laser processing of materials - teil 6 von 8 - temperature distributions - skript - prof dr frank...

Upload: wagner-peres

Post on 05-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    1/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Laser processing of materials

    Prof. Dr. Frank Mcklich

    Dr. Andrs Lasagni

    Lehrstuhl fr FunktionswerkstoffeSommersemester 2007

    Temperature distributions

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Contents:

    1. Definitions

    2. Diffusion length

    3. Temperature distribution in Bulk materials

    i. Heat diffusion equation

    ii. Constrain conditions

    iii. The error functioniv. General solution

    v. Formulae for different conditions

    vi. Examples of laser heating

    4. Temperature distribution in Thin Films

    i. Heat diffusion equation

    ii. Constrain conditions

    iii. Formulae for different conditions

    iv. Cooling of thin-filmsv. Heat transfer to Substrate

    vi. Lateral Heat-transfer in the film

    Temperature distributions

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    2/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    LASER BEAM

    txhp heat

    heat

    : light penetration depth

    xhp: heat affected zone

    t (diffusion length)

    k: thermal diffusivity

    t: interaction time

    The temperature rise is basically

    controlled by , xhp and r0.

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    EXAMPLE

    light penetration depth ()for metals:

    10-6 - 10-7 mts

    Thermal diffusivity (k)

    for metals:10-4 - 10-5 m/s

    For t = 10 ns

    Xhp ~ 0.1-1m

    For t = 1ms

    Xhp ~ 100-300m

    LASER TYPE:

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    3/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    How to calculate the temperature

    as function of the time and depth?

    t

    T

    cqx

    T

    Kx p

    =+

    .

    q

    T (,y,z,t) = T0

    Temporal condition:

    T (x,y,z,0) = T0

    0),,,0( =

    tzyx

    TK

    (no heat lost (no radiation))

    x

    q=0 q=0

    xeRqxq

    = )1()( 0.

    =1/: absorption coefficient

    R: reflectivity;

    K: thermal conductivity

    q0: Power density (laser-light

    flux density [W/cm])

    cp: specific heat

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    In one-dimensional case, for uniform surface irradiation, and

    constant K, cp, :

    ++

    +

    +

    +=

    kt

    xkterfcxkt

    K

    qR

    kt

    xkterfcxktKqR

    eK

    qR

    kt

    xierfckt

    K

    qRTtxT

    x

    2)exp(

    2

    )1(

    2)exp(

    2)1(

    )1(

    2

    )1(2),(

    20

    20

    000

    Where: erfc(u) is the complementary error function and ierfc(u)

    its integral

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    4/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    Complementary error function:

    Integral of the complementary

    error function:

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    However, different simplified equations can be used in different

    situations (, xhp and r0): (q = q0 (1-R))

    metalspolymers

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    5/16

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    6/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    Example: Laser heating of stainless steel AISI 304:

    t = tp/2

    t = tp

    Melting point

    Melting point

    Temperature at different intensities before laser is turned off

    tp = 10-3 s

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    7/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    Example: Laser heating of stainless steel AISI 304:

    t = 2 tp

    t = 10 tp

    Melting point

    Melting point

    Temperature at different intensities after laser is turned off

    tp = 10-3 s

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in bulk materials

    Example: Laser heating of stainless steel AISI 304:

    tp = 10-3 s

    Melting point

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    8/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    q0

    0),,,0(/ = tzyxTK

    x

    =1/: absorption coefficient

    for h>=> we can neglect the wavereflected from the film substrate

    In case of thicker films it is

    necessary to consider that heat

    release is not uniform in depth

    h

    However, heat release does not

    follow light-absorption law given that

    the diffusion length >> (up to h ~ 5m)

    (1)

    (2)

    xeAqxq 1)()( 10

    .=

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    t

    Tctxq

    x

    TK p

    =+

    2,1

    2,12,1

    .

    2,12

    2,12

    ),(

    h

    Aqq 10

    .

    1 =

    )](exp[)1( 21102

    .

    2 hxARqq =

    (this means that

    T1=C along x)

    Considering that r0>>(1)1/2 =>

    q0

    0),,,0(/ = tzyxTK

    x

    h (1)

    (2)(1-R1-A1) = D1 (x = h)

    xeAqxq 1)()( 10

    .=

    Observation: R1+A1+D1 = 1

    T1(x)=Cte

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    9/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    Considering:

    00/)(1 == xatxtT

    0)()( 021 === tatTxTxT

    hxattTtT == )()( 21

    hxatx

    tTk

    x

    tTk =

    =

    )()( 22

    11

    == xatTtT 02 )(

    q0

    0),,,0(/ = tzyxTK

    x

    h (1)

    (2)

    xeAqxq 1)()( 10

    .=

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    D1 = 0 (Transmission)

    D1

    > 0 ; A1

    >0

    (A1+D1 = 1 R1)

    D2 = 0

    R1+A1+D1 = 1

    D1 > 0 ; A1>0

    (A1+D1 = 1 R1)

    D2 > 0

    D1 > 0 ; A1~0 (D1 = 1 R1)

    D2 = 0

    D1 > 0 ; A1~0 (D1 = 1 R1)

    D2 > 0

    = laser pulse duration Thin-film temperature-time dependence

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    10/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    q0 = 1012 W/m

    Film thickness = 5m

    Substrate: Glass

    Numerical calculations

    Films temperature Films temperature

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    Cooling of thin-films

    Cooling of the film depends on the heating regime

    For the case of an opaque film on any substrate, the temperature at the film

    after the laser interaction time () is given by:

    nstk

    herfTtT 100

    )()()(

    2

    1 =

    hc

    AqT

    p11

    101 )(

    =

    2

    2

    102

    2)(

    k

    K

    AqT =

    Example:

    considering: = 10ns, h=100nm, k2 = 6E-3 cm/s (glass),

    the time tto cool the film up to 0.1T1 is 100 ns!

