeterMayOstendorpofXergyConsultingnotedthat,inordertodeterminefeasibilityofDCsystemsinthefuture,theactualcostsatmaturityforDC(includingbothoperationalandfirstcosts)shouldbeestimated. 5 The interview oral consent script and list of interview questions are available in Appendix D.

Page 28: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

26

Further,quiteafewintervieweespointedoutthatdemonstrationprojectsarekeytobettervalidatecostandperformanceofDCsystems,identifyandaddressintegrationanddesignissues,andraiseawarenessamongstakeholders.IntervieweesalsostatedthatthelackofsufficientofferingsofDC-readyproductsandpowersystemcomponentsareasignificantbarrierforDCsystems.Dr.SandraVanderstoep,whoisthedirectorfortheAllianceforSustainableColoradoDCproject,referredtotheunavailabilityofDCHVACsystemsasasignificantbarriertotheACtoDCbuildingretrofittheAllianceisimplementing.Further,JimSaberofNextEnergyemphasizedtheneedtoincreasethemarketshareofDC-readyappliances,butalsomentionedthatconvertingappliancestoacceptbothACandDC“wouldnotbeveryhard.”Forthisreason,StevePantanohighlightedtheAdaptinitiativeledbyCLASP,whichaimstoadvanceDC-readyappliancesbyraisingmanufacturers’andconsumers’awarenessandengagementinDCpower.Ontheotherhand,JohnWangstatedthatmanufacturersareunlikelytodevelopDCproductsaslongasDCstandardizationschemes,andprotectionstandardsinparticular,havenotbeendeveloped.Despitethesebarriers,manyparticipantswereoptimisticaboutDCinbuildings.Severalnotedtheincreasingnumberofestablished(Cisco,Philips,Eaton)andstart-up(Voltserver,Lumencache,NuLeds)companiesdevelopingDClightingsolutions(primarilythroughPoE)asasignofaDCresurgenceinlightingsystemsandcontrols.PeteHortonwithLegrand’selectricalwiringsystemsdivision,elaboratedthatcontrolsmanufacturersarecurrentlyanalyzinghowDCsystemscanhelpthemaddvaluetotheircustomersandaredevelopingpotentialproducts.Withregardtoend-useapplicationsforDC,respondentsmentionedDClightingapplications,IoTsystems,andDCdatacenters.Also,ondatacenters,andotherenergy-intensiveenduses(e.g.,refrigeratedwarehouses),StephenFrankwiththeNationalRenewableEnergyLaboratory(NREL)notedthatDCcanhaveacascadingeffectontheenergyusedbyHVACsystems.

Page 29: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

27

4.SummaryandDiscussion

ThisstudyfocusesonhowDCpowercanhelpmeettheAB32andrelatedCaliforniagoalsforZNEresidentialandsmallcommercialbuildingswithbatterystorageandEVcharging.ForthesetypesofZNEbuildings,aDCinfrastructurecansaveenergyandmayhaveother,non-energy,benefits,suchasincreasedresiliency,reliability,andpowerquality,andbetterintegrationofcommunicationsandcontrols.Inevaluatingthesebenefits,itiscriticaltounderstandthefullpictureofenergyandnon-energybenefits,cost-effectiveness,marketandtechnologicalbarriers,andcurrentmarketadoptionofDCdistributioninbuildings.Thissectiondiscussesourfindingsonthesetopics,basedonourresearchtodate,throughreviewoftheliterature,conclusionsfromthestakeholderworkshop,andfeedbackfromelectronicsurveysandinterviews.

MarketAdoption

AlthoughDCpowerisoftenperceivedasaradicaldeparturefrommainstreamelectricitydistribution,DCpowersystemshavebeenwidelyusedforalongtimeinvehiclesandboats.DCalsohaslongpoweredtraditionaltelephoneservice,andmorerecentlyUSB(universalserialbus)andPoEinbuildings.ThenumberofnativeDCsourcesandenduseshasbeenontheriseinthepastfewyears,withtheproliferationofPVsystems[35],batterystorage[36],LEDlighting[37],andconsumerelectronics.ThesedevelopmentshavespurredrenewedinterestinDCandAC-DChybriddistributionsystemsinbuildings.AsdiscussedinChapter2,anincreasingnumberofvariousDCcasestudiesanddemonstrationprojectsareunderwayandunderdevelopmentintheUnitedStatesandworldwide.Concurrently,DCsystemsarebeingcommerciallyimplementedindatacentersandforlightingsystemsincommercialbuildings,primarilywithPoE.Severalinternationalanddomesticorganizations(e.g.,EMergeAlliance,AlliancetoSaveEnergy,PassiveHouseInstitute,CLASP,andothersintheUnitedStates)areadvocatingforDC,spurringresearchandraisingawareness.

However,despitethesedevelopments,DCpowersystemsinbuildingsarestillintheirnascentstage.TherearesignificanttechnologicalandmarketbarriersthatinhibitmarketadoptionofDCdistributioninbuildings,includingthefollowing:

• Alackofcost-competitive,market-readyDC-readyappliancesandpowerdistributionsystemcomponents,includingDCsystemprotectionschemes.

• AlackofmatureandDC-explicitstandardsandguidelines(e.g.,forelectricalprotection,physicalconnectors,etc.).

• LimitedawarenessofDCsystemsandtheirpotentialbenefitsamongpotentialspecifiersandpurchasers.

• HighcapitalcostsofretrofittinglegacyACsystems,whichpresentaparticularlylargebarrierforsuchapplications.

Discussionswithstakeholdershaverevealedthatthesebarriersareinterdependent.Forexample,manufacturersarelesslikelytodevelopDC-readyapplianceswhencomprehensive

Page 30: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

28

standardsarenotavailable.UtilitiesandregulatorybodiesarelesslikelytosupportandincentivizeDCsystemswhentheirpotentialbenefitshavenotbeensubstantiatedbysufficientresearchanddemonstrationprojects.Onabrightnote,theamountofresearch,thenumberofdemonstrationprojectsworldwideandintheUnitedStates,theincreasinginvolvementofapplianceandconvertermanufacturersenteringthisfieldinthepastonetotwoyears,andthewidespreadinstallationofon-sitePVsystemsmayleadtoacriticalmassforwidespreadadoptionofDCsystemsinbuildingsinthefuture.

EnergySavings

OneofthemainargumentsinfavorofDCdistributioninbuildingsisthepotentialforenergysavings.Ourliteraturereviewrevealsasignificantvarianceinenergysavings,whichismoreprominentinmodelingstudiesthaninexperimentalfindings.AsdiscussedinChapter2,calculatedenergysavingsfrommodelingstudiesrangebetween2and14percent,whereasinexperimentalstudiessavingsrangebetween2and8percent.

Thefollowingfactorscansignificantlyaffectenergysavings:

• Batterystorage:ThepresenceofbatterystoragecangreatlyincreaseenergysavingsthroughtheeliminationofpowerconversionsfromDCtoACandbacktoDC,whichcurrentlyoccurinatypicalACsystemwithPVandbatterystorage.

• CoincidenceofPVoutputandload:WhenpowerdemandoccursduringsolarPVgeneration,DCcanbefeddirectlyfromthePVarraytoDC-readyappliancesinthebuilding.Atthesametime,adirect-DCsystemwithhighcoincidenceofPVandloadusageuseslessrectifiedACpowerfromtheelectricgrid,whicheffectivelyreducestheDCsystem’senergylosses.

• Powersystemcomponentefficiencies:Theoperationalefficienciesofrectifiers(AC/DC),inverters(DC/AC),andDCconverters(DC/DC)—andspecifically,therelativeoperationalefficienciesofpowersystemcomponentsintheDCsystem(mostlytheefficienciesofDC/DCconvertersandcentralrectifiers)comparedtothoseintheACsystem(i.e.,efficienciesofinvertersandpowersupply/rectifierefficienciesattheappliancelevel)—candetermineenergysavings.IntheforeseeablefuturepotentialincreaseddemandandR&DforDCsystemswillleadtohigherefficienciesforDCsystemconverters.Ontheotherhand,technologyadvancementsandregulatorystandardsforinternalandexternalappliancepowersuppliesarealsoexpectedtoimproveefficienciesforsuchcomponents.Regardless,direct-DCsystemsrequirelesspowerconversionsthanACsystems(andmoresoinsystemswithbatterystorage),andarethereforeexpectedtokeeptheirtheoreticalefficiencyadvantage.

• DCVoltageandsystemconfiguration:DClinevoltage(typically380Vforhighpowerloads,and24Vor48VDCforlowpowerloads)canimpactwirelosses.

• Powersystemconfiguration:Finally,thepowersystemconfigurationandtopologies(i.e.,thetypeandnumberofcomponentsinthesystem,andhowthesecomponentsareelectricallyconnectedtoeachother)candeterminethenumberofpowerconversionswithinthebuildingandthereforeenergysavings.

Page 31: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

29

Non-EnergyBenefitsandBarriers

Accordingtoseveralstudies,DCpowerdistributioninbuildingshasimportantnon-energybenefitscomparedtoACpower.DCsystemsallowforeasierintegrationofpower,communications,andcontrolswithcertainDCstandards(PoEandUSB).Expandeduseofrenewablesalsoreducesgreenhousegasemissions,extendingtheenergysavingsofDCpowerinthiscriticaldimension.Inaddition,existingresearchinDCdatacentershasdemonstratedthattheeliminationofcertainpowersystemcomponentsinDCsystemscansignificantlyincreasesystemreliability.Furthermore,theabilityofDCsystemstoseamlesslyactasmicrogrids(i.e.,tobeislandedfromthegrid)canimproveresiliency,anincreasinglyvaluablecharacteristicasutilitiesandgovernmentagenciesareaddressingdisastermitigation.Furthermore,DCmicrogridsareeffectivelyde-coupledfromtheACgrid(evenwhennotcompletelyislandedfromthegrid),whichmakestheend-useequipmentontheDCmicrogridlesssusceptiblefromfrequencyandvoltagedisturbancesonthegrid.AlthoughsuchbenefitsarewidelydiscussedintheliteratureandamongDCpoweradvocates,theyhavenotbeenthoroughlyinvestigated,substantiated,orquantified.

Cost

AsdiscussedinChapter2,andbasedonsurveyandinterviewfeedback,DCsystemshavethepotentialofhavingalowerfirstcostcomparedtoACsystemsinbuildings,primarilyduetotheuseoflesscomponentsandsimplicityofcircuitry.However,thiswouldrequiretheappropriateeconomiesofscale.Forthecurrentmarket,certainend-useapplicationswhereDCpowerisstartingtoseesignificantadoption,suchasDCdatacentersandPoElighting,maybebettersuitedforcommercialization.Overall,firstcostisoneofthemainbarriersfordevelopers,designers,specifiers,manufacturers,andenduserstoimplementDCsystemsinbuildings.Fromaresearchperspective,thefewstudiesthataddressDCsystemscostfollowforthemostpartaqualitativeapproach,primarilyduetothelackofdataonDCappliances,converters,andactualinstalledsystems.However,bottom-upapproaches(i.e.,estimatingcostsfromcomponentstosystems),aswellastop-down(basedondatafromdemonstrationprojects)couldbeemployedtoestimatethecurrentandfuturecostsofDCsystems.

Standards

ManynewstandardsforDCpowerhavebeendevelopedinrecentyearsandmoreareinprocesswiththegoalofcreatinginternationalstandardsforDCpowersystemsandapplications.AnearlyleaderintheseeffortshasbeentheEMergeAlliance,whosemaingoalistohelpcreateDCstandardsdirectly,orbycatalyzingstandardscreationthroughotherorganizationslikeIEC,IEEE,theNationalFireProtectionAssociation(NFPA),andothers.Moststandardsdealingwithelectricity,andespeciallythosefocusingonsafety,alreadycoverthesubjectofDC.Unfortunatelytheydosoinsuchanindirectwaythatitmakesthemdifficulttointerpret,expensiveforpermitting,andunlikelytobeusedforDC,thushinderingtheadoptionofDCpower.Forthisreason,explicitandrapiddevelopmentofDCandAC-DChybridelectrical

Page 32: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

30

standardsandcodesarevitalforwidespreadmarketadoption.AnotherkeyfactorforDCstandardsistheincreasinguseofinformationtechnology(IT)standards—namelyPoEandUSB—fordistributionoflow-voltageDCpowerinbuildingstopowerDCproductssuchaselectronicsandlighting.AccordingtoarecentreportbytheIEC[38],themajorityofthestandardizationeffortsforDCrelatetotheadditionofprovisionsforDCintheexistingACstandards.However,thesamereportnotesthattherearespecificdifferencesbetweenACandDCthatshouldbeaddressedspecificallyforDC.Thoseincludethefollowing:

• StandardizationforDCvoltages,includingvoltagevariation,particularlyforapplicationwithbatterystorage.

• StandardizationofDCplugsandsockets.Suchproductsmustaddressarcingandloaddisconnectionwhileinactivemode.

