laser–induced control of condensed phase electron transfer rob d. coalson, dept. of chemistry,...

34
Laser–Induced Control of Condensed Phase Electron Transfer Rob D. Coalson , Dept. of Chemistry, Univ. of Pittsburgh Yuri Dakhnovskii , Dept. of Physics, Univ. of Wyoming Deborah G. Evans , Dept. of Chemistry, Univ. of New Mexico Vassily Lubchenko , Dept. of Chemistry, M.I.T. H 3 N H 3 N Ru N NH 3 NH 3 NH 3 Ru NC CN CN CN CN C [polar Solvent] +3 +2

Post on 22-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Laser–Induced Control of Condensed Phase Electron Transfer

Rob D. Coalson, Dept. of Chemistry, Univ. of Pittsburgh

Yuri Dakhnovskii, Dept. of Physics, Univ. of Wyoming

Deborah G. Evans, Dept. of Chemistry, Univ. of New Mexico

Vassily Lubchenko, Dept. of Chemistry, M.I.T.

H3N

H3N

Ru N

NH3NH3

NH3

Ru

NC

CNCN

CN

CNC

[polar Solvent]

+3 +2

Tunneling in A 2-State Systemq

tropolone

|L> |R>

q

V(x)Proton Transfer

GaA

s

GaA

s

AlG

aAs

q

|L> |R> V(x)

e-

q

Electron TransportIn Solids

Multi (Double) QuantumWell Structure

1. . . . . N

e-

|D> |A>AtomicOrbitals

Ru+2 Ru+3

|D> |A>

Donor Acceptor

Molecular Electron Transfer

Equivalent 2-state model

For any of these systems: |(t)> = cD(t) |D> + cA(t) |A>

where HAA

HDA

HAD

HDD

cA

cD

= iħ ddt

cA

cD

1

For a Symmetric Tunneling System: HAA= HDD= 0; HAD= HAD = (< 0)

0.5

1

cos x( )( )2

x

Given initial preparation in |D>, for a symmetric system:

PD(t) = 1 – PA(t) = cos2(t) =

t2

Now, apply an electric field

|D> |A>

e-

E

0R2

R2

Q: How does this modify the Hamiltonian??

A: It modifies the site energies according to “ - • E ”

Thus: H =HAA

HDD

- EeoR/2

-eoR/20

0

Permanent dipole moment of A

Analysis in the case of time-dependent E(t) = Eocosot

Consider first the symmetric case:

i ddt

cA

cD

=0

0

- Eocosot

1 0

0 -1

cA

cD

Permanent dipole moment difference

Letting: cA(t) = e i a sinot cAI(t) ; cD(t) = e i a sinot cD

I(t)

Where: a = Eo

(ħ)o[ N.B.: 0Eocosot'dt' = ]t Eo

osinot

Thus, Interaction Picture S.E. reads:

cAI

cDI

=0

e2i a sinot 0

e-2i a sinot cAI

cDI

i ddt

Now note: e i b sint = Jm(b) e i mt

m=-

So: e2i a sinot = Jm(2a) e i mot m=-

·Jo(2a) , for /o << 1RWA

Thus, the shuttle frequency is renormalized to |Jo(2a)|

00

a2.5 5.5

[ <<1 ]

NB: Trapping or localization occurs at certain Eo values!

[Grossman - Hänggi, Dakhnovskii – Metiu]

Add coupling to a condensed phase environment

H = T ˆˆ 1

0

0

1+ VD(x)

-VA(x)

Eocosot1 0

0 -1

Nuclear coordinatekinetic energy

Nuclear coordinate Field couples only to2-level system

VD(x)VA(x)

D(x,t)A(x,t)

x

Now: T+VD(x)

T+VA(x)

- Eocosot1 0

0 -1

D(x,t)

A(x,t)

=D(x,t)

A(x,t)i d

dt

Construction of (Diabatic) Potential Energy functions for Polar ET Systems:

VD(x)

VA(x)

A

A D

D

A few features of classical Nonadiabatic ET Theory [Marcus, Levich-Doganadze…]

T+V1(x)

T+V2(x)

H = ˆˆ

Hamiltonian

non-adiabatic couplingmatrix element

kinetic E ofnuclear coordinates

(diabatic) nuclear coord. potential for electronic state 2

1(x,t)

2(x,t) |(t)> = States

Given initial preparation in electronic state 1 (and assuming nuclear coordinates are equilibrated on V1(x))

x

1

2

1(x,0) Then, P2(t) = fraction of molecules in electronic state 2

= < 2(x,t)| 2(x,t)> k12t

where k12 = (Golden Rule) rate constant

x

2

1

Er

For the “backwards” Reaction: k21 = 2 ( )ErkT

½e

-(Er+ )2/4Er kBT

In classical Marcus (Levich-Doganadze) theory, k12 is determined by 3 molecular parameters: , Er,

k12 = 2 ( )ErkT

½e

-(Er- )2/4Er kBT

w/ Er = “Reorganization Energy” ; = “Reaction Heat”

