launch a successful lte footprints in bangladesh

33
Launch a successful LTE Footprints in Bangladesh – Challenges & Achievements Faisal Mobarak Assistant General Manager, Ollo Wireless Internet

Upload: bangladesh-network-operators-group

Post on 13-Apr-2017

416 views

Category:

Internet


5 download

TRANSCRIPT

Page 1: Launch a Successful LTE Footprints in Bangladesh

Launch  a  successful  LTE  Footprints  in  Bangladesh  –  Challenges  &  Achievements  

     Faisal  Mobarak    Assistant  General  Manager,    Ollo  Wireless  Internet  

Page 2: Launch a Successful LTE Footprints in Bangladesh
Page 3: Launch a Successful LTE Footprints in Bangladesh

Internet  in  Bangladesh    &  BIEL  4G  LTE  

Page 4: Launch a Successful LTE Footprints in Bangladesh
Page 5: Launch a Successful LTE Footprints in Bangladesh

BIEL  is  working  in  Bangladesh  since  2007  with  ISP  license  having  one  of  the  Iirst  and  biggest  large-­‐scale  deployment  of  a  3.5  GHz  WiMAX  network.    Currently,  it  covers  major  areas  of  Dhaka  including  Uttara,  Gulshan,  Mohakhali,  Dhanmondi,  Motijheel  &  its  surrounding  areas.  

BIEL  has  been  granted  BWA  License  according  to  the  BWA  guidelines  by  the  Bangladesh  Telecommunication  Regulatory  Authority  (BTRC)  in  Nov,  2013    BIEL  has  compiled  with  all  Iinancial  conditions  for  obtaining  BWA  Services  License  successfully  which  allows  BIEL  to  provide  BWA  Services  in  2.5-­‐2.6  MHz  spectrum  brand.  

Page 6: Launch a Successful LTE Footprints in Bangladesh

LTE  :  Long  Term  Evolution,  The  Basics  

Page 7: Launch a Successful LTE Footprints in Bangladesh

IMT - Advance

4G

CDMA2000 Evolution

2001-2005 2006

HSDPA Phase I 1.8M/3.6Mbps

HSDPA Phase II 7.2/14.4Mbps HSUPA 2M/5.76Mbps

LTE DL:100Mbps UL:50Mbps

GSM/GPRS EDGE 171/384kbps

WCDMA R99/R4 384kbps

WCDMA Evolution

2007 2008 2009

HSPA+ DL >40Mbps UL >10Mbps

1xEV-DO Rev. 0 DL: 2.4Mbps UL:153.6kbps

DO Rev. B (MC DO) DL:46.5Mbps UL: 27Mbps

1xEV-D0 Rev. A DL: 3.1Mbps UL: 1.8Mbps

CDMA 1X 153kbps

2010 2011

IEEE802.16e 70Mbps

IEEE802.16m DL:100Mbps UL: 50Mbps

WiMAX Evolution

IEEE802.16d 20Mbps

Broadband  Trend  in  Wireless  Technology    

Page 8: Launch a Successful LTE Footprints in Bangladesh

4G  LTE    The  De6inition  

LTE,  an  acronym  for  Long-­‐Term  Evolution,  commonly  marketed  as  4G  LTE,  is  a  standard  for  wireless  communication  of  high-­‐speed  data  for  mobile  phones  &  data  terminals.      It  is  based  on  the  GSM/EDGE  and  UMTS/HSPA  network  technologies,  increasing  the  capacity  and  speed  using  a  different  radio  interface  together  with  core  network  improvements.    

Adoption  of  LTE  technology  as  of  February  15,  2014.              Countries  and  regions  with  commercial  LTE  service            Countries  and  regions  with  commercial  LTE  network  deployment  on-­‐going  or  planned            Countries  and  regions  with  LTE  trial  systems  (pre-­‐commitment)  

Page 9: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  ARCHITECTURE  EPS  Network  Elements  

Page 10: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  ARCHITECTURE  EPS  Node  Functionality  

Page 11: Launch a Successful LTE Footprints in Bangladesh

An  IP  packet  for  a  UE  is  encapsulated  in  an  EPC-­‐speci6ic  protocol  and  tunneled  between  the  P-­‐GW  and  eNodeB  for  transmission  to  the  UE.  Different  tunneling  protocols  are  used  across  different  interfaces.  A  3GPP-­‐speci6ic  tunneling  protocol  called  the  GPRS  Tunneling  Protocol  (GTP)  is  used  over  the  CN  interfaces,  S1  &  S5/S8.      The  E-­‐UTRAN  user  plane  protocol  stack  is  shown  as  blue  in  above  6igure,  consisting  of  the  Packet  Data  Convergence  Protocol  (PDCP),  Radio  Link  Control  (RLC)  and  Medium  Access  Control  (MAC)  sub  layers  that  are  terminated  in  the  eNodeB  on  the  network  side.    