• FurtherinvestigationofhumanhealtheffectsfromDCpower.• Otherdifferencessuchasprotectionagainstvoltageandcurrentsurgesovervoltageand

overcurrentprotection,faultdetection,groundingprinciples,arcing,andcorrosion.TheEMergeAlliancehasacodesandstandardsreferencelistforthenumerousDCandhybridstandardsandplanstoupdateitregularly.SeethelistinAppendixEandupdatesathttp://www.emergealliance.org.

Page 33: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

31

5.ConclusionsandFutureResearch

TosummarizethestateoftheindustryforDCpowerinbuildings,wehavedrawnonseveralinformationsources,includingareviewoftheacademicandindustryliterature,astakeholderworkshop,astakeholdersurvey,andin-depthstakeholderinterviews.SuccessfulmarketdevelopmentofDCsystemsinbuildingsrequirestheavailabilityofreliable,cost-competitiveend-useappliancesandequipmentthatcandirectlyuseandenableDCpower,aswellasmaturestandardsthataddressDCpowerdistributionvoltages,connectors,andprotectionschemes.Currently,theseelementsarelacking.Further,DCpowerdistributioninbuildingsappearstohavemultifacetedbenefitsthatcrosstraditionalboundaries.Whilethiswouldseemtobeanadvantage,nothavingasinglebenefitthatisaclearwinnerappearstobeanotherimpediment.Policymakersandadvocacygroupstypicallyfocusonaspecificattribute(e.g.,energysavings)whendecidingtopromoteandincentivizeaspecifictechnology.However,thestrategicvalueofDCpowerrequiresasystemsapproach—encompassingtheeasierintegrationofon-siterenewablegenerationwithdigitalbuildingcontrols,batterystorage,andEVcharging,toenergysavingsfromreducedpowerlosses,tothepotentialforincreasedresiliencyandreliability.Forthisreason,andasexpressedbystakeholdersduringtheworkshop,surveys,andinterviews,additionalfielddemonstrationsofDCpowerdistributioninlow-energybuildingsareneededtocarefullyevaluateandquantifythewholespectrumofpotentialDCbenefits.Demonstrationprojectsalsowouldhelptoaddressanyintegrationandsafetyissues,allowmanufacturerstofield-testtheirDC-readyproducts,andraisestakeholderawareness.Thesedemonstrationsshouldincludemultiplevendors’systemssotheresultscanbegeneralizedtoadvanceouroverallknowledgeofDCpowerinbuildings.ThedomesticmarketforDCpowerinbuildingscanlooktoadvancementsandlessonslearnedfromtheinternationalmarket.Japan,China,andseveralEuropeancountrieshaveinvestedinDCpowerandhavedevelopednumerouscasestudiesanddemonstrationprojects,withafocusonenergyefficiency,renewables,andresiliency.ReviewofinternationalcasestudiescomparedtotheU.S.marketshowsaconvergenceonthetypesofbenefitsandbarrierstoDCpower;however,theselectionandrecommendationofDCdistributionvoltagesandconfigurationscanvarybetweenprojectsindifferentcountries.Clearly,atthisearlystageofdevelopment,DCpowerdistributioninbuildingswouldbenefitfromacoordinatedefforttostandardizevoltagelevels—notonlytofacilitatestandardsdevelopment,butalsotoconcentratethemarketofpowerconvertersandDC-readyappliancesandfacilitatemanufacturersinstandardizingproductofferingsandreachingeconomiesofproductionscale.AnotherkeymarketfromwhichDCcanbenefitistheoff-gridmarket;andspecificallytheoff-gridsolarPVmarketforthedevelopingworldandruralapplications.Thereiscurrentlyalargenumberofdirect-DCappliancesandsolutionsfordirectcouplingwithPV[39],whicharesupportedbyinternationalandU.S.programs,suchastheGlobalLEAPinitiativeledbytheU.S.

Page 34: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

32

DepartmentofEnergy(DOE)[40],thePowerAfricainitiativemanagedbytheUnitedStatesAgencyforInternationalDevelopment(USAID)[41],andtheWorldBank’sEnergySectorManagementAssistanceProgram(ESMAP).[42]Thesuccessofthoseprograms,andtheinvolvementofmanufacturersinthisfield,canhaveaspillovereffecttothedeveloped-worldoff-gridmarket,andfurthertothegrid-connectedbuildingsector.WiththeproliferationofdistributedDCgeneration,batterystorage,EVs,andefficientDC-internalappliances,thefutureofend-useloadsinthebuildingsectorisexpectedtobeDC.However,atthispoint,DCadoptionshouldfocusonspecificend-useapplicationsforDCinwhichthebenefitsarewellunderstoodandthebarrierstoadoption(informationandrisk)arelower.Thenextphaseofthisprojectwillfocusoncreatingsuchend-usedesignrecommendationsforasmallnumberofcase-studyDCpoweredbuildingsandonanalyzingtheenergyandcostimpactsofthesedesigns.

Page 35: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

33

References

[1] S.Backhausetal.,“DCMicrogridsScopingStudy—EstimateofTechnicalandEconomicBenefits,”LosAlamosNationalLaboratory,LA-UR-15-22097,Mar.2015.

[2] D.Denkenberger,D.Driscoll,E.Lighthiser,P.May-Ostendorp,B.Trimboli,andP.Walters,“DCDistributionMarket,Benefits,andOpportunitiesinResidentialandCommercialBuildings,”PacificGas&ElectricCompany,Oct.2012.

[3] V.Vossos,K.Garbesi,andH.Shen,“Energysavingsfromdirect-DCinU.S.residentialbuildings,”EnergyBuild.,vol.68,PartA,pp.223–231,Jan.2014.

[4] S.WillemsandW.Aerts,“StudyandSimulationOfADCMicroGridWithFocusonEfficiency,UseofMaterialsandEconomicConstraints,”UniversityofLeuven,Leuven,Belgium,2014.

[5] U.BoekeandM.Wendt,“DCpowergridsforbuildings,”in2015IEEEFirstInternationalConferenceonDCMicrogrids(ICDCM),2015,pp.210–214.

[6] D.Fregosietal.,“AcomparativestudyofDCandACmicrogridsincommercialbuildingsacrossdifferentclimatesandoperatingprofiles,”in2015IEEEFirstInternationalConferenceonDCMicrogrids(ICDCM),2015,pp.159–164.

[7] M.Noritake,K.Yuasa,T.Takeda,H.Hoshi,andK.Hirose,“DemonstrativeresearchonDCmicrogridsforofficebuildings,”inTelecommunicationsEnergyConference(IN℡EC),2014IEEE36thInternational,2014,pp.1–5.

[8] R.Weiss,L.Ott,andU.Boeke,“Energyefficientlow-voltageDC-gridsforcommercialbuildings,”in2015IEEEFirstInternationalConferenceonDCMicrogrids(ICDCM),2015,pp.154–158.

[9] S.Ravula,“DirectCurrentBasedPowerDistributionArchitecturesforCommercialBuildings,”presentedattheBoschDCMicrogridProject:EPC14-053,12-Nov-2015.

[10] AllianceforSustainableColorado,“DCProject.”[Online].Available:http://www.sustainablecolorado.org/what-we-do/building-innovation/dc-project/.[Accessed:31-Jul-2016].

[11] NextEnergy,“NextHome,”NextEnergy..[12] E.Pond,“Aquion&IdealPowerPartofHybridMicrogridDesignatSonomaWinery,”

AquionEnergy,26-Apr-2016..[13] L.Roose,“MokuoLo’eDCMicrogrid,”Honolulu,HI,27-Mar-2015.[14] BusinessWire,“PhilipsUnveilsFirstLightingInstallationThatLeveragesPowerover

EthernetonMajorUniversityCampusasPartofClemsonUniversity’sWattFamilyInnovationCenter|BusinessWire,”21-Jan-2016.[Online].Available:http://www.businesswire.com/news/home/20160121005196/en/Philips-Unveils-Lighting-Installation-Leverages-Power-Ethernet.[Accessed:22-Jan-2016].

[15] ARDAPower,“BurlingtonDCMicrogridProjectConfiguration,”ARDAPower,2016.[Online].Available:http://www.ardapower.com/configuration.html.[Accessed:19-Apr-2016].

[16] BUCEA,“DCmicro-gridphotovoltaicpowergenerationefficiencysimulationanalysisreports(UnpublishedManuscript),”BeijingUniversityofCivilEngineeringandArchitecture,Oct.2015.

Page 36: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

34

[17] F.Zhangetal.,“AdvantagesandchallengesofDCmicrogridforcommercialbuildingacasestudyfromXiamenuniversityDCmicrogrid,”in2015IEEEFirstInternationalConferenceonDCMicrogrids(ICDCM),2015,pp.355–358.

[18] E.Rodriguez-Diaz,J.Vasquez,andJ.Guerrero,“IntelligentDCHomesinFutureSustainableEnergySystems:Whenefficiencyandintelligenceworktogether.”IEEEConsumerElectronicsMagazine,vol.5,no.1,pp.74–80,Jan-2016.

[19] S.FosterPorter,D.Denkenberger,C.Mercier,P.May-Ostendorp,andP.Turnbull,“RevivingtheWarofCurrents:OpportunitiestoSaveEnergywithDCDistributioninCommercialBuildings,”ECOVA,2014.

[20] E.Planas,J.Andreu,J.I.Gárate,I.MartínezdeAlegría,andE.Ibarra,“ACandDCtechnologyinmicrogrids:Areview,”Renew.Sustain.EnergyRev.,vol.43,pp.726–749,Mar.2015.

[21] D.KingandJ.Brodrick,“ResidentialDCPowerBus.OpportunitiesforSavings?,”ASHRAEJournal,pp.73–77,Sep-2010.

[22] B.Glasgo,I.Azevedo,andC.Hendrickson,“UnderstandingthepotentialforelectricitysavingsandassessingfeasibilityofatransitiontowardsDCpoweredbuildings,”2015.

[23] ArmstrongCeilingSolutions,“DCFlexZoneGrid.”[Online].Available:https://www.armstrongceilings.com/commercial/en-us/suspension-systems/ceiling-grid/dc-flexzone.html[Accessed:23-Jan-2017].

[24] Philips,“Philipsshineslightonopeningoftheofficeofthefuture–theEdgeinAmsterdam,”Philips,Jun-2015.[Online].Available:http://www.philips.com/a-w/about/news/archive/standard/news/press/2015/20150625-Philips-shines-light-on-opening-of-the-office-of-the-future-the-Edge-in-Amsterdam.html.[Accessed:06-May-2016].

[25] M.Wright,“EatondemonstratesdistributedDCpowerforLEDlightingatLFI,”LEDsMagazine,04-May-2016.

[26] B.T.Patterson,“DC,ComeHome:DCMicrogridsandtheBirthofthe‘Enernet,’”IEEEPowerEnergyMag.,vol.10,no.6,pp.60–69,Nov.2012.

[27] K.George,“DCPowerProduction,DeliveryandUtilization:AnEPRIWhitePaper,”2006.[28] S.Pantano,P.May-Ostendorp,andK.Dayem,“DemandDC.AcceleratingtheIntroduction

ofDCPowerintheHome,”CLASP,May2016.[29] D.E.Geary,“PhasingoutAC-Directly,”in2012IEEEEnergytech,2012,pp.1–6.[30] A.Sannino,G.Postiglione,andM.H.J.Bollen,“FeasibilityofaDCnetworkforcommercial

facilities,”IEEETrans.Ind.Appl.,vol.39,no.5,pp.1499–1507,Sep.2003.[31] G.AlLeeandW.Tschudi,“EdisonRedux:380VdcBringsReliabilityandEfficiencyto

SustainableDataCenters,”IEEEPowerEnergyMag.,vol.10,no.6,pp.50–59,Nov.2012.[32] S.Whaite,B.Grainger,andA.Kwasinski,“PowerQualityinDCPowerDistributionSystems

andMicrogrids,”Energies,vol.8,no.5,pp.4378–4399,May2015.[33] M.Monadi,M.AminZamani,J.IgnacioCandela,A.Luna,andP.Rodriguez,“Protectionof

ACandDCdistributionsystemsEmbeddingdistributedenergyresources:Acomparativereviewandanalysis,”Renew.Sustain.EnergyRev.,vol.51,pp.1578–1593,Nov.2015.

[34] L.Hardesty,“DirectCurrentPowersBuilding,”EnergyManagerToday,29-Jul-2015.[Online].Available:http://www.energymanagertoday.com/direct-current-powers-building-0114185/.[Accessed:15-Apr-2016].

Page 37: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

35

[35] SolarEnergyIndustriesAssociation,“SolarMarketInsightReport2016Q4,”SEIA.org.[Online].Available:http://www.seia.org/research-resources/solar-market-insight-report-2016-q4.[Accessed:24-Jan-2017].

[36] GTMResearch,“U.S.EnergyStorageMonitor:Q42016ExecutiveSummary,”GTMResearch,Dec.2016.

