lattice qcd (introduction)

52
Lattice QCD Lattice QCD (INTRODUCTION) (INTRODUCTION) DUBNA WINTER SCHOOL 1-2 FEBRUARY DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005 2005

Upload: carol-york

Post on 01-Jan-2016

30 views

Category:

Documents


2 download

DESCRIPTION

Lattice QCD (INTRODUCTION). DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005. Main Problems. Starting from Lagrangian. (1) obtain hadron spectrum, (2) describe phase transitions, (3) explain confinement of color. http:// www.claymath.org/Millennium_Prize_Problems/. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lattice QCD (INTRODUCTION)

Lattice QCDLattice QCD(INTRODUCTION)(INTRODUCTION)

DUBNA WINTER SCHOOL 1-2 FEBRUARY DUBNA WINTER SCHOOL 1-2 FEBRUARY 20052005

Page 2: Lattice QCD (INTRODUCTION)

22

Main ProblemsMain Problems

ff

f mDFg

L )(Tr 1 _

22

Starting from Lagrangian Starting from Lagrangian

(1) obtain hadron spectrum, (1) obtain hadron spectrum,

(2) describe phase transitions,(2) describe phase transitions,

(3) explain confinement of color(3) explain confinement of color

http://http://www.claymath.org/Millennium_Prize_Problems/www.claymath.org/Millennium_Prize_Problems/

Page 3: Lattice QCD (INTRODUCTION)

33

The main difficulty is the absence of The main difficulty is the absence of analytical methods, the interactions analytical methods, the interactions are strong and only computer are strong and only computer simulations give results starting simulations give results starting from the first principles.from the first principles.

The force between The force between quark and antiquark quark and antiquark

is 12 tonesis 12 tones

Page 4: Lattice QCD (INTRODUCTION)

44

MethodsMethods

Imaginary time Imaginary time tt→→itit

Space-time discretizationSpace-time discretization

Thus we get from functional integral Thus we get from functional integral the statistical theory in four dimensionsthe statistical theory in four dimensions

]}[exp{ SiDZ ]}[exp{ SDZ

x

xdxD )( ]}[exp{ SdZ xx

Page 5: Lattice QCD (INTRODUCTION)

55

The statistical theory in four The statistical theory in four dimensions can be simulated by dimensions can be simulated by

Monte-Carlo methodsMonte-Carlo methods

The typical multiplicities of integrals are The typical multiplicities of integrals are 101066-10-1088

We have to invert matrices 10We have to invert matrices 106 6 x x 101066

The cost of simulation of one configuration The cost of simulation of one configuration is:is:

yearTeraflops

GevafmLm

m

75

6

6 ][][104

Page 6: Lattice QCD (INTRODUCTION)

66

Three limitsThree limits

0

0

qm

L

a

Mevm

fmL

fma

q 100

42

1.0

Lattice spacingLattice spacing

Lattice sizeLattice size

Quark massQuark mass

Typical values nowTypical values now

ExtrapolationExtrapolation

++

Chiral perturbation theoryChiral perturbation theory

Page 7: Lattice QCD (INTRODUCTION)

77

Chiral limitChiral limit

Quark masses Pion massQuark masses Pion mass

qmfm 22

ExpExp

Page 8: Lattice QCD (INTRODUCTION)

88

Nucleon mass extrapolationNucleon mass extrapolation

Fit on the base of the chiral perturbation theoryFit on the base of the chiral perturbation theory 2

03

02

0 )/()()( raDrmCrmBAM N

Page 9: Lattice QCD (INTRODUCTION)

99

SpectrumSpectrum

Page 10: Lattice QCD (INTRODUCTION)

1010

Earth SimulatorEarth Simulator Based on the NEC SX architecture, 640 nodes, each node with 8 Based on the NEC SX architecture, 640 nodes, each node with 8 vector processors (8 Gflop/s peak per processor), 2 ns cycle time, vector processors (8 Gflop/s peak per processor), 2 ns cycle time, 16GB shared memory. – Total of 5104 total processors, 40 TFlop/s 16GB shared memory. – Total of 5104 total processors, 40 TFlop/s peak, and 10TB memory.peak, and 10TB memory. It has a single stage crossbar (1800 miles of cable) 83,000 copper It has a single stage crossbar (1800 miles of cable) 83,000 copper cables, 16 GB/s cross section bandwidth.cables, 16 GB/s cross section bandwidth.700 TB disk space, 1.6 PB mass store700 TB disk space, 1.6 PB mass storeArea of computer = 4 tennis courts, 3 floorsArea of computer = 4 tennis courts, 3 floors

Page 11: Lattice QCD (INTRODUCTION)

Lattice QCD at finite Lattice QCD at finite temperaturetemperatureand density and density

(INTRODUCTION)(INTRODUCTION)

DUBNA WINTER SCHOOL 2-3 FEBRUARY DUBNA WINTER SCHOOL 2-3 FEBRUARY 20062006

Page 12: Lattice QCD (INTRODUCTION)