4G  LTE  PROTOCOL  ARCHITECTURE  User  plane  protocol  stack  

Page 12: Launch a Successful LTE Footprints in Bangladesh

The  protocol  stack  for  the  control  plane  between  the  UE  and  MME  is  shown  in  above  Figure.    The  blue  region  of  the  stack  indicates  the  AS  protocols.  The  lower  layers  perform  the  same  functions  as  for  the  user  plane  with  the  exception  that  there  is  no  header  compression  function  for  the  control  plane.    The  Radio  Resource  Control  (RRC)  protocol  is  known  as  “layer  3”  in  the  AS  protocol  stack.  It  is  the  main  controlling  function  in  the  AS,  being  responsible  for  establishing  the  radio  bearers  and  con6iguring  all  the  lower  layers  using  RRC  signaling  between  the  eNodeB  and  the  UE.    

4G  LTE  PROTOCOL  ARCHITECTURE  Control  plane  protocol  stack  

Page 13: Launch a Successful LTE Footprints in Bangladesh

There  are  two  major  differences  between  TD-­‐LTE  and  LTE  FDD:  how  data  is  uploaded  and  downloaded,  and  what  frequency  spectra  the  networks  are  deployed  in.  While  LTE  FDD  uses  paired  frequencies  to  upload  and  download  data,  TD-­‐LTE  uses  a  single  frequency,  alternating  between  uploading  and  downloading  data  through  time.  The  ratio  between  uploads  &  downloads  on  a  TD-­‐LTE  network  can  be  changed  dynamically,  depending  on  whether  more  data  needs  to  be  sent  or  received.      

TD-­‐LTE  and  LTE  FDD  also  operate  on  different  frequency  bands,  with  TD-­‐LTE  working  better  at  higher  frequencies,  and  LTE  FDD  working  better  at  lower  frequencies.  Frequencies  used  for  TD-­‐LTE  range  from  1850  MHz  to  3800  MHz,  with  several  different  bands  being  used.  The  TD-­‐LTE  spectrum  is  generally  cheaper  to  access,  and  has  less  traf6ic.  Further,  the  bands  for  TD-­‐LTE  overlap  with  those  used  for  WiMAX,  which  can  easily  be  upgraded  to  support  TD-­‐LTE.    FDD  is  still  leading  the  game,  however.  Most  commercial  LTE  networks  are  based  on  FDD  because  the  FDD  ecosystem  is  more  mature  and  is  still  where  most  of  the  spectrum  allocation  is  done.  All  major  operators  around  the  world  are  already  acquiring  wide  bands  of  FDD  spectrum  for  their  4G  LTE  networks,  which  is  well  suited  for  voice  because  it  is  inherently  symmetric  in  the  UL  and  DL.  In  addition,  FDD  can  provide  better  coverage  of  a  larger  area  due  to  the  6ixed  DL/UL  on  different  frequencies.    

4G  LTE  PROTOCOL  ARCHITECTURE  LTE-­‐FDD  vs  LTE-­‐TDD  

Page 14: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Deployment  :  Challenges  

Page 15: Launch a Successful LTE Footprints in Bangladesh

Problem  

4G  LTE  DEPLOYMENT  :  CHALLENGES  WiMAX  to  LTE    Migration  

Mitigation  

Hot Swap Easy Migration Mode No Regulatory Issue

Existing Customer New Rollout

CAPEX

Dual Mode Minimum CAPEX No Regulatory Issue

Capacity Reduce Complex Network

Coexistence Smooth Migration No Customer Trouble

Regulatory Issue OPEX

Page 16: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  DEPLOYMENT  :  CHALLENGES  WiMAX  to  LTE    Migration  

WiMAX 4G LTE

WiMAX

4G LTE WiMAX 4G LTE

WiMAX 4G LTE WiMAX

Page 17: Launch a Successful LTE Footprints in Bangladesh

Problem  

4G  LTE  DEPLOYMENT  :  CHALLENGES  Coding  scheme  &  bitrate  

Mitigation  

Page 18: Launch a Successful LTE Footprints in Bangladesh

Problem  

4G  LTE  DEPLOYMENT  :  CHALLENGES  QoS  

Mitigation  

Page 19: Launch a Successful LTE Footprints in Bangladesh

Problem  

4G  LTE  DEPLOYMENT  :  CHALLENGES  CPE  Price  

Mitigation  

0  

20  

40  

60  

80  

100  

120  

140  

2011   2012   2013   2014   2015   2016   2017   2018  

Price  in  USD  

Wimax     LTE  

Use  of  SIM  

FDD-­‐LTE  

2.6  GHz  

Economies  of  Scale  

Page 20: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Deployment  :  Testing  

Page 21: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies    Ø  Protocol  and  Functional  testing  Ø  Load  and  Stress  testing  Ø  Result  Checklist  

