laser physics.1

Upload: sepatu-lukis-drainbow-iv

Post on 07-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Laser Physics.1

    1/19

    Laser Physics

    lecture WS 2007/2008

    Thomas Halfmann

    [email protected]

    www.quantumcontrol.de

  • 8/6/2019 Laser Physics.1

    2/19

    Contents of the lecture :

    1. Introduction & Motivation

    (Laser applications, particular properties of laser radiation, laser-related

    Nobel prizes, history of laser developments, references)

    2. Basics of laser operation

    (A quick guide to lasers; Maxwells wave equation, photons, Plancks law,

    photon statistics : Bose-Einstein distribution, Poisson distribution, spatial

    and temporal coherence, correlation functions, diffraction-limitedfocussing, laser speckles)

    3. Light amplification(Interaction of light with a two-level quantum system, spectral lines,

    absorption & refraction, saturation, population rate equations, conditions

    for light amplification, population inversion, losses in a laser resonator,

    dynamics of a two-level laser, laser oscillations, relaxation oscillations &

    spiking, three-level laser scheme, four-level laser-scheme)

  • 8/6/2019 Laser Physics.1

    3/19

  • 8/6/2019 Laser Physics.1

    4/19

    6. Nonlinear optics & frequency conversion

    (Maxwells wave equation in matter, nonlinear polarization, slowly

    varying envelope approximation, 2nd order NLO processes, sum frequency

    mixing, difference frequency mixing, parametric amplification, optical

    parametric amplifiers, optical Kerr effect, self focussing, Manley-Rowe

    relations, phase matching, 3rd order NLO processes, third harmonicgeneration, four wave mixing, Raman scattering, coherent anti-Stokes

    Raman scattering, optical phase conjugation)

  • 8/6/2019 Laser Physics.1

    5/19

    1. Introduction & Motivation

    (Laser applications, particular properties of laser radiation, laser-related

    Nobel prizes, history of laser developments, references)

  • 8/6/2019 Laser Physics.1

    6/19

    Motivation : (1) Laser applications (definitly incomplete)

  • 8/6/2019 Laser Physics.1

    7/19

    Motivation : (2) Particular properties of laser radiation

    large spatial and temporal coherence : fixed phase relation between

    spatially and temporally separated parts of a laser pulse large interferometric resolution becomes possible

    highly monochromatic : small spectral bandwidth

    large spectral resolution possible ( = 1 Hz at 1015 Hz)

    large intensity :

    Lawrence Livermore National Laboratory (USA) : 500 TWPHELIX at GSI (still in setup) : 1000 TW ?

    large temporal resolution :

    shortest radiation pulse up-to-date (INFM, Milano, 2007) : = 130 as investigation of ultra-fast phys. & chem. processes possible

    (comp. : time scale of molecular vibrations ~ 100 fs

    time scale of electronic motion ~ 100 as)

  • 8/6/2019 Laser Physics.1

    8/19

    1960 1970 1980 1990 2000 20101E-16

    1E-15

    1E-14

    1E-13

    1E-12

    1E-11

    1E-10

    1E-9

    Ramangeneration

    high-order

    harmonic

    generation

    pulse

    compression

    mode-locked

    Ti:Sapphire

    cw mode-locked dye

    colliding pulsemode-locked dye lasers

    flashlamp dye

    Nd:Glass

    mode-locked ruby

    pulse

    duration

    year

    conventional techniques (1) :

    generation of short radiation pulses in a

    laser resonator

    conventional techniques (2) :

    compression of short laser pulses

    techniques, Verfahren, based on the

    interaction between ultra-shortradiation pulses and molecular media :

    generation and superposition of Raman

    sidebands

    techniques, based on nonlinear optical

    interaction between ultra-short

    radiation pulses and atomic media :

    generation and superposition of high-

    order harmonics in the regime of

    extreme-ultraviolet radiation

    e.g. rapid developments in the

    field of laser physics : increasing

    temporal resolution

    M i i (3) N b l i f l d l li i

  • 8/6/2019 Laser Physics.1

    9/19

    C.H. Townes N.G. Basov A.M. Prokhorov

    Nobel prize 1964 : quantum electronics, maser & laser

    N. Bloembergen A.L. Schawlow K.M. Siegbahn

    Nobel prize 1981 :

    laser spectroscopy &

    electron spectroscopy

    Motivation : (3) Nobel prizes for lasers and laser applications

    A. Kastler

    Nobel prize 1966 :

    optical spectroscopy

  • 8/6/2019 Laser Physics.1

    10/19

    S. Chu W.D. Phillips C. Cohen-

    Tannoudji

    Nobel price 1997 :

    laser cooling

    Nobel prize (chemistry) 1999 :femtosecond spectroscopy

    of chemical reactions

    A. Zewail

  • 8/6/2019 Laser Physics.1

    11/19

    E.A. Cornell C.E. Wieman W. Ketterle

    Nobel prize 2001 :