To obtain electronic state populations at arbitrary times, solve kinetic [“Master”] Eqns.:

dP1(t)/dt = - k12P1(t) + k21P2(t)

dP2(t)/dt = k12P1(t) - k21P2(t)

Note that long-time asymptotic [“Equilibrium”] distributions are then given by:

Keq =P2()

P1()

k12

k21

= e /kBT=

for Marcus formula rate constants

N.B. Marcus theory for nonadiabatic ET reactions works experimentally. See: Closs & Miller, Science 240, 440 (1988)

Control of Rate Constants in Polar Electronic Transfer ReactionsVia an Applied cw Electric Field

The Hamiltonian is:

x

VA

VD

H = ˆ

ˆ ˆ

ˆ ˆ

hD

hA

0

0+

0

0

+ 12Eocosot

1

-1

0

0

The forward rate constant is: [Y. Dakhnovskii, J. Chem. Phys. 100, 6492 (1994)

kDA = 2 Jm(a) ·m=-

dt e i mot tr {Re

0

D e e-i hA t ˆ i hD t }

a = 2 12 Eo/ ħo

2

kDA = Jm(212Eo/ħo) •m=-

2( )

ErkT

½

e-(Er – + ħmo)2/4Er kBT

2

4

+

AD

Rate constants in presence of cw E-field

D

A

ħo

0 5

x

Ene

rgy

200

100

0

-200

-100

300

J-1

J0

J1

2

2

2

Schematically:

In polar electron transfer reactions, for Reorganization Energy Er ħo (the quantum of applied laser field)

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

a

Jo(a)

J1(a)

J2(a)

2

2

2

Dramatic perturbations of the “one-way” rate constants may be obtained by varying the laser field intensity:

[Activationless reaction, Er=1eV] Forward rate constant

Dakhnovskii and RDC showed how this property can be used to control Equilibrium Constants with an applied cw field:

“bias”

D

A

Results for activationless reaction:

eq

=

PD(0

0)P

A(0

0)

Y. Dakhnovskii and RDC, J. Chem. Phys. 103, 2908 (1995)

Evans, RDC, Dakhnovskii & Kim,PRL 75, 3649 (95)

= 100 cm -1

Activationless ET

Er = = ħo = 1eV

REALITY CHECK on coherent control of mixed valence ET reactions in polar media

“·E” (1)

E

Orientational averaging will reduce magnitude of desired effects

[Lock ET system in place w/ thin polymer films]

(2) Dielectric breakdown of medium?

To achieve resonance effects for = 34DEr = ħo = 1eV Electric field 107 V/cmGiant dipole ET complex, solvent w/ reduced Er,pulsed laser reduce likelihood of catastrophe]

(3) Direct coupling of E(t) to polar solvent

[Dipole moment of solvent molecules << Dipole moment of giant ET complex]

(4) ħ0 1eV ; intense fields (multiphoton) excitation to higher energy states in the ET molecule, which are not considered in the present 2-state model.

ħ

ħ

ħ

ħ

1eV

1eV

1eV

1eV

Absolute Negative Conductance in Semiconductor Superlattice

-Keay et al., Phys. Rev. Lett. 75, 4102 (1995)

- +

Absolute Negative Conductance in Semiconductor Superlattice

-Keay et al., Phys. Rev. Lett. 75, 4102 (1995)

Immobilized long-range Intramolecular Electron Transfer Complex:

A

D

TetheredAlkane Chain molecule

(Inert) Substrate

E

k

(ħ)

Light Absorption by Mixed Valence ET Complexes in Polar Solvents:

Ru+2

Ru+3

Solvent

ħ

ħ

ħ

ħ

ħ

ħ

Incident Photons

Transmitted Photons

PhotonsIncident #

Photons Absorbed #)(Ksection cross Absorption abs

Absorption Cross Section Formula:

(1) ),(1

2 dt

aEd

Ekabs

(2) ),( 2)(

21)(

1 t

Un

t

Un

dt

aEd eqeq

TkE

mE

TkE

mE

aJmTkEt

U

Br

r

Br

r

mm

Br

4exp

4exp

(3) )(4

22

1

22

12

2,1

Ea 2

FCF

PhotonsIncident #

Photons Absorbed # )( Spectrum AbsorptionHush

212

L

L

MarcusGaussian

permanentdipole momentdifference

moment" dipole transition" effective w/

res12

Δ

Barrierless

E2

Hush Absorption

=

PRL 77, 2917 (1996)J. Chem. Phys. 105, 9441 (1996)

Stimulated Emission using two incoherent lasers

J. Chem. Phys. 109, 691 (1998)

absorption emission

J. Chem. Phys. 109, 691 (1998)