[37] NavigantConsulting,Inc.,“EnergySavingsForecastofSolid-StateLightinginGeneralIlluminationApplications,”U.S.DepartmentofEnergy,DOE/EE-1133,Aug.2014.

[38] IEC,“ImplementingthestandardizationframeworktosupportthedevelopmentofLowVoltageDirectCurrentandelectricityaccess:FinalreportIECSystemsEvaluationGroup4-LowVoltageDirectCurrentApplications,DistributionandSafetyforuseinDevelopedandDevelopingEconomies,”InternationalElectrotechnicalCommission,Edition1.0,Oct.2016.

[39] H.OlkandJ.Mundt,“PhotovoltaicsforProductiveUseApplications.AcatalogueofDC-Appliances,”DeutscheGesellschaftfürInternationaleZusammenarbeit(GIZ)GmbH,Jan.2016.

[40] GlobalLEAP,“TheStateoftheGlobalOff-GridApplianceMarket,”Feb.2016.[41] U.S.AgencyforInternationalDevelopment,“PowerAfrica.”[Online].Available:

https://www.usaid.gov/powerafrica.[Accessed:24-Jan-2017].[42] ESMAP,“EnergySectorManagementAssistanceProgram.”[Online].Available:

https://www.esmap.org/.[Accessed:24-Jan-2017].

Page 38: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

36

AppendixA:ReferenceList

Date Author Title PublicationTitle URL

2015Aarstad,Cassidy;

Kean,Andrew;TaufikArcFaultCircuitInterrupterDevelopment

forResidentialDCElectricity

2012 ABBABBsolves100-year-oldelectricalpuzzle–newtechnologytoenablefutureDC

grid

http://www.abb.com/cawp/seitp202/65df338284e41b3dc1257aae0045b7d

e.aspx

2007 ABBABBCircuit-BreakersforDirectCurrent

Applications

http://www04.abb.com/global/seitp/seitp202.nsf/0/6b16aa3f34983211c125

761f004fd7f9/$file/vol.5.pdf2016 ADCEnergy,Inc. ADCEnergy,Inc. http://www.adcenergy.org/

Adelman,JacobSoftbank,BloomEnergyTeamUpin

JapaneseFuelCellVenture Bloomberg.com

http://www.bloomberg.com/news/articles/2013-07-18/softbank-bloom-

energy-team-up-in-japanese-fuel-cell-venture

2014

Afamefuna,David;Chung,Il-Yop;Hur,Don;Kim,Ju-Yong;

Cho,Jintae

ATechno-EconomicFeasibilityAnalysisonLVDCDistributionSystemforRural

ElectrificationinSouthKorea

JournalofElectricalEngineering&Technology

http://www.kpubs.org/article/articleDownload.kpubs?downType=pdf&articl

eANo=E1EEFQ_2014_v9n5_1501

2011

Ahn,Jung-Hoon;Koo,Keun-Wan;Kim,Dong-Hee;Lee,Byoung-kuk;

Jin,Hyun-Cheol

ComparativeanalysisandsafetystandardguidelineofACandDCsuppliedhome

appliances

2011IEEE8thInternational

ConferenceonPowerElectronicsandECCEAsia(ICPEECCE)

2012 AlLee,G.;Tschudi,W.EdisonRedux:380VdcBringsReliability

andEfficiencytoSustainableDataCenters

IEEEPowerandEnergyMagazine

Alliancefor

SustainableColorado DCProject

http://www.sustainablecolorado.org/what-we-do/building-innovation/dc-

project/

Ambibox Ambibox.TechnicalInformation

https://www.ambibox.de/downloads/

ambibox_techinfo.pdf

2011Amin,M.;Arafat,Y.;

Lundberg,S.;Mangold,S.

LowvoltageDCdistributionsystemcomparedwith230VAC

2011IEEEElectricalPowerandEnergyConference(EPEC)

2016 ARDAPowerBurlingtonDCMicrogridProject

Configuration ARDAPowerhttp://www.ardapower.com/configur

ation.html

2016 ARDAPower ARDABatteryDC-DCConverter ARDAPowerhttp://www.ardapower.com/battery-

dc-dc-converter.html

ArmstrongCeiling

SolutionsDCFlexZoneGrid

https://www.armstrongceilings.com/commercial/en-us/suspension-

systems/ceiling-grid/dc-flexzone.html

2015AsiaPacificEconomic

CooperationSecretariat

APECSmartDCCommunityPowerOpportunityAssessment

2015Asmus,Peter;Elberg,

Richelle DirectCurrentDistributionNetworks

https://www.navigantresearch.com/wp-assets/brochures/DCDN-15-

Executive-Summary.pdf

Page 39: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

37

2015

Backhaus,Scott;Swift,GregoryW.;

Chatzivasileiadis,Spyridon;Tschudi,William;Glover,Steven;Starke,Michael;Wang,

Jianhui;Yue,Meng;Hammerstrom,

Donald

DCMicrogridsScopingStudy—EstimateofTechnicalandEconomicBenefits

http://www.energy.gov/sites/prod/files/2015/03/f20/DC_Microgrid_Scoping_Study_LosAlamos-Mar2015.pdf

2015 Boeke,U.Deliverable:D4.5.1.Demonstrationof

IndustrialApplication

http://dcgrid.tue.nl/files/D4_5_1_Demonstration_of_Industrial_Applicatio

n_v1.0.pdf

Boeke,U. LowvoltageDCpowergridsystemand

applications

http://dcgrid.tue.nl/files/2014-04-03_Boeke-DCCG_Project-

Low_Voltage_DC_Power_Grids.pdf

2014 Boeke,U.;Ott,L.Impactofa380VDCPowerGrid

InfrastractureonCommercialBuildingEnergyProfiles

http://dcgrid.tue.nl/files/2014-04-28_DCC+G-White_Paper-

Building_profiles_and_impact_by_DC_grids.pdf

2015 Boeke,U.;Wendt,M. DCpowergridsforbuildings

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2016 Brenguier,J.;Vallet,M.;VAILLANT,F.

EfficiencygapbetweenACandDCelectricalpowerdistributionsystem

2016IEEE/IAS52ndIndustrialand

CommercialPowerSystemsTechnicalConference(ICPS)

2016 Brocade Brocade Brocade http://www.brocade.com/en.html

2015 BUCEADCmicro-gridphotovoltaicpower

generationefficiencysimulationanalysisreports(UnpublishedManuscript)

2016 BusinessWire

PhilipsUnveilsFirstLightingInstallationThatLeveragesPoweroverEthernetonMajorUniversityCampusasPartofClemsonUniversity’sWattFamilyInnovationCenter|BusinessWire

http://www.businesswire.com/news/home/20160121005196/en/Philips-

Unveils-Lighting-Installation-Leverages-Power-Ethernet

2010 BusinessWireWorld’sFirstDC-Powered,DuctlessMini-SplitAirConditionerUnveiledbySolar

PanelsPlus

http://www.businesswire.com/news/home/20100120006248/en/World%E2%80%99s-DC-Powered-Ductless-Mini-Split-Air-Conditioner-Unveiled

2017Cacciato,M.;Nobile,G.;Scarcella,G.;

Scelba,G.

Real-TimeModel-BasedEstimationofSOCandSOHforEnergyStorageSystems

IEEETransactionsonPowerElectronics

2015 CalPolyStateUniversity

TheDCHouseProject

http://www.calpoly.edu/~taufik/dchouse/index.html

2015 Capasso,Clemente;Veneri,Ottorino

ExperimentalstudyofaDCchargingstationforfullelectricandpluginhybrid

vehiclesAppliedEnergy http://www.sciencedirect.com/scienc

e/article/pii/S030626191500495X

2016 Cardwell,Diane ASuburbanExperimentAimsforFree TheNewYorkTimes http://www.nytimes.com/2016/06/04

Page 40: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

38

Energy /business/energy-environment/solar-power-energy-efficient-net-zero.html

2016CentreforSolar

EnergyandHydrogenResearch(ZSW)

NumberofElectricCarsWorldwideClimbsto1.3Million

http://www.zsw-bw.de/uploads/media/pr05-2016-

ZSW-DataE-Mobility.pdf

2014 Chauhan,R.K.;Rajpurohit,B.S.

DCdistributionsystemforenergyefficientbuildings

PowerSystemsConference(NPSC),2014Eighteenth

National

2015 Chen,Fang;Burgos,R.;Boroyevich,D.

Efficiencycomparisonofasingle-phasegrid-interfacebidirectionalAC/DC

converterforDCdistributionsystems

2015IEEEEnergyConversionCongressandExposition(ECCE)

2014 Chiltrix UltraEfficientChillerTechnology-HowItWorks

http://www.chiltrix.com/chiller-technology.html

Cho,Bo-Hyung DCMicrogridProjectinSNU

http://microgrid-symposiums.org/wp-content/uploads/2014/12/tianjin_bo-

hyung-cho.pdf

2015Cho,J.;Kim,J-H;Chae,W.;Lee,H.;Kim,J.

DesignandConstructionofKoreanLVDCDistributionSystemforSupplyingDC

PowertoCustomerCIRED2015

http://cired.net/publications/cired2015/papers/CIRED2015_0604_final.pdf

2016 CiscoBlogs CiscoUPoEPowersCuttingEdgeRetailExperienceAtTheDandyLab

blogs@Cisco-CiscoBlogs

http://blogs.cisco.com/enterprise/cisco-upoe-powers-cutting-edge-retail-

experience-at-the-dandy-lab

2014 Clover,Ian Microinvertersvs.Optimizers PVMagazine

http://www.pv-magazine.com/archive/articles/beitra

g/microinverters-vs-optimizers-_100016637/618/#axzz4KvGiZR3P

2016 CUI,Inc. PowerQuickGuide|CUIInc

http://www.cui.com/catalog/resource/power-quick-guide.pdf

Dell'OroGroup EthernetSwitch—Layer2+3 Dell'Oro http://www.delloro.com/products-

and-services/ethernet-switch

2012

Denkenberger,Dave;Driscoll,Debbie;

Lighthiser,Erica;May-Ostendorp,Peter;Trimboli,Brendan;Walters,Philip

DCDistributionMarket,Benefits,andOpportunitiesinResidentialand

CommercialBuildings

http://www.xergyconsulting.com/wp-content/uploads/2013/09/Dc-

Distrib_Final-Report_FINAL_30Oct2012.pdf

Departmentof

Defense

DCMicrogridBuildingEnergyManagementPlatformforImprovedEnergyEfficiency,EnergySecurity,and

OperatingCostsEW-201352

DOESERDPandESTCPprograms

https://www.serdp-estcp.org/Program-Areas/Energy-and-

Water/Energy/Microgrids-and-Storage/EW-201352

2015

Díaz,E.R.;Su,X.;Savaghebi,M.;

Vasquez,J.C.;Han,M.;Guerrero,J.M.

IntelligentDCMicrogridlivingLaboratories-AChinese-Danish

cooperationproject

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015

Diaz,EnriqueRodriguez;

Firoozabadi,MehdiSavaghebi;Quintero,JuanCarlosVasquez;Guerrero,JosepM.

AnOverviewofLowVoltageDCDistributionSystemsforResidential

Applications

5thIEEEInternationalConferenceon

ConsumerElectronics-Berlin2015

http://vbn.aau.dk/ws/files/219724154/2015_ICCE_An_Overwiew_of_LVDC_Distribution_systems_for_Residential_

Applications.pdf

Page 41: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

39

2016 DirectCurrentBV DCSystemInnovationandSystemTransition

http://www.directcurrent.eu/en/

2016 DirectCurrentBV DCinutilitybuildingbecomesreality

http://www.directcurrent.eu/en/news/news-archive/82-dc-in-utility-

building-becomes-reality

2012 DiversifiedTechnologies,Inc.

PowerModMVDCConversion&TransmissionSystems

http://www.divtecs.com/data/File/papers/PDF/MVDC%20Final.pdf

2016 DKE GERMANSTANDARDIZATIONROADMAP:LowVoltageDC,Version1

2016 Downey,KyleMicrogrids:TheFutureofSmarterGridDesignandEnergyStability-LawStreet

(TM)LawStreet(TM)

http://lawstreetmedia.com/issues/energy-and-environment/microgrids-

smarter-grid-energy-stability/2014 E2SG e2sg-project.eu

http://www.e2sg-project.eu/

Eascor EASCOR|AboutUs

http://eascor.net/about/about.html

Eaton

EatonHighlightsBroadArrayofConnectedLightingCapabilitiesat

LIGHTFAIR2016

http://www.eaton.com/Eaton/OurCompany/NewsEvents/NewsReleases/PC

T_1930713

2016 Ehrlich,Brent TheDeathandRebirthofDCPower BuildingGreen https://www.buildinggreen.com/feature/death-and-rebirth-dc-power

2015

Elsayed,AhmedT.;Mohamed,AhmedA.;Mohammed,Osama

A.

