lapp demo, a.d.rollett, carnegie mellon u., 05, updated sep 09 anisotropy part 2: using lapp- los...

44
LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture, Microstructure & Anisotropy, Fall 2009 A.D. Rollett, P. Kalu Carnegi Mellon MRSEC

Upload: zoe-carter

Post on 12-Jan-2016

217 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

Anisotropy part 2:Using LApp-

Los Alamos polycrystal plasticity

27-750, Fall 2009

Texture, Microstructure & Anisotropy, Fall 2009

A.D. Rollett, P. KaluCarnegieMellon

MRSEC

Page 2: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

2

Objective• The objective of this lecture is to demonstrate how to

run LApp and obtain useful results in terms of texture prediction and anisotropic plastic properties.

• LApp calculates the result (in terms of stress state) of applying a given strain (increment) to a set of orientations (grains). The number of grains can be varied from 1 to many thousands. The code can be used iteratively to find a macroscopic strain state that satisfies a certain applied stress state.

Page 3: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

3

Principles of LApp• The principles governing the calculations in LApp are

described in more detail in subsequent lectures.• This code is based on the Taylor assumption: each

grain/orientation experiences the same strain as the macroscopic body being deformed. A relaxation of this boundary condition is allowed for (“relaxed constraints”).

• Since the strain (rate) is known for each grain, the objective of the calculation is therefore to obtain the stress state in each grain that permits the given strain to occur. This leads to an implicit equation relating strain rate to stress state.

Page 4: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

4

Input Files• sxin lists of slip systems (for cubic crystals,

also lists vertices on the single crystal yield surface).

• texin list of orientations; Euler angles with a weight (sometimes also state parameters).

• bcin boundary conditions (strain and stress).• propin stress-strain constitutive relations

(hardening).

Page 5: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

5

LApp Flow Chart

grain, slipgeometry

maxwork

sxinbcintexinpropin

sss

newton

orient

harden

histlapp.dattexoutanal

inputfiles

preparation

Bishop-Hill solution

rate-sensitivesolution

updateorientationof eachgrain

updatehardeningon eachslip system

outputfiles

stop

Page 6: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

6

sxin: slip geometrycubic lattices (this is fcc; for bcc, LApp gives you option to

transpose)

1 28 =nmodes,nvertex. mode nsys ktwin twsh -corr (all numbers must appear)

1 12 0 0.0 0.0

1 1 -1 0 1 1 +pk -pk

1 1 -1 1 0 1 +pq -pq

1 1 -1 1 -1 0 +pu -pu

1 -1 -1 0 1 -1 +qu -qu

1 -1 -1 1 0 1 +qp -qp

1 -1 -1 1 1 0 +qk -qk

1 -1 1 0 1 1 +kp -kp

1 -1 1 1 0 -1 +ku -ku

1 -1 1 1 1 0 +kq -kq

1 1 1 0 1 -1 +uq -uq

1 1 1 1 0 -1 +uk -uk

1 1 1 1 -1 0 +up -up

fcc: slip planes

fcc: slipdirections

SlipSystems

Page 7: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

7

sxin, contd.28 =nvertex 8 1 2 0 0 0 0 2 3 5 6 9 8 11 12 8 33 0 2 0 0 0 1 15 16 18 19 21 10 24 8 65 -2 -2 0 0 0 13 14 4 17 7 20 22 23 6 97 0 0 1 1 1 1 2 17 18 7 9 25 25 6 103 0 0 1 -1 1 1 15 7 20 11 12 25 25………

number of active systems

stress vector

IDs of activeslip systems

8-fold vertex

Page 8: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

8

propin: strain hardening propertiesAl : for Stout's 1100 Al, kond=2 for later batch (ten,com,chd)c 1 = lattice, nmodes. MODEs: 1 - no latent hardening mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ 1 0.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0STRESS LEVEL AND HARDENING LAWS:kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve 1 1.0e-03 300. 25300. 20. 0.005 30. 0.04 1kurve ntaun : DISCRETE HARDENING of TAUref, ntaun value pairs 1 30 taun harn: (taun=(TAUref-TAU0)/tauv, harn=th/th0)