    Bose-Einstein condensation

    R.J. Glauber J.L. Hall T.W. Hnsch

    Nobel prize 2006 :quantum coherence &

    high-precision spectroscopy

    h k f l li i

  • 8/6/2019 Laser Physics.1

    12/19

    some other guys known for laser applications

    History of laser developments

  • 8/6/2019 Laser Physics.1

    13/19

    History of laser developments

    1917 A. Einstein quantum mech. of radiation (spont. & stim. emission)

    1928 R Ladenburg et al. exp. dem. of stim. emission in gas discharges

    1954 C. H. Townes et al. first maser, implemented with NH3 molecules1954 N. G. Basov & A. M. Prokhorov maser theory

    1958 A. L. Schawlow & Ch. H. Townes laser theory

    1959 G. Gould laser patent

    LASER : Light Amplification by Stimulated Emission ofRadiation

  • 8/6/2019 Laser Physics.1

    14/19

    1960 T. H. Maiman first laser, made from a ruby crystal

    1961 A. Javan et al. first gas laser (HeNe)

    1961 E. Snitzer Nd3+:glass - laser (1.06 m)

    1962 several authors GaAs diode laser (840 nm)

    1964 C. K. N. Patel CO2

    - laser (10 m)

    1964 J. E. Geusic et al. Nd3+: YAG-Laser (Y3Al5O12, 1.06 m)

    1964 W. B. Bridges Ar+ ion laser

    1965 J. V. V. Kasper & G. C. Pimentel chemical laser (HCl, 3.8 m)1966 P. P. Sorokin & J. R. Lankard dye laser

    1971 N. G. Basov et al. Xe2+ - excimer laser

    1984 P.F. Moulton Ti-Sapphire laser (Ti3+:Al2O3)

  • 8/6/2019 Laser Physics.1

    15/19

    1961 R. J. Collins Q-switching

    1965 H. W. Mocker & R. J. Collins passive modelocking in a ruby laser

    1968 D. J. Bradley & A. J. F. Durrant synchroneous pumping

    1971 H. Kogelnik & C. V. Shank distributed feedback(DFB) - dye laser

    1984 W. H. Knox et al. pulse compression1985 D. Strickland & G. Mourou chirped pulse amplification

    1991 D. E. Spence et al. Kerr lens modelocking

    and many recent developments :

    e.g. single-cycle laser pulses,THz pulses,

    pulse shaping,

    generation of attosecond pulses,

    laser-based nuclear fusion,

  • 8/6/2019 Laser Physics.1

    16/19

    references :

    P.W. Milonni & J.H. Eberly LasersA.E. Siegman Lasers

    F.K. Kneubhl & M.W. Sigrist Laser

    W. Demtrder Laser Spectroscopy

    H. Haken & H.C. WolfAtom- und QuantenphysikA. Yariv Quantum Electronics

    M.V. Klein & T.E. FurtakOptik

    R.W. Boyd Nonlinear Optics

    P.N. Butcher & D. Cotter The Elements of Nonlinear Optics

  • 8/6/2019 Laser Physics.1

    17/19

    2. Basics of laser operation

    (A quick guide to lasers; Maxwells wave equation, photons, Plancks law,

    photon statistics : Bose-Einstein distribution, Poisson distribution, spatialand temporal coherence, correlation functions, diffraction-limited

    focussing, laser speckles)

    A quick guide to lasers

  • 8/6/2019 Laser Physics.1

    18/19

    A quick guide to lasers

    essential components of a laser:

    (1) medium (quantum system, capable to permit population inversion,e.g. gas, liquid, solid,)

    (2) pumping process (optical, electron impact, current, chemical,)

    (3) resonator (i.e. mirrors)aims : feedback, mode selection, energy concentration in few modes

    (i) Basic setup of a laser

    (ii) Amplification by stimulated emission

  • 8/6/2019 Laser Physics.1

    19/19

    (ii) Amplification by stimulated emission

    consider the interaction of a two-level quantum system with radiation :

    (1) stimulated absorption attenuation

    (2) stimulated emission amplification (correlated)

    (3) spontaneous emission fluorescence (uncorrelated)iikki

    sp

    iik

    ki

    stim

    kkiik

    stim

    NAP

    wNBP

    wNBP

    =

    =

    =

    population distribution

    due to Boltzmann law :

    kTE

    eEN/

    )(

    with Einstein coefficients Aik, Bik, Bki and field energy density w