DCmicrogridsanddistributionsystems:Anoverview

ElectricPowerSystemsResearch

http://www.sciencedirect.com/science/article/pii/S0378779614003885

2015 EmersonNetworkPower

400VDCResourceCenter

http://www.emersonnetworkpower.com/fr-EMEA/Brands/Netsure/ensys-400v-dc/Pages/resource-center.aspx

EmotorWerks DCChargingSystems

https://emotorwerks.com/index.php/store-juicebox-ev-charging-

stations/dc-charging-systems/product/listing

2006

Engelen,K.;LeungShun,E.;Vermeyen,P.;Pardon,I.;D'hulst,

R.;Driesen,J.;Belmans,R.

TheFeasibilityofSmall-ScaleResidentialDCDistributionSystems

IECON2006-32ndAnnualConferenceon

IEEEIndustrialElectronics

2016 EthernetAlliance 2016EthernetRoadmap

http://www.ethernetalliance.org/wp-content/uploads/2015/03/Ethernet-

Roadmap-2sides-29Feb.pdf

2008Fortenbery,Brian;Ton,My;Tschudi,

William

DCpowerforimproveddatacenterefficiency

http://energy.lbl.gov/ea/mills/HT/documents/data_centers/DCDemoFinalRe

port.pdf

2014

FosterPorter,Suzanne;

Denkenberger,Dave;Mercier,Catherine;May-Ostendorp,

Peter;Turnbull,Peter

RevivingtheWarofCurrents:OpportunitiestoSaveEnergywithDCDistributioninCommercialBuildings

http://w.greenercars.org/files/proceedings/2014/data/papers/3-817.pdf

2015Frank,StephenM.;Rebennack,Steffen

OptimaldesignofmixedAC–DCdistributionsystemsforcommercialbuildings:ANonconvexGeneralizedBendersDecompositionapproach

EuropeanJournalofOperationalResearch

http://www.sciencedirect.com/science/article/pii/S0377221714008121

Page 42: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

40

FraunhoferIISB DC/DCConverters

FraunhoferInstituteforIntegratedSystems

andDeviceTechnologyIISB

http://www.iisb.fraunhofer.de/en/research_areas/vehicle_electronics/dcdc

_converters.html

2015

Fregosi,D.;Ravula,S.;Brhlik,D.;Saussele,J.;Frank,S.;Bonnema,E.;Scheib,J.;Wilson,

E.

AcomparativestudyofDCandACmicrogridsincommercialbuildingsacrossdifferentclimatesandoperatingprofiles

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

Frey,Lothar PowerElectronicsforDCGrids

http://www.artemis-ioe.eu/events/presentations/25.09.2014_NESEM_2014_Erlangen_L.Frey_FhG_IISB_Power_Electronics_DC_grids.p

df

2010 FujitsuComponent DevelopmentofDCplugsandsocketoutletsforsmartgridanddatacenter

http://www.fujitsu.com/jp/group/fcl/en/resources/news/press-

releases/2010/20101109-1.html

2011Garbesi,Karina;

Vossos,Vagelis;Shen,Hongxia

CatalogofDCAppliancesandPowerSystems

http://eetd.lbl.gov/publications/catalog-dc-appliances-and-power-systems

2012 Geary,D.E. PhasingoutAC-Directly 2012IEEEEnergytech

2006 George,K. DCPowerProduction,DeliveryandUtilization:AnEPRIWhitePaper

http://www.netpower.se/documents/EPRI_DCpower_WhitePaper_June_20

06.pdf

2016Glasgo,Brock;

Azevedo,InêsLima;Hendrickson,Chris

Howmuchelectricitycanwesavebyusingdirectcurrentcircuitsinhomes?

Understandingthepotentialforelectricitysavingsandassessingfeasibility

ofatransitiontowardsDCpoweredbuildings

AppliedEnergy http://www.sciencedirect.com/science/article/pii/S0306261916309771

2015Glasgo,Brock;Azevedo,Inês;

Hendrickson,Chris

Understandingthepotentialforelectricitysavingsandassessingfeasibility

ofatransitiontowardsDCpoweredbuildings

http://www.usaee.org/usaee2015/submissions/OnlineProceedings/USAEE

%202015%20Paper_Glasgo.pdf

2016 GlobalLEAP TheStateoftheGlobalOff-GridApplianceMarket

http://www.cleanenergyministerial.org/Portals/2/pdfs/Global_LEAP_The_St

ate_of_the_Global_Off-Grid_Appliance_Market.pdf

GreenEnergyInnovations GreenEnergyInnovations http://www.geinnovations.net/

2014Grillo,S.;Musolino,V.;Piegari,L.;Tironi,E.;

Tornelli,C.DCIslandsinACSmartGrids IEEETransactionson

PowerElectronics

2016 GTMResearchU.S.EnergyStorageMonitor:Q42016

ExecutiveSummary 2014 Guerrero,JosepM. DCMicrogrids

Halper,Mark Cisco,PhilipsaddashowcasePowerover

EthernetlightinginstallationintheUAE

http://www.ledsmagazine.com/articles/2016/04/cisco-philips-add-a-showcase-power-over-ethernet-

lighting-installation-in-the-uae.html

Halper,Mark DigitalSSL'smegadisruptorwillbePower http://www.ledsmagazine.com/article

Page 43: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

41

overEthernet(MAGAZINE) s/print/volume-12/issue-11/features/networks-power/digital-ssl-s-mega-disruptor-will-be-power-

over-ethernet-magazine.html

2007 Hammerstrom,D.J. ACVersusDCDistributionSystems.DidWeGetitRight?

IEEEPowerEngineeringSociety

GeneralMeeting,2007

2015 Hardesty,L. DirectCurrentPowersBuilding EnergyManagerToday

http://www.energymanagertoday.com/direct-current-powers-building-

0114185/

2013 Hirose,Keiichi;Reilly,J.T.;Irie,H.

Thesendaimicrogridoperationalexperienceintheaftermathofthetohokuearthquake:acasestudy

https://www.smart-japan.org/english/vcms_cf/files/The_Operational_Experience_of_Sendai_Microgrid_in_the_Aftermath_of_the_Devastating_Earthquake_A_Case_Study.

pdf

Hoshi,Hidekazu;Yajima,Hiroya;

Babasaki,Tadatoshi;Hirose,K.;Matsuo,H.;Noritake,M.;Takeda,

T.

DevelopmentofEquipmentforHVDCPowerSupplySystems

https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201503fa8.pdf&mode=sho

w_pdf

2010 HotspotEnergy DCAirConditioner

http://www.hotspotenergy.com/DC-air-conditioner/

2014 Houseman,Doug. DC@HomeGeneralMeeting

http://workspaces.nema.org/public/LVDC/Shared%20Documents/DC%20at

%20Home%20-%20GM%20Main%20presentation.pdf

2015

Hummel,Michael;Grant,Galen;Benton,

Byron;KuetterDesmond,Kim

WorkingExampleHighPerformance

Buildings

http://www.hpbmagazine.org/attachments/article/12211/15Su-Zero-Net-Energy-Center-San-Leandro-CA.pdf

2016 IEC

Implementingthestandardizationframeworktosupportthedevelopment

ofLowVoltageDirectCurrentandelectricityaccess:FinalreportIECSystemsEvaluationGroup4-LowVoltageDirectCurrentApplications,DistributionandSafetyforusein

DevelopedandDevelopingEconomies

2015 IEEEStandardsAssociation

IEEEandEMergeAllianceSignMemorandumofUnderstanding(MoU)toAllowCollaborationinHybridAC/DC

MicrogridPowerStandardization

http://standards.ieee.org/news/2015/emerge_mou.html

IEEEStandardsAssociation

P2030.10-StandardforDCMicrogridsforRuralandRemoteElectricityAccess

Applications https://standards.ieee.org/develop/pr

oject/2030.10.html

2015 IETStandardsCodeofPracticeforLowandExtraLow

VoltageDirectCurrentPowerDistributioninBuildings

http://www.theiet.org/resources/standards/lvdc-cop.cfm

2016 IGORPowerOverEthernetLighting|POE

LightingControl IGOR http://www.igor-tech.com/

Page 44: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

42

IllinoisInstituteof

Technology

RibbonCuttingCeremonyforFirstHybridAC-DCNanogridattheIllinoisTech

Microgrid

http://engineering.iit.edu/events/2016/aug/17/ribbon-cutting-ceremony-first-hybrid-ac-dc-nanogrid-illinois-

tech-microgrid

InnovativeLighting InnovativeLightingPoEPowerOverEthernetLightingInstallation

https://www.youtube.com/watch?v=IDsSsXvv_10

2015 InnovativeLighting PoELEDLighting GENISYSPoELightingSystems

http://www.innovativelight.com/commercial-industrial-led-lighting/poe-

led-lighting/

2015 Iyer,S.;Dunford,W.G.;Ordonez,M.

DCdistributionsystemsforhomes2015IEEEPowerEnergySocietyGeneralMeeting

Jacobson,JulieColorbeam’sLVDCLightingSystem

DeliversPower,ControloverSingleCat5Cable

http://www.cepro.com/article/colorbeams_lvdc_lighting_system_delivers_power_control_over_single_cat_5_ca

2013Justo,JacksonJohn;Mwasilu,Francis;Lee,Ju;Jung,Jin-Woo

AC-microgridsversusDC-microgridswithdistributedenergyresources:Areview

RenewableandSustainableEnergy

Reviews

http://www.sciencedirect.com/science/article/pii/S1364032113002268

2007Kaipia,Tero;Salonen,Pasi;Lassila,Jukka;Partanen,Jarmo

ApplicationoflowvoltageDC-Distributionsystem–ATechno-

economicalStudy

19thInternationalConferenceon

ElectricityDistribution

http://www.cired.net/publications/cired2007/pdfs/CIRED2007_0464_paper.

pdf

2015

Kann,Shayle;Shiao,MJ;Honeyman,Cory;Kimbis,Tom;Baca,Justin;Rumery,

Shawn;Jones,Jade;Cooper,Leandra

U.S.SolarMarketInsightQ12015ExecutiveSummary

http://www.seia.org/sites/default/files/resources/Y3pV3Vn7QKQ12015SMI

_0.pdf

2015Kaur,P.;Jain,S.;Jhunjhunwala,A.

Solar-DCdeploymentexperienceinoff-gridandnearoff-gridhomes:Economics,

technologyandpolicyanalysis

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015

Keles,Cemal;Karabiber,

Abdulkerim;Akcin,Murat;Kaygusuz,Asim;Alagoz,BarisBaykant;Gul,Ozan

Asmartbuildingpowermanagementconcept:Smartsocketapplicationswith

DCdistribution

InternationalJournalofElectricalPower&

EnergySystems

http://www.sciencedirect.com/science/article/pii/S0142061514005195

2010 King,Darrell;Brodrick,JamesResidentialDCPowerBus.Opportunities

forSavings? ASHRAEJournal

LEDsMagazineGoldeneyelinearLEDlightingcanbe

integratedintoarchitecture

http://www.ledsmagazine.com/articles/2016/05/goldeneye-linear-led-lighting-can-be-integrated-into-

architecture.html

LEDsMagazineLightingindustryprogressesonDC-power

gridsthatpairwellwithLEDs(MAGAZINE)

http://www.ledsmagazine.com/articles/print/volume-10/issue-

6/features/lighting-industry-progresses-on-dc-power-grids-that-pair-well-with-leds-magazine.html

2012 Lee,J.;Han,B.;Cha,H. DevelopmentofhardwaresimulatorforDCmicro-gridoperationanalysis

2012IEEEPowerandEnergySocietyGeneralMeeting

Page 45: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

43

2014 Lennox SunsourceHomeEnergySystem

http://resources.lennox.com/FileUploads/SunSource_Home_Energy_System

.pdf

2014 Liu,Zifa;Li,Mengyu ResearchonEnergyEfficiencyofDCDistributionSystem

AASRIProcedia http://www.sciencedirect.com/science/article/pii/S2212671614000328

2014 Locment,F.;Sechilariu,M.

DCmicrogridforfutureelectricvehiclechargingstationdesignedbyEnergetic

MacroscopicRepresentationandMaximumControlStructure

2014IEEEInternationalEnergy

Conference(ENERGYCON)

2015 LUX CanpoweroverEthernettransformhowwecontrollightsintheworkplace?

http://www.luxreview.com/article/2015/06/when-power-meets-

intelligence

2015Mackay,L.;Hailu,T.;Ramirez-Elizondo,L.;

Bauer,P.

TowardsaDCdistributionsystem-opportunitiesandchallenges

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015 Madduri,Achintya AScalableDCMicrogridArchitectureforRuralElectrificationinEmergingRegions

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-240.html

2015 Makdessian,Alec;Huynh,Thong

PoEtechnologyforLEDlightingdeliversbenefitsbeyondefficiency(MAGAZINE)

http://www.ledsmagazine.com/articles/print/volume-12/issue-

8/features/dc-grid/poe-technology-for-led-lighting-delivers-benefits-

beyond-efficiency.html

2015MalyLisy,S.;Smrekar,

M.