.02 1.00 .04 .96 .08 .92………

1.40 .06 1.60 .05

Mode/deformation systemRate sensitivityRelative hardening rates on each slip system

Page 9: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

9

Hardening parameterskond system number

RATEref strain rate at which properties given

Tref reference temperature

mu[MPa] shear modulus (µ)

tau0[MPa] yield stress (initial critical resolved shear stress)

th0/mu hardening rate over modulus in Stage II

tauv[MPa] Voce stress (saturation, or asymptotic flow stress)

th4/th0 ratio of hardening in Stage IV to that in Stage II

Kurve ID number of discretized hardening rate versus stress curve

Page 10: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

10

texin: initial orientations, grain shape

texran :use any portion (only file when less than tetr.cry.sym.)

Evm F11 F12 F13 F21 F22 F23 F31 F32 F33

0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Kocks:Psi Theta phi weight (up to 6 state params, f8.2) XYZ= 1 2 3

158.61 44.96 -161.52 1.0 1. 1.

176.88 77.35 -171.43 1.0 1. 1.

30.33 72.20 158.06 1.0 1. 1.

-145.33 59.09 -143.55 1.0 1. 1.

130.84 35.92 150.44 1.0 1. 1.

99.57 79.29 10.73 1.0 1. 1.

105.42 22.61 6.19 1.0 1. 1.

Euler anglesWeight

State Parameters

Page 11: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

11

bcin: boundary conditions<ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc

3 3 1 0.02500 0.0 0.0

av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>; epstol

1.000 1.000 0.000 0.000 0.000 0.5

exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99 if ?;sigtol

99.0 99.0 99. 99.0 99.0 0.05

Stress componentsStrain components

Strain increment

Test type

33, 22-11, 223, 231, 21233-(22+11)/2, (22-11)/2, 23, 31, 12

“99” means component can take any value

Page 12: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

12

LApp dialogKRYPTON.MEMS.CMU.EDU> lapp68

(C)opyright 1988, The Regents of the University of California. This software was produced under U. S. Government contract by Los Alamos National Laboratory, which is operated by the University of California for the U. S. Department of Energy. Permission is granted to the public to copy and use this software without charge, provided that this Notice and the above statement of authorship are reproduced on all copies. Neither the Government nor the University makes any warranty, express or implied, or assumes any liability or responsibility for the use of this software. ************************************************************** *** LA-CC-88-6 *** *** Los Alamos Polycrystal Plasticity simulation code *** U.F. Kocks, G.R. Canova, C.N. Tome, A.D. Rollett, S.I. Wright* *** Center for Materials Science *** *** Los Alamos National Laboratory *** *** Los Alamos, New Mexico 87545, USA *** *** Please advise Fred Kocks of any errors you find: *** *** Fax: (1)505-665-2992; Email: [email protected] *** *** GTDA *** **************************************************************

<RETURN>

User responses in red

Page 13: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

13

LApp: 2

LApp Version 6.8, 22 Sep 1995

Needs single crystal deformation modes in SXIN,

kinetics and hardening data in PROPIN,

grain state data in TEXIN: 3 angles;grwt;state pars.

(all must be in prescribed format)

TEXIN file=

texlat.wts from texlat.write [viii 00]

Enter title (8 chars.): Enter a (short!) title

Page 14: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

14

ksys: Deformation System

Enter KSYS: 1 for FCC {111}<110> slip (perhaps w/LH) 2 for BCC restricted glide on 110 3 for BCC pencil glide 4 for FCC card glide Enter a number for the lattice type (fcc vs. bcc) and the restriction

on slip plane (bcc)/ direction (fcc).Typical: use “1” for fcc, and “3” for bcc; at ambient conditions,

fcc metals deform in restricted glide, whereas bcc metals typically deform in pencil glide.