1212

Finite Temperature in Field TheoryFinite Temperature in Field Theory

In imaginary time the partition function In imaginary time the partition function which defines the field theory is:which defines the field theory is:

The action is:The action is:

]}[exp{ SdZ xx

),(][/1

0

LdxdydzdtST

Page 13: Lattice QCD (INTRODUCTION)

1313

QCD at Finite TemperatureQCD at Finite Temperature

Partition function of QCD with one Partition function of QCD with one flavor at temperature T is:flavor at temperature T is:

The action is:The action is:

T

qmAgiFxddtAS

ASDDDAZ

/1

0

23 })ˆˆ(){(],,[

]},,[exp{

MMdd det}exp{ In computerIn computer

Page 14: Lattice QCD (INTRODUCTION)

1414

Types of FermionsTypes of Fermions

Page 15: Lattice QCD (INTRODUCTION)

1515

Types of FermionsTypes of Fermions

WilsonWilson

Kogut-SuskindKogut-Suskind

Wilson improvedWilson improved

Wilson nonperturbatevely improvedWilson nonperturbatevely improved

Domain wallDomain wall

StaggeredStaggered

OverlapOverlap

1. Quark mass ->0 2. Fast algorithms1. Quark mass ->0 2. Fast algorithms

MMdd det}exp{

Page 16: Lattice QCD (INTRODUCTION)

1616

Approximations to real QCDApproximations to real QCD

Quenched approximation (no fermion Quenched approximation (no fermion loops), gauge group SU(2), SU(3)loops), gauge group SU(2), SU(3)

Dynamical fermions, the realistic situation, Dynamical fermions, the realistic situation, heavy heavy ss quark and quark and 5Mev5Mev uu and and d d quarks quarks will be available on computers in 2015(?).will be available on computers in 2015(?).

Page 17: Lattice QCD (INTRODUCTION)

1717

Types of AlgorithmsTypes of Algorithms

1. Hybrid Monte Carlo + Molecular dynamics, 1. Hybrid Monte Carlo + Molecular dynamics, leap-frogleap-frog

2. Local Boson Algorithm2. Local Boson Algorithm

3. Pseudofermionic Hybrid Monte Carlo3. Pseudofermionic Hybrid Monte Carlo

3. Two step multyboson3. Two step multyboson

4. Polynomial Hybrid Monte Carlo 4. Polynomial Hybrid Monte Carlo

Page 18: Lattice QCD (INTRODUCTION)

1818

1. Earth (solid state) 2. Water (liquid) 3. Air (gas) 4. Fire (plasma) 5.….. (quark-gluon plasma)

Page 19: Lattice QCD (INTRODUCTION)

1919

Earth simulatorEarth simulator

Page 20: Lattice QCD (INTRODUCTION)

2020

Earth simulatorEarth simulator

Page 21: Lattice QCD (INTRODUCTION)

2121

Earth simulatorEarth simulator

Page 22: Lattice QCD (INTRODUCTION)

2222

Earth simulatorEarth simulator

Page 23: Lattice QCD (INTRODUCTION)

2323

Earth simulatorEarth simulator

Page 24: Lattice QCD (INTRODUCTION)

2424

How to find quark gluon plasma?How to find quark gluon plasma?

ORDER PARAMETERSORDER PARAMETERS

}Aexp{i line Polyakov1/T

0

00dxP

mq

condensateQuark

0qm

Page 25: Lattice QCD (INTRODUCTION)

2525

ExampleExample

Page 26: Lattice QCD (INTRODUCTION)

2626

Lattice calculation by DIK groupLattice calculation by DIK group

Polyakov loop susceptibility Polyakov loop susceptibility clower improved Wilson fermions clower improved Wilson fermions

16**3*8 lattice16**3*8 lattice

Page 27: Lattice QCD (INTRODUCTION)

2727

Quark condensateQuark condensate

Fermion condensate vs. T, F.Karsch et al.Fermion condensate vs. T, F.Karsch et al.

Page 28: Lattice QCD (INTRODUCTION)

2828

Phase diagram mPhase diagram mqq-T, one flavor-T, one flavor

Page 29: Lattice QCD (INTRODUCTION)

2929

Quark mass dependence of TcQuark mass dependence of Tc

Page 30: Lattice QCD (INTRODUCTION)

3030

Three quarksThree quarks

Page 31: Lattice QCD (INTRODUCTION)

3131

Critical temperature for Critical temperature for pure glue and for various pure glue and for various

dynamical quarksdynamical quarks

Page 32: Lattice QCD (INTRODUCTION)

3232

PurePure

SU(3)SU(3)

glueglue

(simplest(simplest

case)case)

Page 33: Lattice QCD (INTRODUCTION)

3333

Temperature of the phase transitionTemperature of the phase transitionPure glue SU(3)Pure glue SU(3) F. KarschF. Karsch

MevTc )2271(

Page 34: Lattice QCD (INTRODUCTION)

3434

Page 35: Lattice QCD (INTRODUCTION)