ThreeCaseStudiesofCommercialDeploymentof400VDCDataand

TelecomCentersintheEMEARegion

http://www.emergealliance.org/portals/0/documents/events/intelec/TS01-

2.pdf

2013 McCluer,Stephen NFPA70E’sApproachtoConsideringDCHazards

http://ecmweb.com/safety/nfpa-70e-s-approach-considering-dc-hazards

MicrogridProjects DCMicrogrids MicrogridProjects http://microgridprojects.com/dc-

microgrids/

MicrogridProjects KalkeriSangeetVidyalayaDCMicrogrid MicrogridProjects

http://microgridprojects.com/microgrid/kalkeri-sangeet-vidyalaya-dc-

microgrid/

MicrogridProjects StoneEdgeFarmWineryMicrogrid MicrogridProjectshttp://microgridprojects.com/microgrid/stone-edge-farm-winery-microgrid/

MitsubishiElectric

MitsubishiElectrictoBuildDCDevelopmentandDemonstrationFacilityatPowerDistributionSystemCenterin

Marugame,Japan

http://www.mitsubishielectric.com/news/2015/0914-b.html

2015

Monadi,Mehdi;AminZamani,M.;IgnacioCandela,Jose;Luna,Alvaro;Rodriguez,

Pedro

ProtectionofACandDCdistributionsystemsEmbeddingdistributedenergyresources:Acomparativereviewand

analysis

RenewableandSustainableEnergy

Reviews

http://www.sciencedirect.com/science/article/pii/S1364032115006607

2016 MurataPowerSolutions

Latestproductsforpowersolutionsinindustrialapplications

http://www.murata-ps.com/data/catalogs/industrial_app_

products.pdf

2014 Naud,PaulS. SmoothingtheEffectsofRenewableGenerationontheDistributionGrid

eScholarship http://escholarship.org/uc/item/3nr053m8

2014 NavigantConsulting,Inc.

EnergySavingsForecastofSolid-StateLightinginGeneralIllumination

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/energysavingsf

Page 46: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

44

Applications orecast14.pdf

2016

NewEnergyandIndustrialTechnology

DevelopmentOrganization

NEDODemonstrationProjectAimsfor15%EnergySavingswithaHigh-VoltageDirectCurrent(HVDC)FeedingSystem

http://www.nedo.go.jp/english/news/AA5en_100103.html

NextekPowerSystems FortBelvoirDirectCoupling®DC

MicrogridNextekPowerSystems http://www.nextekpower.com/fort-

belvoir-direct-coupling-dc-microgrid/

NextEnergy NextHome NextEnergy https://www.nextenergy.org/nexthome-dc-distribution-system/

2015 NFPA

NFPA850:RecommendedPracticeforFireProtectionforElectricGeneratingPlantsandHighVoltageDirectCurrent

ConverterStations

http://www.nfpa.org/codes-and-standards/document-information-pages?mode=code&code=850

2015 Nordman,B.;Christensen,K.

TheneedforcommunicationstoenableDCpowertobesuccessful

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015 Nordman,Bruce;Christensen,Ken

DCLocalPowerDistributionwithmicrogridsandnanogrids

DCMicrogrids(ICDCM),2015IEEEFirstInternationalConferenceon

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7152038

2014Noritake,M.;Yuasa,K.;Takeda,T.;Hoshi,

H.;Hirose,K.

DemonstrativeresearchonDCmicrogridsforofficebuildings

TelecommunicationsEnergyConference(IN℡EC),2014IEEE36thInternational

2013

Noritake,Masatoshi;Hoshi,Hidekazu;

Hirose,Keiichi;Kita,Hiroyuki;Hara,Ryoichi;Yagami,

Masaki

OperationalgorithmofDCmicrogridforachievinglocalproductionforlocalconsumptionofrenewableenergy

TelecommunicationsEnergyConference'SmartPowerandEfficiency'(IN℡EC),Proceedingsof201335thInternational

Northerntool.com GPIGPRO12VoltCommercialGradeFuel

TransferPump http://www.northerntool.com/shop/tools/product_200665169_200665169

NTTGroup High-voltageDirectCurrentSystem:NTT

HOME http://www.ntt.co.jp/ntt-tec/e/high-

tec/10034.html2015 nuLEDs Nuleds-LedLighting http://www.nuleds.com/

2016 Ode,Mark NotYourAverageDC|ECMag

http://www.ecmag.com/section/not-your-average-dc

2016 Olk,Harald;Mundt,Juliane

PhotovoltaicsforProductiveUseApplications.AcatalogueofDC-

Appliances https://collaboration.worldbank.org/d

ocs/DOC-20766

2015 Pande,A.;Goebes,M.;Barkland,S.

ResidentialZNEMarketCharacterization

http://calmac.org/publications/TRC_Res_ZNE_MC_Final_Report_CALMAC_P

GE0351.01.pdf

2016

Pantano,Stephen;May-Ostendorp,Peter;Dayem,Katherine

DemandDC.AcceleratingtheIntroductionofDCPowerintheHome

http://clasp.ngo/Resources/Resources/PublicationLibrary/2016/DemandDC

2012 Patterson,B.T. DC,ComeHome:DCMicrogridsandtheBirthofthe"Enernet"

IEEEPowerandEnergyMagazine

2014 Patterson,Brian DC:ThePowertoChangeBuildings http://www.constructioncanada.net/d

Page 47: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

45

c-the-power-to-change-buildings/

Pellis,J. TheDCLow-VoltageHouse

http://alexandria.tue.nl/extra1/afstve

rsl/E/501233.pdf

2010 Philips PhilipsPoE-ColorDialPro

http://download.p4c.philips.com/l4bt/3/326814/colordial_pro_326814_ess

_aen.pdf

2016 Philips LuxSpacePoE PhilipsLighting

http://www.lighting.philips.com/main/prof/indoor-

luminaires/downlights/luxspace/luxspace-poe

2015 PhilipsPhilipsshineslightonopeningoftheofficeofthefuture–theEdgein

AmsterdamPhilips

http://www.philips.com/a-w/about/news/archive/standard/new

s/press/2015/20150625-Philips-shines-light-on-opening-of-the-office-

of-the-future-the-Edge-in-Amsterdam.html

2016 PikaEnergy SmartBatteries:ANewStandardinDistributedStorage

2015

Planas,Estefanía;Andreu,Jon;Gárate,JoséIgnacio;Martínez

deAlegría,Iñigo;Ibarra,Edorta

ACandDCtechnologyinmicrogrids:Areview

RenewableandSustainableEnergy

Reviews

http://www.sciencedirect.com/science/article/pii/S1364032114010065

Preparedness.com PortablePowerCenters

http://preparedness.com/powercente

rs.html

PrincetonPower

SystemsDemandResponseInverter(4Port)-

PrincetonPowerSystems

http://www.princetonpower.com/products/demand-response-inverter-4-

port.html

PV-Tech IndianPVprojectssufferingfrompoorselectionofDCcables PV-Tech

http://www.pv-tech.org/news/multiple-indian-pv-

projects-suffering-from-poor-selection-of-dc-cables

2012 Radio-Electronics.com UnderstandingPowerSupplyReliability

http://www.radio-electronics.com/articles/power-

management/understanding-power-supply-reliability-56

2015Rajaraman,V.;

Jhunjhunwala,A.;Kaur,P.;Rajesh,U.

EconomicanalysisofdeploymentofDCpowerandappliancesalongwithsolarin

urbanmulti-storiedbuildings

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015 Ravula,S. DirectCurrentBasedPowerDistributionArchitecturesforCommercialBuildings

http://www.energy.ca.gov/research/epic/documents/2015-12-

03_symposium/presentations/Session_1A_4_Sharmila_Ravula_Robert_Bosc

h.pdf

2016 Reiner,MarkdcProject—AllianceforSustainable

ColoradoWHITEPAPER:1

http://www.sustainablecolorado.org/wp-content/uploads/2015/05/dc-

Project-White-Paper-1.pdf

2016Rodriguez-Diaz,E.;

Vasquez,J.;Guerrero,J.

IntelligentDCHomesinFutureSustainableEnergySystems:When

efficiencyandintelligenceworktogether.

IEEEConsumerElectronicsMagazine

Page 48: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

46

2015 Roose,Leon MokuoLo'eDCMicrogrid

http://www.hnei.hawaii.edu/sites/www.hnei.hawaii.edu/files/CoconutIsland%20SPIDERS%20Luncheon%20HNEI%2

0L.Roose%20(8.27.15).pdf

2014 Saber,JimIEEEPowerandEnergySocietyGeneral

Meeting:NextHome

http://workspaces.nema.org/public/LVDC/Shared%20Documents/DC%20at

%20home%20-%20DC%20house%20project.pdf

2007 Salomonsson,D.;Sannino,A.

Low-VoltageDCDistributionSystemforCommercialPowerSystemsWith

SensitiveElectronicLoads

IEEETransactionsonPowerDelivery

2003Sannino,A.;

Postiglione,G.;Bollen,M.H.J.

FeasibilityofaDCnetworkforcommercialfacilities

IEEETransactionsonIndustryApplications

2015

Sasidharan,Nikhil;MadhuM.,Nimal;Singh,JaiGovind;

Ongsakul,Weerakorn

AnapproachforanefficienthybridAC/DCsolarpoweredHomegridsystembasedontheloadcharacteristicsofhome

appliances

EnergyandBuildings http://www.sciencedirect.com/science/article/pii/S0378778815302358

2010Savage,Paul;

Nordhaus,RobertR.;Jamieson,SeanP.

DCmicrogrids:benefitsandbarriersFromSilostoSystems:IssuesinCleanEnergyandClimateChange

SchneiderElectric DCRatedCircuitBreakers-Schneider

ElectricUSA

http://www.schneider-electric.us/en/product-

subcategory/50370-dc-rated-circuit-breakers/?parent-category-id=50300

2011

Seo,Gab-Su;Baek,Jongbok;Choi,Kyusik;Bae,Hyunsu;Cho,

Bohyung

ModelingandanalysisofDCdistributionsystems

2011IEEE8thInternational

ConferenceonPowerElectronicsandECCEAsia(ICPEECCE)

2015

Seyedmahmoudian,M.;Arrisoy,H.;

Kavalchuk,I.;Oo,A.Maung;Stojcevski,A.

RationalefortheuseofDCmicrogrids:feasibility,efficiencyandprotection

analysis

EnergyandSustainabilityV:

SpecialContributions

https://books.google.com/books?hl=en&lr=&id=h6nkBgAAQBAJ&oi=fnd&pg=PA69&ots=iBxDqiMw_7&sig=lodizW

uH4GXn7oRJ9jhzixPt-0w

SMAP EnergySectorManagementAssistance

Program https://www.esmap.org/

2008 Starke,M.R.;Tolbert,L.M.;Ozpineci,B.

ACvs.DCdistribution:Alosscomparison

TransmissionandDistribution

ConferenceandExposition,2008.T#x00026;D.IEEE/PES

2014 StrategenConsulting;ARUPGroup

Direct-CurrentScopingStudy:Opportunitiesfordirectcurrentpowerin

thebuiltenvironment.