Page 15: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

15

ksol: Solution procedure Enter KSOL: 0 for Bishop-Hill yield stress only, no evolutions 1 for BH guess, then rate-sensitive Newton solution 2 for BH guess on first step only, then recursive 3 for Sachs guess on first step only, then recursive 4 for Sachs guess on every step: (recommended: 1) (need 3 or 4 for Latent Hardening) 1“0” is the classical Taylor model in the “rate-insensitive limit”.“2” and “3” allow for more efficient calculation, based on the (reasonable) assumption

that the previous solution is close to the solution sought in the current step.

Page 16: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

16

exponent: Rate Sensitivity PROPIN: propfe : for Salsgiver's Fe-Si,exper.Stout&Lovato 8/89

mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ Value for max. rate sensitivity exponent <default 33>?

33kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve(or LH) 1 1.0e-03 300. 70000. 150. 0.0045 120. 0.04 1

The exponent controls the rate sensitivity of the single crystal yield surface: the lower the exponent, the more rounded the SXYS. In general, the results are not sensitive to the value of the exponent, unless you use a value less than 10.

Page 17: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

17

kpath: type of test Reenter TTY input <1>, or same as in preceding test <0> ?

(Get to choose nsteps and YS-space anyway)

1 (0 jumps to last question) Enter strain path (KPATH): 1: many steps in one straining direction (need BCIN) 2: 2-D yield surface probe 3: 3-D yield surface probe 4: Lankford Coefficients R(angle) in the 3-plane :

1 (i.e. texture evolution)

Page 18: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

18

hardening law REFERENCE STRESS AND ITS HARDENING LAW: Enter 0 for no hardening, 1 " " " but stress scale (tau0), 2 for linear hardening (stage II: th0), 3 for Voce law (stage III: tauv), 4 for Voce law plus stage IV (th4), 5 for digital hardening according to KURVE: :

1 (answer does not affect texture development, only hardening)

Page 19: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

19

krc, ngrains

Relaxed Constraints when applicable <KRC=1> or Full Constraints <0>?

0 (boundary conditions on grain) ngrains <default = whole file,.le.1152> ?

999 (defaults to max. number of orientations in texin)

On modern computers, the maximum number of grains can be easily extended to >100,000.

Page 20: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

20

anal Complete file ANAL on the first how many <0,9,ngrains>?

0 (use for debugging, checks) mode,systems= 1 12 n , b , nrs : 0.577 0.577 -0.577 0.000 0.707 0.707 33 n , b , nrs : 0.577 0.577 -0.577 0.707 0.000 0.707 33 n , b , nrs : 0.577 0.577 -0.577 0.707 -0.707 0.000 33 n , b , nrs : 0.577 -0.577 -0.577 0.000 0.707 -0.707 33 n , b , nrs : 0.577 -0.577 -0.577 0.707 0.000 0.707 33 n , b , nrs : 0.577 -0.577 -0.577 0.707 0.707 0.000 33 n , b , nrs : 0.577 -0.577 0.577 0.000 0.707 0.707 33 n , b , nrs : 0.577 -0.577 0.577 0.707 0.000 -0.707 33 n , b , nrs : 0.577 -0.577 0.577 0.707 0.707 0.000 33 n , b , nrs : 0.577 0.577 0.577 0.000 0.707 -0.707 33 n , b , nrs : 0.577 0.577 0.577 0.707 0.000 -0.707 33 n , b , nrs : 0.577 0.577 0.577 0.707 -0.707 0.000 33

Page 21: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

21

bcin - echo input input boundary conditions BCIN:

c <ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc

c 3 3 1 0.0250 0 0.000

c av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>; epstol

c -1.000 -1.000 0.000 0.000 0.000 0.50

c exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99 if ?; sigtol

c 99.000 99.000 99.000 99.000 99.000 0.05

Page 22: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

22

nsteps

How many steps? -- Write every ? steps :

40,40

Thank you, now relax that I take care

For a step size of 2.5%, 40 steps required per unit strain; if the print interval is less, texout will have multiple sets of grains.

