laurent series and z-transform - geometric series ... · z-transform laurent series z-transform...

42
Copyright (c) 2016 - 2019 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Laurent Series and z-Transform - Geometric Series Applications A 20191123 Sat

Upload: others

Post on 22-Feb-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

Copyright (c) 2016 - 2019 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of theGNU Free Documentation License, Version 1.2 or any later version published by the Free SoftwareFoundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy ofthe license is included in the section entitled "GNU Free Documentation License".

Laurent Series and z-Transform - Geometric Series Applications A

20191123 Sat

causal

causalanti-causal

causalanti-

causal causalanti-

causal causalanti-

Simple Pole Form

Geometric Series Form

Geometric Series Form Simple Pole Form

Geometric Series Form Combinationswith a unit start term

Geometric Series Form Combinationswith non-unit start term

Geometric Series with a unit start term Laurent Series

Geometric Series with a unit start term z-Transform

Geometric Series with a unit start term Laurent Series vs. z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Geometric Series with a non-unit start term

Laurent Series

Geometric Series with a non-unit start term

z-Transform

Geometric Series with a non-unit start term

Laurent Series vs. z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Laurent Series

z-Transform

Complemnt ROC Pairs -Original Geometric Series Form Combinations

unit

non-unit

unit

non-unit

unit

non-unit

unit

non-unit

start term

Complemnt ROC Pairs - Shifted Geometric Series Form Combinations

Complemnt ROC Pairs - ReducedShifted Geometric Series Form Combinations

scale(a) scale(a)

scale(1/z) scale(z)

scale(1/a) scale(1/a)

scale(1/z) scale(z)

Comp.ROC

Comp.ROC

Comp.ROC

Comp.ROC

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

-Comp.Rng

-Comp.Rng

-Comp.Rng

-Comp.Rng

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

-Comp.Rng

-Comp.Rng

-Comp.Rng

-Comp.Rng

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

-Comp.Rng

-Comp.Rng

-Comp.Rng

-Comp.Rng

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

-Comp.Rng

-Comp.Rng

-Comp.Rng

-Comp.Rng

SHL.Seq SHR.Seq

SHL.Seq SHR.Seq

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

-Comp.Rng

-Comp.Rng

-Comp.Rng

-Comp.Rng

SHL.Seq, SHL.ROC SHR.Seq, SHR.ROC

SHL.Seq Shift Right(Sequence Function)SHR.Seq Shift Right(Sequence Function)SHL.ROC Shift Right(Region of Convergence)SHR.ROC Shift Right(Region of Convergence)

u(n) u(n-1)

u(-n-1) u(-n)

u(n-1) u(n)

u(-n) u(-n-1)

SHL.ROC

SHL.ROC

SHR.ROC

SHR.ROC

u(n)

u(-n-1)

u(-n)

u(n-1)

Complement

SHL.Seq SHR.Seq

SHL.Seq SHR.Seq

SHL.Seq SHR.Seq

SHL.Seq SHR.Seq

Simple Pole Form

Geometric Series :

Geometric Series :

the same algebraic formulabut the complement ROC's

the same algebraic formulabut the complement ROC's

two variable function

two variable function

inverse a

inverse a

associated simple pole forms

sign signcomp(z) comp(z)sign comp(n) sign comp(n)

sign signcomp(z) comp(z)sign comp(n) sign comp(n)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

neg(n) Sym(n)

Sym(n)

Sym(n)

Sym(n)

(1) (2)(3) (4)(5) (6)(7) (8)

(1) (2)(3) (4)(5) (6)(7) (8)

neg(n)

neg(n)

neg(n)

inv(a) inv(a)inv(a) inv(a)inv(a) inv(a)

inv(a) inv(a)inv(a) inv(a)inv(a) inv(a)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

neg(n)sym(n)

sym(n)

sym(n)

sym(n)

(1) (2)(3) (4)(5) (6)(7) (8)

(1) (2)(3) (4)(5) (6)(7) (8)

neg(n)

neg(n)

neg(n)

sign, inv(a,z) sign, inv(a,z)comp(z) comp(z)

sign, inv(a,z) sign, inv(a,z)comp(z) comp(z)

sign comp(n) sign comp(n)

sign comp(n) sign comp(n)

(1) (2)(3) (4)(5) (6)(7) (8)

(1) (2)(3) (4)(5) (6)(7) (8)

a unit nominator

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

neg(n)sym(n)

sym(n)

sym(n)

sym(n)

neg(n)

neg(n)

neg(n)

inv(a) inv(a)

inv(a) inv(a)

inv(a)

inv(a) inv(a)

inv(a)inv(a) inv(a)

inv(a) inv(a)

(1) (2)(3) (4)(5) (6)(7) (8)

(1) (2)(3) (4)(5) (6)(7) (8)

a unit nominator

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

inv(z) inv(z)

neg(n)sym(n)

sym(n)

sym(n)

sym(n)

neg(n)

neg(n)

neg(n)

id

id

id

id

id

id

id

id

id

id

S(c(n))

S(c(n))

id

id

s(c(n))

s(c(n))

Simple Pole Forms Geometric Series Forms

id

id

id

id

id

id

S(c(n))

S(c(n))

Simple Pole Forms Geometric Series Forms

id

id

id

id

id

id

s(c(n))

s(c(n))

Simple Pole Forms Geometric Series Forms

inv(z) inv(z)

neg(n)sym(n)

inv(z) inv(z)

neg(n)sym(n)

ids(c(n))

ids(c(n))

id

s(c(n))

id

s(c(n))

id

s(c(n))

id

s(c(n))