2015 Tamaki,HisashiNushimaProject.AnExperimentalStudy

onaSelf-SustainableDecentralizedEnergySystemforanIsolatedIsland

http://microgrid-symposiums.org/wp-content/uploads/2015/09/a-

Tamaki_20150819.pdf

2012 Teratani,TatsuoCurrentStatusandFutureViewof

EV/PHEVwithChargingInfrastructureinJapan

http://www.oecd.org/futures/Current%20Status%20and%20Future%20View%20of%20EV%20PHEV%20with%20Charging%20Infrastructure%20in%20Jap

Page 49: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

47

an.pdf

2012Thomas,BrindaA.;Azevedo,InêsL.;Morgan,Granger

EdisonRevisited:ShouldweuseDCcircuitsforlightingincommercial

buildings?EnergyPolicy

http://www.sciencedirect.com/science/article/pii/S0301421512001656

Tikkanen,DaveTheBenefitsofLow-VoltageDCPower

DistributionforLEDLighting

http://www.lumastream.com/sites/default/files/specsheets/lumastream_lo

w-voltage_whitepaper-2.pdf

U.S.AgencyforInternationalDevelopment

PowerAfrica

https://www.usaid.gov/powerafrica

2011 Uesugi,TakehiroQuantitativeSimulationofenergysavingimpactsthroughDCpowersupplyat

residentialsector

UniversityofArkansas NSFGrantWillHelpResearchersChange

PowerforDataCentersfromACtoDCUniversityofArkansas

Newshttp://news.uark.edu/articles/33784

2015 UniversityofPittsburg DirectCurrentArchitectureforModernPowerSystems(DC-AMPS)

http://www.engineering.pitt.edu/Sub-Sites/Labs/Electric-Power-

Systems/_Content/Research/Current/DCAMPS/

UniversityofPittsburg DCHEART http://dcpower.pitt.edu/

2015 UniversityofTexasUniversityofTexas,JapanCollaborateonNext-GenerationEnergyEfficientData

Center

UTNews|TheUniversityofTexasat

Austin

https://news.utexas.edu/2015/08/11/ut-japan-collaborate-on-energy-

efficient-data-center

2015 VicorNewBCMBusConverterModuleswith

UnprecedentedPerformance VicorPowerBlog

http://powerblog.vicorpower.com/2015/10/new-bcm-bus-converter-modules-with-unprecedented-

performance/

2015 Vicor BCM®BusConverter

http://www.vicorpower.com/documents/datasheets/ds-

BCM380P475T1K2A30.pdf

VirginiaTech. CPESResearchAreas|CenterforPower

ElectronicsSystems|VirginiaTech http://www.cpes.vt.edu/areas/Sustain

able%20Building%20Initiative

2015 Voltserver VoltServertechnology-thedawningofdigitalpower

http://www.voltserver.com/Technology.aspx

2014Vossos,Vagelis;

Garbesi,Karina;Shen,Hongxia

Energysavingsfromdirect-DCinU.S.residentialbuildings

EnergyandBuildings http://www.sciencedirect.com/science/article/pii/S0378778813005720

2013 Webb,Victor-JuanEli Designofa380V/24VDCMicro-GridforResidentialDCDistribution

https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ACCESSION_NUM:toledo1355

247158

2015 Weiss,R.;Ott,L.;Boeke,U.

Energyefficientlow-voltageDC-gridsforcommercialbuildings

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2015Whaite,Stephen;Grainger,Brandon;Kwasinski,Alexis

PowerQualityinDCPowerDistributionSystemsandMicrogrids

Energies http://www.mdpi.com/1996-1073/8/5/4378

2014 Willems,Simon;Aerts,Wouter

StudyandSimulationOfADCMicroGridWithFocusonEfficiency,Useof

MaterialsandEconomicConstraints

http://www.dehaagsehogeschool.nl/xmsp/xms_itm_p.download_file?p_itm

_id=946572016 Wills,R. DCMicrogridsGainPopularityin ei,TheMagazineof http://www.nxtbook.com/ygsreprints

Page 50: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

48

CommercialBuildings theElectroindustry /NEMA/g59228_nema_mar16/#/18

2016 Wright,Maury EatondemonstratesdistributedDCpowerforLEDlightingatLFI

LEDsMagazine

http://www.ledsmagazine.com/articles/2016/05/eaton-demonstrates-

distributed-dc-power-for-led-lighting-at-lfi.html

2016 Wright,MauryLow-voltageschemetrivializes

installationofLEDlightingandsupportscontrols(MAGAZINE)

LEDsMagazine

http://www.ledsmagazine.com/articles/print/volume-13/issue-

8/features/dc-power/low-voltage-scheme-trivializes-installation-of-led-lighting-and-supports-controls.html

2014Wunder,B.;Ott,L.;Szpek,M.;Boeke,U.;

Weis,R.

EnergyefficientDC-gridsforcommercialbuildings

TelecommunicationsEnergyConference(IN℡EC),2014IEEE36thInternational

2013 Wunder,Bernd 380VDCinCommercialBuildingsandOffices

http://dcgrid.tue.nl/files/2014-02-11%20-%20Webinar%20Vicor.pdf

XICATO TheCasefora48VDCLightingSystem

http://www.xicato.com/sites/default/files/documents/The%20Case%20for%

2048VDC_0.pdf

2015 Yeager,K. DCMicrogridPerformanceExcellenceinElectricityRenewal

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

2012 YMGIGroup SolarDCInverterMiniSystem:PVPowered/BoostedMiniSplitWallMount

http://www.ymgihvacsupply.com/index.php?option=com_content&view=ar

ticle&id=2&Itemid=103

2014Yu,Xiaoyan;Yeaman,

P.

Anewhighefficiencyisolatedbi-directionalDC-DCconverterforDC-bus

andbattery-bankinterface

2014Twenty-NinthAnnualIEEEAppliedPowerElectronicsConferenceandExposition(APEC)

2015

Zhang,Fengyan;Meng,Chao;Yang,Yun;Sun,Chunpeng;Ji,Chengcheng;Chen,Ying;Wei,Wen;Qiu,Hemei;Yang,Gang

AdvantagesandchallengesofDCmicrogridforcommercialbuildingacase

studyfromXiamenuniversityDCmicrogrid

2015IEEEFirstInternational

ConferenceonDCMicrogrids(ICDCM)

Zimmerman,Scott;Liesay,William;Evans,

William

DC-poweredmodularSSLdeliversefficiencyandflexibility LEDsMagazine

http://www.ledsmagazine.com/articles/print/volume-13/issue-

6/features/dc-modular-lighting/dc-powered-modular-ssl-delivers-efficiency-and-flexibility.html

Page 51: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

49

AppendixB:ConverterEfficiencyCurves

ThisappendixaddressesefficienciesofpowerconvertersusedinpowerdistributionsystemsinbuildingswithACandDCdistribution,basedonmarketsurveys.Wecollectedefficiency,power,andvoltagedatafromvarioussources,includingmanufacturerwebsites,productspecsheets,andonlinedatabases.Thefollowingsectionsprovidebriefdescriptionsofthepowerconvertersusedinthebuildingdistributionsystems,andpresentefficiencycurves(efficiencyasapercentageofconvertermaxpower)foreachsurveyedconverter.ConverterssurveyedincludeDC/DCconvertersandMPPTs,AC/DCrectifiers,DC/ACinverters,fordifferentinputandoutputvoltagelevels,andpowerratings.

PowerOptimizers

PoweroptimizersareDC/DCconverters,typicallyconnectedtoindividualPVmodules,withthepurposeofmaximizingPVpoweroutputusingMPPT.PoweroptimizersarerelativelynewPVsystemcomponentsthatreplacethePVjunctionbox.TheycanbeusedbothwithACandDCbuildingdistributionsystems.PoweroptimizermanufacturersincludeSolarEdge,BlackMagic,eIQ,PikaEnergy,andothers.FigureB.1showsefficiencycurvesforpoweroptimizerswithpowerratingslessthan1kW.

FigureB.1.EfficiencyCurvesforPowerOptimizers(Vin<125VDC,Vout=48VDC,Pmax<1kW)

Microinverters

MicroinvertersconvertDCpowerfromthePVmodulestoACpowerthatistypicallysynchronoustothegrid.TheyincludeMPPT,andareconnectedtoindividualPVmodulestomaximizepoweroutputfromeachmodule.MicroinvertermanufacturersincludeAltenergy,Enphase,ABB,SMA,SolarBridge,Petra,LeadSolar,andothers.FigureB.2showsefficiencycurvesformicroinverterswithpowerratingslessthan1kW.

Page 52: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

50

FigureB.2.EfficiencyCurvesforMicroinverters(Vin<65VDC,Vout=120/240VAC,Pmax<1kW)

StringInverters

Stringinvertershaveasimilarfunctionasmicroinverters.TheytypicallyincludeMPPT,andconvertDCfromthePVarrayintoACsynchronoustothegrid.Theyaremorewidespreadthanmicroinverters,andtheirmaindifferenceisthatinsteadofconnectingtoeachPVmodule,theyconnecttostringsofPVmodules(i.e.,modulesconnectedinseries).StringinvertermanufacturersincludeSMA,Fronius,SchneiderElectric,ABB,Solectria,andmanyothers.Powerratings,inputandoutputvoltagesvaryforstringinvertersdependingonthebuildingtype(residentialorcommercial,voltageservicetype(singlephase,orthree-phase,andtheloadservedbythePVsystem.FigureB.3showsefficiencycurvesforstringinverterswithpowerratingslessthan10kW.

FigureB.3.EfficiencyCurvesforStringInverters(Vin<600VDC,Vout=240/208VAC,Pmax<10kW)

Page 53: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

51

BatteryInverters

BatteryinvertersconvertDCpowercomingfromthebuildingbatterystoragesystem,ordirectlyfromthePVarray,toACpowerthatissenttotheloadsortothegrid.Batteryinvertersincludeabuilt-inrectifiertoconvertACgrid-powertoDC,asrequiredforbatterycharging,buttheytypicallydonotincludeMPPT,asthisfunctionisgenerallyperformedbyanupstreamlocatedchargecontroller.Thebatteryinvertermarketissmallercomparedtothenon-batterybackupinvertermarket(i.e.,themarketforstringinvertersandmicroinverters).ManufacturersofbatteryinvertersincludeSchneiderElectric,SMA,Outback,Sigineer,Samlex,andothers.FigureB.4showsefficiencycurvesforbatteryinverterswithpowerratingslessthan10kW.

FigureB.4.EfficiencyCurvesforBatteryInverters(Vin<64VDC,Vout=120VAC,Pmax<10kW)

ChargeControllers

Chargecontrollersareusedinbatterybackupsystemstoregulatethecurrentsentto,orcomingfrom,thebattery,andtypicallyincludeMPPT.ChargecontrollermanufacturersincludeOutback,Morningstar,SchneiderElectric,SMA,MidniteSolar,andothers.FigureB.5showschargecontrollerefficiencycurvesforchargecontrollerswithMPPT,withpowerratingsbetween1-5kW.

Page 54: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

52

FigureB.5.EfficiencyCurvesforChargeControllers(Vin<600VDC,Vout=48VDC,Pmax:1-5kW)

DC/DCConverters

DC/DCconvertersconvertDCpowerfromonevoltageleveltoanother.Theyarepredominantlyusedinlow-power,low-voltageapplicationsandarefoundinapplianceswithelectroniccircuits.DC/DCconvertermanufacturersincludeVicor,Emerson,Synqor,Eltek,andothers.HighpowerDC/DCconvertersaretypicallymoreefficientthanlowerpowermodels.FigureB.6showsefficiencycurvesforstepdownDC/DCconverterswithpowerratingslessthan5kWbutmorethan1kW.

FigureB.6.EfficiencyCurvesforDC/DCConverters(Vin<140-400VDC,Vout=48VDC,Pmax:1-5kW)

Page 55: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

53

LEDDrivers

ACLEDdriverstypicallyconvertACpowertoalowervoltageDC.TheyalsoregulatevoltageandcurrentthroughtheLEDcircuit.DCLEDdriversoperatesimilarlytotheirACcounterparts,butdonotrequirerectification.ManufacturersofLEDdriversincludePhilips,DeltaElectronics,Meanwell,andothers.FigureB.6showsefficiencycurvesforACLEDdriverswithpowerratingslessthan500Wandinputvoltageat120V.6

FigureB.7.EfficiencyCurvesforACLEDDrivers(Vin=120VAC,Vout=48VDC,Pmax<500W)

Rectifiers

RectifiersareusedtoconvertACpowertoDC.IntheACdistributionsystem,rectifiersareusedinDC-internalappliances.IntheDCdistributionsystem,oneormorehigherpowerrectifierscanbeusedtoconvertACpowerfromthegridtoDCwhenpowerfromthePVsystemorthebatteryisnotsufficientforthebuildingloads.ManufacturersforrectifiersincludeEltek,DeltaElectronics,Murata,XPPower,Emerson,andothers.FigureB.8andFigureB.9showefficiencycurvesforrectifiersratedat0-1kW,and1-12kW,respectively.Asshowninthefigures,higherpowerrectifiersaremoreefficientthanthoseratedatlowerpower.

6 We note that although we did not obtain efficiency curves for DC LED drivers, their peak efficiencies were higher than those for AC LED drivers.

Page 56: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

54

FigureB.8.EfficiencyCurvesforRectifiers(Vin=120VAC,Vout=48VDC,Pmax≤1kW)

FigureB.9.EfficiencyCurvesforRectifiers(Vin=120/277/480VAC,Vout=48VDC,Pmax:1-12kW)

Page 57: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

55

AppendixC:StakeholderWorkshop

WorkshoponDirectCurrentasanIntegratingandEnablingPlatforminZNEBuildings

March15,2016

LosAngelesElectricalTrainingInstitute(ETI)6023S.GarfieldAve.,CityofCommerce,CA90040

Theworkshopsolicitedinputandadviceonthetechnology,policy,andmarketdevelopmentneedsforadoptionofDCandAC-DChybridsystemsinresidentialandcommercialbuildings,focusingonzeronetenergy(ZNE)buildingswithPV,batterystorage,andEVcharging.

WorkshopAgenda

8:30am-9:00am Check-inandnetworking

9:00am-9:30am Introductions

9:30am-10:15am OverviewofEPICresearchprojectandfindingstodate

10:15am-11:00am “Quickpitch”updatesfrompartners

11:00am-11:15am Break

11:15am-12:15pm Breakoutsession:“What’sneededtomaximizetheopportunitiesandovercomethebarriersforDCpowerintheseareas?”