3535

Temperature of the phase transitionTemperature of the phase transitionPure glue SU(3) Pure glue SU(3) F. KarschF. Karsch

Two flavor QCD, clover improved Wilson fermionsTwo flavor QCD, clover improved Wilson fermions C.Bernard (2005)C.Bernard (2005)

DIK collaboration (2005) DIK collaboration (2005)

MevTc )2271(

MevTc )4171(

MevTc )3166();3173(

Page 36: Lattice QCD (INTRODUCTION)

3636

Page 37: Lattice QCD (INTRODUCTION)

3737

Temperature of the phase transitionTemperature of the phase transitionPure glue SU(3) Pure glue SU(3) F. KarschF. Karsch

Two flavor QCD, clover improved Wilson fermionsTwo flavor QCD, clover improved Wilson fermions C.Bernard (2005)C.Bernard (2005)

DIK collaboration (2005) DIK collaboration (2005)

Two flavor QCD, improved staggered fermions Two flavor QCD, improved staggered fermions

F.Karsch (2000)F.Karsch (2000)

MevTc )2271(

MevTc )4171(

MevTc )8173(

MevTc )3166();3173(

Page 38: Lattice QCD (INTRODUCTION)

3838

Page 39: Lattice QCD (INTRODUCTION)

3939

Temperature of the phase transitionTemperature of the phase transitionPure glue SU(3) Pure glue SU(3) F. KarschF. Karsch

Two flavor QCD, clover improved Wilson fermionsTwo flavor QCD, clover improved Wilson fermions C.Bernard (2005)C.Bernard (2005)

DIK collaboration (2005) DIK collaboration (2005)

Two flavor QCD, improved staggered fermions Two flavor QCD, improved staggered fermions

F.Karsch (2000)F.Karsch (2000)

ThreeThree flavor QCD, improved staggered fermions! flavor QCD, improved staggered fermions! F.Karsch (2000)F.Karsch (2000)

MevTc )2271(

MevTc )4171(

MevTc )8173(

MevTc )3166();3173(

MevTc )8154(

Page 40: Lattice QCD (INTRODUCTION)

4040

Example of extrapolation (DIK 2005)Example of extrapolation (DIK 2005)

)()(),( 2

01 amCra

CTamT cc

Russian (JSCC)Russian (JSCC)

supercomputer M1000supercomputer M1000

Page 41: Lattice QCD (INTRODUCTION)

4141

Plasma thermodynamicsPlasma thermodynamics

Free energy densityFree energy density

energy, entropy, velosity of sound, energy, entropy, velosity of sound, . pressure . pressure

),( VTZVT

f

s scp

ddp

cT

pTs

TP

dTd

TT

p

fp

s

24344 ;);(

;

Page 42: Lattice QCD (INTRODUCTION)

4242

Example: pressureExample: pressure

F. Karsch (2001-2005)F. Karsch (2001-2005)

Page 43: Lattice QCD (INTRODUCTION)

4343

FULL PROBLEMFULL PROBLEM

Page 44: Lattice QCD (INTRODUCTION)

4444

Non zero chemical potentialNon zero chemical potential

QCD partition function at finite temperature QCD partition function at finite temperature and chemical potentialand chemical potential

At finite chemical potential the fermionic At finite chemical potential the fermionic determinant is not positively defined! Thus determinant is not positively defined! Thus we have no interpretation of the partition we have no interpretation of the partition function as probability wait (big difficulties function as probability wait (big difficulties with MC).with MC).

}],,[exp{ 03

/1

0

xddtASDDDAZT

MMdd det}exp{

Page 45: Lattice QCD (INTRODUCTION)

4545

АнекдотАнекдот

Page 46: Lattice QCD (INTRODUCTION)

4646

Mu-T diagramme, example of calculation

(weighted expantion on mu)

C.R. Aallton et al.C.R. Aallton et al.

(2005)(2005)

Page 47: Lattice QCD (INTRODUCTION)

4747

Page 48: Lattice QCD (INTRODUCTION)

4848

Full diagram (theory)Full diagram (theory) C.R. Aallton et al. (2005)C.R. Aallton et al. (2005)

Page 49: Lattice QCD (INTRODUCTION)

4949

Page 50: Lattice QCD (INTRODUCTION)

5050

LiteratureLiterature

H. Satz hep-ph/0007209H. Satz hep-ph/0007209

F. Karsch hep-lat/0106019F. Karsch hep-lat/0106019

C.R. Allton et al. hep-lat/0504011C.R. Allton et al. hep-lat/0504011

F. Karsch hep-lat/0601013F. Karsch hep-lat/0601013

DIK (DESY-ITEP-Kanazawa) collaboration DIK (DESY-ITEP-Kanazawa) collaboration hep-lat/0509122hep-lat/0509122, , hep-lat/0401014 hep-lat/0401014

Page 51: Lattice QCD (INTRODUCTION)

5151

Page 52: Lattice QCD (INTRODUCTION)

5252

Special thanks toSpecial thanks toVALERY SCHEKOLDINVALERY SCHEKOLDIN

(photo )(photo )