Page 22: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies  End-­‐to-­‐end  LTE  Test  Topology  

Page 23: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies  Protocol  and  Functional  testing  

Protocol  and  functional  testing  involves  verifying  the  operation  of  elementary  procedures  de6ined  in  the  3GPP  speci6ications,  possibly  for  each  protocol  layer  individually,  or  the  complete  protocol  stack  as  a  whole.  For  example,  we  wanted  to  test  the  “Attach”  procedure  by  itself,  using  one  User  Equipment  (UE),  or  test  the  Tracking  Area  Update  (TAU)  procedure.  Each  and  every  step  of  the  procedure  analyzed  for  correctness  in  terms  of  the  signaling  6low  and  content  of  each  of  the  message  Information  Elements  (IEs).      Where  the  attach  procedure  fails,  additional  paths  were  considered.  Here,  we  conducted  “negative  testing”  in  which  conditions  are  generated  in  order  to  trigger  different  types  of  reactions.      The  failure  response  is  usually  a  rejected  procedure  with  an  appropriate  failure  code.  Examples  are  attach  attempts  with  missing  IEs,  or  in  the  improper  sequence.  We  executed  Protocol  and  functional  tests  during  the  network  design  and  early  QA  phases  of  LTE  deployment.  

Page 24: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies  Load  and  Stress  testing  Stress  testing  involves  simulating  large  amounts  of  traf6ic  in  order  to  measure  performance,  capacity,  and  key  performance  indicators  (KPI)  for  quality  of  service  (QoS)  under  load  conditions.        Its  objective  was  to  stress  the  Test  User  Equipment  (UE)  for  both  performance  and  capacity.    Stress  dimensions  are  varied  including:    •    User  plane  traf6ic    •    Control  plane  traf6ic      The  use  of  control  and  user  plane  traf6ic,  or  a  combination  of  both,  depends  on  the  UE.    An  MME  or  Home  Subscriber  Server  (HSS)  demands  a  control  plane  load,  while  the  serving  gateway  (SGW)  and  packet  data  network  gateway  (PGW)  require  a  user  plane  load.      However,  since  the  SGW  and  PGW  are  responsible  for  both  user  and  control  plane  traf6ic,  we  used  a  mix  of  both  in  order  to  execute  a  realistic  test.    

Page 25: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies  Load  and  Stress  testing  

Control  Plane  Events  The  events,  performed  by  a  subscriber,  that  generate  control  plane  signaling.  The  most    signi6icant  control  plane  events  include:      •    Attach  •    Authentication    •    Session  establishment    •    Dedicated  bearer  establishment  and  deletion    •    Tracking  Area  Update  (TAU)    •    Service  request    •    Handover  •    Detach  

User  Plane  TrafIic    These  events  determine  which  type  of  user  plane  traf6ic  will  6low  through  the  network  under  test.    The  most  common  types  of  user  plane  traf6ic  are:      •    http:  to  simulate  web  browsing,  Facebook,  etc    •    ftp:  for  6ile  transfers    •    OTT  video:  to  simulate  OTT  services  like  YouTube    •    On  demand  video    •    Conversational  video  •    DNS    •    Email:  IMAP,  POP3  and  SMTP    •    Instant  messaging  

Page 26: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  Test  Methodologies  Result  Checklist  q  Application  QoS    

 •    Download  times    •    Dedicated  bearer  vs  best  effort  traf6ic      •    GBR  vs  non-­‐GBR  traf6ic    

q  Control  plane  latencies      •    Attach      •    Session  establishment      •    Handover      •    Dedicated  bearer  establishment    

q  Packet  forwarding  performance      •    Latencies    •    TCP  connection  resets      •    TCP  retries  and  retransmissions      •    Lost  packets    

q  Throughput    q  Capacity    

 •    Amount  of  active  UEs      •    Amount  of  active  bearers    

q  Policy      •    Application  of  rules    

q  DNS      •    Query  rates      •    Query  failures    

q  Service  availability  q  Errors    

 •    Handover  failures    •    Session  establishment  failures      •    Dedicated  bearer  establishment  failures      •    Policy  installation  failures    

Page 27: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  :  Achievements  

Page 28: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  :  ACHIEVEMENTS  More  Devices  

Page 29: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  :  ACHIEVEMENTS  More  Speed  

Page 30: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  :  ACHIEVEMENTS  More  Throughput  

Page 31: Launch a Successful LTE Footprints in Bangladesh

4G  LTE  :  ACHIEVEMENTS  More  Coverage  

600k   60k   50k   30k   30k  80k  150k  

Page 32: Launch a Successful LTE Footprints in Bangladesh
Page 33: Launch a Successful LTE Footprints in Bangladesh

Please  send  your  feedback  to  -­‐    [email protected]