• Technology• Policy• MarketDevelopment

12:15pm-1:15pm Lunchandtourofzero-netenergyfeaturesofETIbuilding

1:15pm-1:45pm Reportoutanddiscussionfrommorningbreakoutsession

1:45pm-2:00pm Reviewend-useapplicationsforDCandAC-DChybridpower

2:00pm-3:00pm Breakoutsession:“Whatfactors*affectZNEdesignstodayforourend-useapplications?”

• Smallloads(lighting,electronics,fans,…)• Largerloads(HVAC,waterheating,motors,EVs,…)• ZNEintegratedsystems(PV,storage,EVcharging,power

infrastructure)*e.g.,productavailability,buildingcodes,interoperabilitystandards,etc.

3:00pm-3:30pm Reportoutanddiscussionfrombreakoutsession

3:30pm-4:00pm Concludingsession:feedbackanddiscussion

Page 58: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

56

TheworkshopwasfundedbytheCaliforniaEnergyCommissionEPICprogram,aspartoftheLBNL/EPRI/CIEEjointresearchprojecton“DirectCurrentasanIntegratingandEnablingPlatform.”CodesandStandardsBrianPatterson,EMergeAlliance

• Therearethousandsofrelatedcodesandstandards.Standardsgettranslatedintocodescenteredonsafety,notefficiency.

• MoststandardsbodiestreatDCcategorically:high,medium,low.Powersystemsarebeingtreated,notproducts.

• Firecodeisrevisedeverythreeyears.ThereismoreinterestinDC-relatedtopics.• MostcurrentstandardswrittenwithACinmind.Moststandard-settingbodiesarecomposedof

ACexperts.Moststandardsfocusonequipment,safety,ortesting;NOTsystemstandards.• ThestandardsarenotexplicitaboutthetechnicalrequirementsforDC.(Forexample,acode

inspectordoesn’tknowwhatyouaretalkingaboutwhenyoustarttalkingaboutinterpolatingtables.)

• DCiscurrentlyonlyaddressedinspecificenduses—transport(railway),marine,telephony(DCusedfor>50years).TransmissionofwaterisDC-i.e.,ThreeGorgesinChina,alsoEurope.

• Heavycommercializationwaitsforstandardsdefinition.• EMergeisrewritingstandardstoacceleratetheprocessforDCorhybridsystems.InGermanyin

particularandEuropeingeneral,moreworkhasbeendonewithrenewables.• EMergefocusesonstandardsdefinition,inpreparationforinternationalstandardsbodiestaking

thisup(whatPattersoncallsa“vanguard”organization).VanguardorganizationslikeEMergedothecoordinationworktogetinitialversionsofstandards,thenworkwithotherstospreadadoption,shareinfo,etc.Industryneedstoleadtheeffortifrapidchangeisdesired;thenproductscanbebuiltaroundthenewstandards:technicaloperations,safetystandards,buildingenergycodes,performancecodes(notgreenstandards).

“QuickPitch”UpdatesRajendrahSingh,ClemsonUniversity

• Disagreeswithmuchsaid;driveristhecarbonissue;utilitytodecentralizedpowergeneration;electrificationofthetransportsector.Notinfavorofworkingwithexistingsystems—justgotoDCpower.

• Savingscangoupto30%–50%.Thereare25%lossesinAC-DCconversionifbelowpeakpower.Partloadinverterefficiencyis30%–40%

• UseexperiencecurvesforfuturepricesofbatteriesandPV.Wewillneedfactoriestoproduceatlargescaletodecreaseunitprices.

PeterMayOstendorp/StevePantano,CLASP

• CurrentresearchfocusedonidentifyingthelikelypathsforDCinhomes;conductgapanalysistoaddressshortcomings.

• CLASPconveningagroup“DemandDC.”• Lookatend-points-appliances,etc.;howtoincentivizethesevaluepropositions.• Adoptionpaths:Inthenextdecade,whatarethemostlikelyclustersofproductsinthehome—

entertainment,homeoffice,garage,others?• Whatisdoableinayear?• Focusingonnon-energybenefits;energyefficiencywon'tmotivatethechangetoDCwith

consumers.ProbablyPV+storageisstrongerincentive;1/3ofwhatisinhomeisDC-compatible,andthispercentageisrising.

Page 59: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

57

• Markettransformation—whatwillittake?Howshouldwebemotivatingthistransition?Thereareuniqueopportunities—verticalintegratorsmakemultipleendpointspossible.

PeteHorton,Wattstopper-Legrand&AlliancetoSaveENergy• Legrandisa$6Bglobalenterprise—U.S.,Europe,India.• AlliancetoSaveEnergy-DCisoneofthelargestworkinggroupsinAlliance.Spenttwelve

monthslookingatsystemefficienciesforlighting,HVAC,multi-systemeffectsinbuildinglevelDC.

• Creatingadraftdocumentonsystemefficiency,whichwillbeoutnextmonth.• AllianceisfocusingonDOEcarbonneutraltarget.Whatdoescarbonneutralhome/buildinglook

likeinthefuture?Consideringbothsavingsandcost,alsotransactionalmarkets.Whoareearlyadopters?Howcanwegetthere?

• EVswillhelpbringdownbatterycosts.Efficiencywon’tgetusthere.• Codesandstandards—developenoughtogetgoing.

HenryLee,ADCEnergy

• DCenergydeterioratestheminuteitisgenerated.ADCofferstwoapplications:o ACandDCtransmissiononexistingwire;o Permitslongdistancetransmissionwithoutdeterioration.

DaveGeary,DCFusionandAllianceforSustainableColorado

• DenverAllianceforSustainableColorado:In2016,theDCMicrogridProjectisconvertingTheAllianceCenterfromalternatingcurrentACtoaself-containedDCsystem.Stampeddrawinginpermittingnow.360Engineering.Optimizewhatwecandotomorrow.

• DC-FusionjoiningPowerAnalytics.ModelDCinsoftware,sameasAC.Evolvethisfromdesigntocontrol;thenevolvetotransactionalmarketparticipation.

• DC-NexusWebsitetrackingcurrentevents.http://dc-nexus.comDanLowe,Voltserver

• VoltservermakeshighvoltageDCsafetotouch.Sensesenergyleakageofcurrent,andshutsoffcurrent;whilecheckingsystemforsafety,cansimultaneouslysendcontroldata.

• WaitingforDCproductsisnotnecessary.• SBIRPhase2,energyefficiencyupto99%.Focusingonmobilecommunications.Inresidential

30%–40%overallsavings.BrianPatterson,EMergeAlliance

• EMergehasnewboardmembers;partneredwithIEEE.• EMergeiswritingstandardforResidentialDC;draftinonemonth,finalinoneyear.• EMergeiscoordinatingdemonstrations:

o GreenCononDCEnerneto LightFairCavaDCasanetworktechnologyo IECSEG4-LowvoltageDCo SolarPowerInternational,LasVegas-demotwomicrogridsinSmartCommunity

Pavilion;mostrapidgrowthatsolarshowisstorageexhibits.Marriageofrenewableandstorageiscritical.

o GreenbuildLA—LargedrawofDCmicrogrid,alsohybrid.

Page 60: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

58

BreakoutSession1:“What’sneededtomaximizetheopportunitiesandovercomethebarriersforDCpowerintheseareas?”A.TechnologiesKeytakeaways:Direct-DCtechnologiesareemergingincertainareaslikemotors,pumps,ceilingfans,PoEapplicationsforcharging,lightingandotheruses;hybridACandDCelectricoutletsallowingmorePoEapplications;forlightingandheatpumps,computerserversandelectricvehiclecharging.DCpoweradvantagesforemergencybackuplighting,resiliency,islandingfromthegridmaybe“Trojan-horses”forintroducingDCmicrogridsintoresidentialandcommercialbuildingsespeciallyforZNEbuildings.Thereisalsoaneedforrevenue-gradetwo-waynetmeteringforDCmicrogridsandforbettermodelingprogramsfordesigningDCsystems.

• AvailableTechnologies:o PoEdevicesandapplicationsareexpandingsignificantlywiththecurrentabilitytohave

50wattsperchannel,whichisexpectedtogoto90wattslaterthisyear.o DCmotorsandpumps—size,control,efficiencyandcostofownershipadvantages(need

largervolumetobringpricesdown.o Ceilingfans:DCmotorswithLEDlightsnowavailableo DCLighting:SamsungDCsmartlightingplatform;CREESmartcast

• Technologygapsandotherbarriers:o Improvedbi-directionalinverterso Revenuegrademeteringandtwo-waynetmeteringforDCo Systemoperationandcontrolmanagement—analysisandmodelingo AgreementonresidentialDCvoltageo AC/DCdualoptionsbuilt-inbymanufacturersonhomeandofficeapplianceso PerformanceanddemodataplusULandotherlistingso ImprovedDCsystemdesignmodelingsoftware

• Barrierscanbeaddressedindemos• “TrojanHorses”forDCpower:

o E.g.:Emergencylighting:Transformsdeadassettoactivemanagemento UPSsystemso Audiovisualequipmento Cellphonetowers(asDCmicrogridtestbeds)

B.PoliciesKeytakeaways:

• Energysavings:Perceptioninthepolicycommunitythattherearenotenoughenergysavings• Thereisno“home”currentlyforDC• Non-energybenefits:

o Bipartisansupportcanpotentiallybedrawnfromnon-energybenefitssuchasresilienceandreliability(e.g.,theabilityforbuildingstoswitchto“resilientmode”).

o Ourexistingcodesandstandardsnetworkdoesnottakeintoaccountfactorssuchasresiliencyandreliability

o Interoperability:DCenablescommunications• Title24-California:CEClooksatfeasibilityandcost-effectiveness(life-cyclecost)• Forutilities,theimportantaspectsofDCwouldbefunctionalityandfirstcostsavings.(e.g.,can

DCmakethatheatpumpcheaper?)

Page 61: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

59

• Needmetricstocomparebuildingsonallfactors.Forexample,fortransformers,thecurrentmetricusedis“wattslost”

• DCalsoenableswatermeasures:Reduceswaterdesalinationplantcosts• GovernmentincentivesareneedformanufacturerstomakeDC-readyappliances• Convergenceisneededonvoltagestandardsto24,48,and380VDC• Potentialpolicyforvoluntarystandards:ProvidingacreditforDC-readiness,orthegoldencarrot

incentive• Sandy-microgrid-PSE&G• DCProducts:Lookatproductsinthedevelopingworld• Storage:Therearebenefitstotheutilityproviders.

C.MarketDevelopmentKeytakeaways:

• Retrofitchallengescomefrom:o UnavailabilityofDCinfrastructure/DCpowero Lackoftraining/education(design,construction/installation,operation)o Lackofretrofittransformationalschemeo Powerdistributionchallenges;noonelikesexistingwalltearingo PotentialROI/paybacko Deferinitialcosts:Incentives/rebatesfromutilities/government;Multiplestakeholders,

consumers/utilities/regulators• EnergySavings

o Whataretheenergysavings?Moreresearchisneeded(claimsrangefrom3%–30%)o Considertotalcostofownership,notjustenergysavings

• ProductAvailabilityo DCproductsavailability/awarenesslimitedo Competitive,cost-effectiveproductsneededo Make“hip”/coolproducts,e.g.,Teslatodrivemarketo Distributionproducts(e.g.,plugs,switches,circuitbreakers)needed

• Worldwidestandardso DC-specificstandardsarerequiredo Standardswouldgreatlyincreasevolume/reducecosts

• AbilitytoachieveZNEo CommondefinitionofZNEisdesiredo Howtoaddresssharingofcommunity-scalerenewables?o Needtoarticulateconsumerdriverso Drivedemand(throughincentives,regulations,etc.)

• Integrationo DCiseasiertointegratethanACo Nofrequencyregulationrequirement

• Safetyo Emergingissuesdependuponvoltageandcurrento Safetyneedstobeaddressedalongwithstandards

Page 62: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

60

BreakoutSession2:“Whatfactors*affectZNEdesignstodayforourend-useapplications?”A.SmallLoadsMostsmallloads,especiallyplugloadappliances,arealreadydigitaldevicesandhaveAC/DCconvertersthatprovidetherequiredDCvoltagetothedigitalappliance.Thisincludesadjustablespeedmotors,fans,andpumps,aswellaselectronicballastsandLEDlighting.Forplugloads,dualACorDCpowerinputsfromthemanufacturersorDCnetworksthatcanintegratethedeviceslikePoEsystemsareneededformarketadoption.Theefficiency,reliability,interoperability,andcontrollabilityofDCmotorsprovideimportantfeaturesforZNEbuildings.Keytakeaways:

• Plugloads—somekeyissuesare:o HowtoconnecttoZNEbuildingsystemandsmartgrido HowtooptimizetheenergyuseforclustersofDCdevicesforentertainmentand

workstations.• Heatpumps

o KeytechnologyforHVACinZNEbuildingso Products:Carrier-PVpoweredheatpumpsystem;Japan-Mitsubishi,Sharpresidential

DCminisplit• Lighting

o PoEo Armstrong24Vmicrogridceilingsystemo Cove,tasklighting,etc.—alreadyDCforlowvoltagelightingprovidetargetapplications

• NeedimprovedDCsystemsdesignandanalysistoolsformanufacturersandforengineeringofZNEbuildings.