Page 23: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

23

subroutines subroutine graxes(mupt,vfrc,irc1,irc2,rcacc)

subroutine maxwork(icase,tayfac,ng,sirc1,sirc2)

subroutine sss(nsys,ksys,smax,niter,evmstep)

subroutine newton(niter,ksys,nsys)

subroutine simq(aa,bb,n,ks)

subroutine sigbc(sdirav,sigtol,itsbc)

subroutine harden(rlhm,khar,iref,ntaun,klh,namodes,emu)

Page 24: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

24

subroutines, contd.subroutine latent2(h,hq)subroutine update(eps,iline,iplane)subroutine twinor(ktw,ng,nomen,dbca)subroutine orient(iline,iplane)subroutine vecpro(k)subroutine euler(iopt,nomen,d1,d2,d3,ior,kerr)

subroutine vectra(q,d)subroutine vec5ten

Page 25: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

25

output; kpath=1 test LApp68 14-Apr-01

c texlat.wts from texlat.write [viii 00]

Evm F11 F12 F13 F21 F22 F23 F31 F32 F33 nstate

0.000 50.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.020 2

c krc, ksys, klh, ksol,nrslim, khar,ngrains, iper,lsym, vfRC

c 0 1 0 1 33 1 999 1 2 3 0 0.00

****************************************************************

Evm= 0.000 M= 2.55 Svm= 394. vfRC=0.00 itSbc= 0 Niter= 9 0.41 1.02=max(dev&bimod

Evm= 0.025 M= 2.54 Svm= 392. vfRC=0.00 itSbc= 0 Niter= 9 0.43 1.02=max(dev&bimod

Evm= 0.050 M= 2.53 Svm= 391. vfRC=0.00 itSbc= 0 Niter= 8 0.44 1.02=max(dev&bimod

Strain, Taylor factor, von Mises equivalent stress, vol frac in RCiterations in sigbc, <iters.in sss>, standard deviation in stress

Page 26: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

26

output files

• texout similar to texin; contains list of orientations corresponding to texin, rotated by accumulated slip.

• anal details on a few grains

• hist history of stress and strain used/calculated in each step

Page 27: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

27

hist: “history”c Result of SSS( 9 newton iters.avg.) :c av strain dir -0.866 -0.500 0.000 0.000 0.000c av strain dev 0.002 0.000 0.000 0.000 0.000c av stress dir -0.821 -0.522 -0.226 0.053 -0.016c av stress dev 0.281 0.412 0.293 0.415 0.230 avg:

0.326c 4th momentnor 0.966 1.024 0.876 0.914 0.949c av CA deviatoric stress -0.297 0.039 -0.314 -0.171 -0.884c av CA stress(ii) (SSS+mean) 0.094 0.149 -0.243c F 50.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.020c Evm SIGvm TAYav TAYrs GAMav Savdev vfRC a#sas #pl LHR<=0.000 393.6 2.55 2.40 0.00 0.33 0.00 4.59 3.05 1.00c Evm nreor atwfr etwfr mode-repartition: n(+ -)$0.000 0 0.00 0.00 0.43 0.57