    Question: why are such cooling-times extremely short?

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    11/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    Heat transfer to Substrate

    1 - During laser irradiation, a more or less significant part of the thermal

    energy is drained through the substrate2 - Only a part of the substrate with depth lp is heated up:

    lp ~ (2 )1/2

    3 - The energy efficiency of the treatment can be described as:

    = 1 Qd/QaQa = energy absorbed

    Qd = energy dissipated

    4- The energy efficiency can be written in terms of thermal properties of

    the substrate and the film:

    with:2

    1+= tkc

    hc

    p

    p

    222

    11

    =

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    Heat transfer to Substrate

    Qd = 0 Qd = Qa

    With the rise of (lower), thefilm-heating efficiency drops

    quickly!

    If:2

    22

    22

    11

    4 k

    h

    c

    c

    p

    p

    then >

    Consequently: laser thin-film

    treatment should be carried out in a

    pulsed regime at short times. This

    provides lower energy loss and lower

    risk of substrate damage!

    E.g.: 100 nm Cu-film on quartz

    substrate : < 36 ns

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    12/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Lateral Heat-transfer in the film

    Temperature distributions in thin films

    2

    0r

    hr02h

    Generally, the lateral heat flow weakly

    affects the film heating due to:

    2

    0r hr02>

    q

    q

    From 3D analysis it can be proved that

    if:

    Then the lateral heating is negligible =>

    10 2 kr >

    Strong lateral

    heat flow

    T0c: temperature at the center

    without considering lateral heat flow

    Trc: temperature at the centerconsidering lateral heat flow

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Temperature distributions in thin films

    Lateral Heat-transfer in the film

    Example:

    Cu-Film

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    3.50

    4.00

    4.50

    5.00

    0.00 10.00 20.00 30.00 40.00 50.00

    ][2 1 mk

    Laser interaction time [ns]

    10 2 kr >

    10 2 kr liquid expulsion, vaporization

    Liquid expulsion

    Vapor/plasma

    plume

    Vapor consist on: clusters, molecules,

    atoms, ions, and electrons

    The higher the laser-light intensity the

    higher the density of species

    The energy required to remove an atom

    from a solid can be estimated from:

    Ha [J/atom] = HV[J/g] / Ns

    HV: enthalpy of vaporization

    Ns=L/M: atom number density(L=Avogadro Number; M=atomic weight)

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Plume

    P

    PS

    PL

    Laser ablation - vaporization

    However the plume will absorb and scatter the incident laser radiation!

    Considering only evaporation:

    ( )( )[ ]Lsinput PRPPE = 1Energy input:P: laser power

    Ps: power absorbed by the vapor plume

    PL: energy looses (heat conduction, radiation, convection, reaction

    enthalpies, etc.)

    R: reflectivity

    : dwell time of the laser beam

    ( ) ( )mvplmpsmvvap TTcTTcLLhAE +++= 0Energy to required to vaporize a volume A.h:

    Lv: latent heat of vaporization; Lm: latent heat of melting

    Cps, Cpl: specific heat of solid and liquid, respectively

    Tm: melting point; Tv: vaporization point; T0: initial temperature

    : density

    h: ablated depth; A: ablated area

    h

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    15/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Plume

    P

    PS

    PL

    When plasma is produced, an important part of the energy is absorbed

    by the plume and the

    calculation is more

    complicated

    Laser ablation - vaporization

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    ( )( )( ) ( )[ ]

    mvplmpsmv

    ls

    TTcTTcLLA

    PRPPh

    +++

    0

    1

    Laser ablation - vaporization

    Combining both equations:

    ( )( )

    v

    ls

    H

    Rh

    1

    : laser fluence (J/cm)

    This equation is only valid if: l(optical penetration depth) bulk heating is minimized => PL ~ 0

    ( )( )

    vH

    Rh

    1 Ablation rate is proportional to Laser fluence(relative low energy densities, without considering

    liquid expulsion)

  • 7/31/2019 Laser Processing Of Materials - Teil 6 Von 8 - Temperature Distributions - Skript - Prof Dr Frank Mcklich - Dr Andr

    16/16

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Laser ablation - vaporization

    One-dimensional model (surface temperature ):

    Considerations:

    We ignore any liquid layer

    Tvs is the temperature at the solid-vapor interface and vvs is its velocity Any attenuation of incident laser light by the plume is ignored

    ( )

    +

    += mv

    vsp

    s LLv

    PR

    cTT

    )1(

    2

    1)1( 0

    =

    s

    vvs

    Tvv

    exp)2( 0

    we need to solve equations (1) and (2) simultaneously

    B

    a

    v

    B

    vv

    k

    H

    k

    E

    =

    vo is in the order of the sound velocity within the solid

    is the activation energy for vaporization and can be

    replaced by the enthalpy of vaporization per atom/moleculev

    Functional MaterialsFunctional Materials Saarland UniversitySaarland University

    Laser ablation

    Influence of liquid layer:

    Vapor

    Recoil force

    Liquid

    expulsion

    ( )ssatrec Tpp ~

    The recoil pressure (prec) is originated

    because of the momentum conservation

    of the evaporated species. This is in the

    order of the saturated vapor pressure at

    Ts (psat) and increases nonlinearly with

    P (W/cm)

    The melt-ejection flux (J)

    is given by:

    (w = laser-beam radius)

    4/11~ recm p

    wJ