• DCVSDmotors• NeedtohavestandardDCvoltagesandstandardDCdesignsforappliances,plugloaddevices,

andothersmallelectricloads• MajorappliancedesignersneedtoprovideDC/ACcapabilities• Demandresponse(DR)canimprovewithDCnetworksandeasiercontrolandInternetofThings

(IoT)access• Load-balancingDR,with“grid-friendly”appliancesispossibleandhasbeendemonstratedtobe

effective,butmanufacturersneedtobemotivatedtoaddthesecontrols—mostlikelybylegislation.

• DCnetworkedentertainmentandelectronics/officesystemsclusternetworksarebeingdeveloped—someundertheEPIC15-310and15-311grants

B.LargerLoadsKeytakeaways:

• Potentialloadso Waterheating:Heatpumpwaterheatero HVAC:Splitsystemheatpumpo Pumpsandfans:DCmotors

• IssueswithDCMotorso DoestheOEMorthemotormanufacturerassemblethee.g.,compressorassembly?

HoweasyisitgoingtobefortheproducttobeconvertedtoDC-ready?o Fromtheutility’sperspective,youwanttohavemostofthedispatchableloadsonthe

microgrid

Page 63: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

61

o WhatistheDCvoltagethatDCmotorsrunon?Is380Vtherightvoltage?o Part-loadefficienciesshouldbeaccountedfor(bothforACandDCsystems)

• Electricvehicleso Fastchargingdirectat600Vtaking380VfromDCandboostingto600Vo Whatisthevoltageattheinputofthechargecontroller?Isit380V?o PVtoEVcoincidence:Doesitmakesenseintheresidentialcasestudy?

C.ZNEintegratedsystems(PV,storage,EVcharging,powerinfrastructure)Keytakeaways:

• Loadrequirementso Fixedloadso Variableloads/miscellaneouso Automobile

• Issueso SizingofPVo Spacelimitationo VirtualnetmeteringforsharedPVallocationo Building—passive,lowconsumption,efficiento Storage/batterytostabilizeafternoonloadIntegrationofpowersystemcomponents:

Inverters,rectifiers,circuitbreakers,DC-DCconverters,etc.• Supplyvoltages(standardization)

o 380VDCo 24/48VDCo 125/250V(currentlyusedinindustrialapplications)

Page 64: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

62

AppendixD:SurveyandInterviewQuestions

SurveyQuestions

Page 65: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

63

Page 66: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

64

Page 67: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

65

Page 68: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

66

InterviewQuestions

InitialQuestionsforAll• Feedbackonquestionsfromelectronicsurvey:Requestfurthercomment,discussclarifications

onresponses.• WhatisthemostexcitingnewdevelopmentthatyouknowaboutDCpowerinbuildings?• WhatisyourcurrentinvolvementinDCpowerandcomponents?

Researchers:• Whatarethemostpressingresearchquestionsthatshouldbeaddressed?• Couldyounamethe“top”(3-5)papersinthefield?(withregardtoenergysavings,benefitsand

barriersofDCdistributionsystemsatthebuildinglevel).Canyousummarizethemajorfindingsofthesepapersandsenduslinks?

• Pleasesummarizeyourpast,current,andfutureresearchfindingsonDCdistributioninbuildings.Canyousenduspdfs/links?

Industry(DCHardwareandApplianceManufacturers):• Whatcomponents/appliancesdoyoucurrentlymanufactureorsell(bycomponenttype:end-

useequipment,distributionequipment,generation/storage/conditioningequipment).• Whatfactorsdotheyconsiderwhendecidingtoparticipate/expandinthemarket?(i.e.,market

demand,standards,profitability,etc.)WhatkeysignswouldyouneedtoseetoparticipateintheDCmarket?

• Whatcomponents/appliancesarecurrentlyunderdevelopment?Doyouhaveanyfutureplansthatyouwouldliketoshare?

• AtwhatscalewillDCproductionbecomecompetitivewithAC?• AtwhatscalewillhybridAC-DCbecomecompetitivewithAC?

A&EFirms&Contractors(Architects,Engineers,ElectricalContractors,SecuritySystems,Telecom/NetworkInstallers):

• Doyouhaveanyplanstodesign/install/constructaDCsystematthebuildinglevel?• Imagineforyounextprojectyouwereaskedtodesignadcsystem.Whatwillbeyourbiggest

challengesandopportunities?Indesigning/installing/constructingaDCsystem,whatarethemostimportantconsiderationsthatshouldbetakenintoaccount?

• HowdoyouthinkDCpowercanbeusedmosteffectivelyinZNEbuildings?• WhatwouldkeepyoufromputtingDCinyournextbuilding?Whatisthetypicalprofileofa

clientwhowouldbeinterestedinDC?WhatisyourperceptionofhowyourclientsrespondtoDCsystems(safety,convenience,availability,etc.)?

• AtscaledoyouthinkDCwillbemore/less/equallyexpensiveasDC?• Doyouhaveanycostdata?

Page 69: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

67

UtilityStaffandUtilityRegulators• Whatareyourupcomingandlong-termplansforDCpoweronthecustomersideofthemeter?• WhatroledoesDCpowerplayinanyZNEprogramsyouhave?• DoyouthinkthatDCapplicationsanddeploymentcouldhelpinimprovingtheresilienceand

reliabilityoftheexistinggrid,and,ifso,how?• Howwouldanintegratingtechnology,likeDCpower,betreatedinprograms?• Arethereanyotherprojectsthatweshouldbeawareof?

EnvironmentalOrganizations• What’sthemosteffectivewaytoaccelerateDCuptake?(policyandmarketdevelopment,etc)• WhataretheenvironmentalprosandconswithDCpowerinbuildings(airquality,toxics,EMF)?

Whatarepotentialmitigations?

Close-outQuestionsforAll• Isthereanythingyouwouldliketoadd,ortellusabout?• Arethereanyotherprojectsthatweshouldbeawareofortalkto?• Wouldyoulikeustouseyournameifwequoteyou?

Page 70: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

68

AppendixE:EMergeAllianceReferenceListforDCCodesandStandards

MANDATORYSTANDARDS-applytoallelectricalinstallations

Standard Description Region Status

NFPA70 USNationalElectricalCodeAddressesfundamentalprinciplesofprotectionforsafety.AppliestoLVDC

(under1000V).

US 2014versionreleased

Article250SectionVIII

Grounding&Bonding-DirectCurrentSystems-Articles250.160-250.169

US 2014versionreleased

Article393 Low-VoltageSuspendedCeilingPowerDistributionSystems

US 2014versionreleased

Article408 Switchboards,Switchgear,andPanellboards US 2014versionreleased

Article480 StorageBatteries US 2014versionreleased(2017

revisions)

Article690 PVSystemsover600Volts US 2014versionreleased(2017

revisions)

NFPA70E Standardforelectricalsafetyintheworkplace-IncludesLVDC.

US 2014versionreleased

NFPA70B Recommendedpracticeforelectricalequipmentmaintenance.

US 2014versionreleased

GENERALAPPLICATIONSTANDARDS

EMergeOccupiedSpaceV.2.0

DCpowerdistrib.Req'mtsforcommercialbldg.interiors

Global Released

EMergeResidentialV1.0

DCpowerdistrib.Req'mtsforresidentialbldgs. Global ScheduledRelease2016

EMergeCommercialBldg.

V1.0

DCpowerdistrib.Req'mtsforcommercialbldg.andCampus

Global ScheduledRelease2016

USB-PD ExtraLowVoltageDCforDesktopandPersonalElectronics

Global Released

PoE ExtraLowVoltageDCforICTEquipment24&48V Global Released

Page 71: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

69

DC;35Watts

EUROPEANANDGLOBALSTANDARDS

DINVDE0100-100:2009-06

Low-voltageelectricalinstallations–Part1:Fundamentalprinciples,assessmentofgeneral

characteristics,definitions

Europe Released

DINVDE0100-410:2007-06

Low-voltageelectricalinstallations–Part4-41:Protectionforsafety-Protectionagainstelectricshock

Europe Released

DINVDE0100-530:2011-06

Low-voltageelectricalinstallations–Part530:Selectionanderectionofelectricalequipment–Switchgearand

controlgear

Europe Released

DINVDE0100-540:2012-06

Low-voltageelectricalinstallations–Part5-54:Selectionanderectionofelectricalequipment–Earthing

arrangementsandprotectiveconductors

Europe Released

DINEN61557-2:2008-02

Electricalsafetyinlowvoltagedistributionsystemsupto1000Va.c.and1500Vd.c.–Equipmentfortesting,measuringormonitoringofprotectivemeasures,Part2:

Insulationresistance

Europe Released

DINEN61557-8:2007-12

Electricalsafetyinlowvoltagedistributionsystemsupto1000Va.c.and1500Vd.c.–Equipmentfortesting,measuringormonitoringofprotectivemeasuresPart8:

InsulationmonitoringdevicesforITsystems

Europe Released

DINEN61557-9:2009-11

Electricalsafetyinlowvoltagedistributionsystemsupto1000Va.c.and1500Vd.c.–Equipmentfortesting,measuringormonitoringofprotectivemeasuresPart9:EquipmentforinsulationfaultlocationinITsystems

Europe Released

IEC60050-614 InternationalElectrotechnicalVocabulary-Part614:Generation,transmissionanddistributionofelectricity-

Operation

Global Released

IEC60034-1 Rotatingelectricalmachines-Part1:Ratingandperformance

Global Released

IEC61362 Guidetospecificationofhydraulicturbinegoverningsystems

Global Released

IEC60308 Hydraulicturbines-Testingofcontrolsystems Global Released

IEC61992 DCswitchgear Global Released

Page 72: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

70

IEC60038:2009 StandardVoltages Global Released

IEC62848-1 DCSurgearresters Global Released

IEC62924

StationaryenergystoragesystemforDCtractionsystems

Global Released

IEC62053-41/Ed1 ELECTRICITYMETERINGEQUIPMENT(DC)-PARTICULARREQUIREMENTS

Global Released

IEC61378-3Edition1.0(2006-04-27)

Convertertransformers Global Released

IEC62620 Performanceoflithiumionbatteriesforindustrialapparatus(unitbattery/batterypack)

Global Released

IEC/TS62735-2 D.C.Plugsandsocket-outletstobeusedinindooraccesscontrolledareas

-Part2:Plugandsocket-outletsystemfor5,2kW

Global Released

IEC61869-14 SpecificRequirementsforDCCurrentTransformers(CDV)

Global Released

IEC61869-15 SpecificRequirementsforDCVoltageTransformers(CDV)

Global Released

IEC61180/Ed1 HIGH-VOLTAGETESTTECHNIQUES FORLOW-VOLTAGEEQUIPMENT

Definitions,testandprocedurerequirements,testequipment

Global Released

IEC60947-2 Low-voltageswitchgearandcontrolgear–Part2:Circuit-breakers

Global Released

IEC60947-3 Low-voltageswitchgearandcontrolgear-Part3:Switches,disconnectors,switch-disconnectorsandfuse-

combinationunits.

Global Released

IEC61439-X LOW-VOLTAGESWITCHGEARANDCONTROLGEARASSEMBLIES–PartX:Assembliesforphotovoltaic

installations

Global Released

TELECOMANDDATACENTERS

ETSIEN300132-3-0 Powersupplyinterfaceattheinputtotelecommunicationsanddatacom(ICT)equipment

Europe Released

ETSIEN3061605 Eartingandbondingfor400VDCsystems Europe Released

Page 73: Lawrence Berkeley National Laboratory · 2019. 12. 19. · Lawrence Berkeley National Laboratory Review of DC Power Distribution in Buildings: A Technology and Market Assessment Vagelis

71

ITU-TL.1200 SpecificationofDCpowerfeedinginterface Global Released

EMergeData/TelecomV.1.1

DCpowerdistributionrequirementsindatacenters/telecom

Global Released

YD/T2378-2011 240VDCsystems China Released

YD/TXXXX-201X 336Vdirectcurrentpowersupplysystemsfortelecom China Approvalprocess

ATIS-0600315.01.2015

Voltagelevelsfor400VDCsystems US Released

IEC62040-5-3 DCUPStestandperformancestandard Global Scheduledrelease2016

IEC62040-5-1 SafetyforDCUPS Global Workstarted

IECTS62735-1 400VDCplug&socketoutlet Global Released

YD/T2524-2015 336VHFswitchmoderectifierfortelecommunication China Approvalprocess

ELECTRICALVEHICLECHARGING

CHAdeMO DCfastcharging Released

SAE/CCS DCcharging Released