Page 28: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

28

texout: final orientationstest texout LApp68 14-Apr-01c texlat.wts from texlat.write [viii 00] c <ten;com;rol;tor>,iplane,iline,evmstep,updt(g.a.),RCacc c 3 3 1 0.0250 0 0.000c av.strain dir.<33; (22-11); 2*23; 2*31; 2*12>; epstol c -1.000 -1.000 0.000 0.000 0.000 0.50c exp'd stress dir.<33-(11+22)/2;(22-11)/2;23;31;12>,99 if ?; sigtol c 99.000 99.000 99.000 99.000 99.000 0.05c propfe : for Salsgiver's Fe-Si,exper.Stout&Lovato 8/89 c mode rs tau+ tau- h(m,1) h(m,2) h(m,3)........ c 1 0.02 1.00 1.00 1.00c kond RATEref Tref mu[MPa] tau0[MPa] th0/mu tauv[MPa] th4/th0 kurve(or LH) c 1 0.1E-02 300. 70000. 150.c krc, ksys, klh, ksol,nrslim, khar,ngrains, iper,lsym, vfRCc 0 1 0 1 33 1 999 1 2 3 0 0.00 Evm F11 F12 F13 F21 F22 F23 F31 F32 F33 nstate 1.000117.778 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.008 2Bunge:phi1 PHI phi2 ,,gr.wt., tau, taus;taumodes/tau; XYZ=1 2 3 0.00 70.00 0.00 1.00 150.00 0.00 1.07 70.00 1.07 1.00 150.00 0.00 2.21 70.00 2.21 1.00 150.00 0.00

Re-statement of the input in bcin

Page 29: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

29

Output of LApp

• Figure shows pole figures for a simulation of the development of rolling texture in an fcc metal.

• Top = 0.25 von Mises equivalent strain; 0.50, 0.75, 1.50 (bottom).

• Note the increasing texture strength as the strain level increases.

Increasing strain

Graphics: wts2pop, then pf2ps

Page 30: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

30

r-value calculation

• The next sequence gives an example of how to use LApp to calculate r-values based on a given texture (no evolution).

Page 31: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

31

kpath = 4 (r-values) Angle increment (degrees <15>) ?

15 (controls direction resolution) to what frac.accuracy of stress should I iterate?<0.01>

.02 (0.01= minimum practical value) What value of RCACC? (use 0 if in doubt) :

0 (trick for exaggerating relaxed constraints effect)

Page 32: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

32

kpath = 4, contd.

Enforce sample symmetry for property calculations?

0: no 1, 2, or 3: diad on that axis (use 2 or 3 with TEXREG)

4: orthotropy LSYM=

0 (can add sample symmetry)

Page 33: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

33

output (kpath = 4)ang.fr.X1; r ; q ; shears(tension coords); tayfav;max(sdev&bimod); itsbc

0.000 0.727 0.421 0.395 -0.037 0.044 2.280 0.372 0.962 7

15.000 0.480 0.324 0.268 -0.129 0.111 2.440 0.362 1.002 10

30.000 0.299 0.230 0.045 -0.106 0.127 2.638 0.319 1.058 5

45.000 0.233 0.189 -0.250 -0.085 0.050 2.658 0.312 0.953 13

60.000 0.861 0.463 -0.322 -0.004 -0.068 2.712 0.332 0.973 5

75.000 2.109 0.678 -0.183 0.082 -0.045 2.693 0.385 1.003 6

90.000 2.811 0.738 0.094 0.102 0.003 2.664 0.372 1.017 4

****************************************************************

r-bar, as calculated from an average of all q=-D22/D11 is 0.696

q = r/(1+r)this output is also recorded in lapp.dat

Page 34: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

34

R-value,q plotted (kpath = 4)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80

Lankford.example.data

Rq

Lankford coeff. (R), q

angle

Input texture contained high fraction of Goss, giving rise to maximum in r-value at 90° to the rolling direction

Page 35: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

35

Yield Surface calculation

• The next sequence of slides shows how to calculate the locus of points on a yield surface.

Page 36: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

36

kpath = 2 (2D yield surface)

Enter strain path (KPATH):

1: many steps in one straining direction (need BCIN)

2: 2-D yield surface probe

3: 3-D yield surface probe

4: Lankford Coefficients R(angle) in the 3-plane :

2

Page 37: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

37

kpath = 2, contd. Relaxed Constraints when applicable <KRC=1> or Full Constraints <0>?

0 ngrains <default = whole file,.le.1152> ?

999 Complete file ANAL on the first how many <0,9,ngrains>?

0

Page 38: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

38

kpath = 2, contd. YS projection (0) or YS section (enter SIGTOL) ?

0 (typical to assume proj.)* you want tayfac <0> or stress [MPa] <1> ?

0 (stress proportional to <M>) Rate dep.on stresses only (0) or also on facets (1) ?

0 (allows contrast of Bishop-Hill soln. with RS solution)

* In order to obtain a result for which the only non-zero stress components (as opposed to strain components) are the two in the plane of interest (see later pages for this selection), choose “section” instead of “projection”.

Page 39: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

39

kpath = 2, contd. Angle increment in strain-rate space (>2 degrees:<5>)?

* Enter negative values if you want to scan +/- range *

15 (this is coarse: choose 2 for high resolution) Select one of the indices 0 for Cauchy(22) vs (11), with (33)=0 1 for pi plane -- 2 for S22-S11 vs Sij 3 for S11-S33 vs Sij -- 4 for S22-S33 vs Sij 5 for S11 vs Sij -- 6 for S22 vs Sij 7 for Sij vs S33 -- 8 for Sij vs Skl : 0 (as in most textbooks)

Page 40: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

40

kpath = 2, contd. Enforce sample symmetry for property calculations?

0: no 1, 2, or 3: diad on that axis (use 2 or 3 with TEXREG)

4: orthotropy LSYM=

0 (again, can compensate for a texture lacking the desired sample symmetry)

Page 41: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

41

lapp.datKRYPTON.MEMS.CMU.EDU> more lapp.dat

xs ys -xs -ys active_sys 2 3 4 5 6 7 8 9

0.93894 -4.58022 -0.93894 4.58022 1 2 3 4 5 6 7 8 9 10 11 12

0.68739 -2.21556 -0.68739 2.21556 1 2 3 4 5 6 7 8 9 10 11 12

1.12168 -2.00816 -1.12168 2.00816 1 2 3 4 5 6 7 8 9 10 11 12

1.62587 -1.66510 -1.62587 1.66510 1 2 3 4 5 6 7 8 9 10 11 12

1.80145 -1.44043 -1.80145 1.44043 1 2 3 4 5 6 7 8 9 10 11 12

stress components, + & -; active slip systems

To plot the complete yield surface, plot both ys versus xs, and -xs versus -ys (see example a few slides on from this one).

Page 42: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

42

hist (kpath = 2)

KRYPTON.MEMS.CMU.EDU> more hist

nosort

c ys HIST LApp68 14-Apr-01

c #dirs.,perp.; sub-space ;RC comps.;grains;vfRC;ksol;lsym

c 12 0 1 1 2 0 0 999 0.00 2 0

-1.00000 0.00000 0.00000 0.00000 0.00000 2.83891

-4.58022 0.93894 -0.21041 0.01443 -0.19175 4.04711

-0.96593 0.25882 0.00000 0.00000 0.00000 2.92495

-2.21556 0.68739 -0.05986 -0.03260 -0.08404 0.51476

-0.86603 0.50000 0.00000 0.00000 0.00000 2.90462

-2.00816 1.12168 -0.05832 -0.06920 -0.06329 0.60977

(5) strain components; Taylor factor

(5) stress components; standard deviation

Output contains pairs of lines:

Page 43: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

43

Yield Surface example (kpath=2)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

yield.surf.example.data

ys-ys

ys

xs

Page 44: LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09 Anisotropy part 2: Using LApp- Los Alamos polycrystal plasticity 27-750, Fall 2009 Texture,

LApp demo, A.D.Rollett, Carnegie Mellon U., 05, updated Sep 09

44

Summary• The interface to the LApp code has been described

with examples of problems that can be computed.• LApp is essentially a polycrystal plasticity code for

solving the Taylor/Bishop-Hill model.• LApp can be used to compute the anisotropic

(plastic) properties of textured polycrystals, e.g. yield surfaces, r-values.

• Other codes are required for different approaches to plastic deformation, e.g. self-consistent models, finite element models (incorporating crystal plasticity as a constitutive model).