laplace transforms1

Upload: nileshsaw

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Laplace Transforms1

    1/110

    LAPLACE TRANSFORMS

    INTRODUCTION

  • 7/29/2019 Laplace Transforms1

    2/110

    Definition Transforms -- a mathematical conversion

    from one way of thinking to another tomake a problem easier to solve

    transformsolution

    in transformway ofthinking

    inversetransform

    solutionin original

    way ofthinking

    problemin original

    way ofthinking

    2. Transforms

  • 7/29/2019 Laplace Transforms1

    3/110

    Laplacetransform

    solutionin

    s domain

    inverseLaplace

    transform

    solutionin timedomain

    problemin timedomain

    Other transforms Fourier z-transform wavelets

    2. Transforms

  • 7/29/2019 Laplace Transforms1

    4/110

    Laplace transformation

    linear

    differentialequation

    time

    domainsolution

    Laplace

    transformedequation

    Laplace

    solution

    time domain

    Laplace domain orcomplex frequency domain

    algebra

    Laplace transform

    inverse Laplacetransform

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    5/110

    Basic Tool For Continuous Time:

    Laplace Transform

    Convert time-domain functions and operations into

    frequency-domain

    f(t) F(s) (tR, sC

    Linear differential equations (LDE) algebraic expressionin Complex plane

    Graphical solution for key LDE characteristics

    Discrete systems use the analogous z-transform

    0

    )()()]([ dtetfsFtfst

    L

  • 7/29/2019 Laplace Transforms1

    6/110

    The Laplace Transform

    The Laplace Transform of a function, f(t), is defined as;

    0

    )()()]([ dtetfsFtfL st

    The Inverse Laplace Transform is defined by

    j

    j

    tsdsesFj

    tfsFL

    )(

    2

    1)()]([

    1

    *notes

    Eq A

    Eq B

  • 7/29/2019 Laplace Transforms1

    7/110

    The Laplace Transform

    We generally do not use Eq B to take the inverse Laplace. However,

    this is the formal way that one would take the inverse. To use

    Eq B requires a background in the use of complex variables and

    the theory of residues. Fortunately, we can accomplish the same

    goal (that of taking the inverse Laplace) by using partial fraction

    expansionand recognizing transform pairs.

    *notes

  • 7/29/2019 Laplace Transforms1

    8/110

    The Laplace Transform

    Laplace Transform of the unit step.

    *notes

    |00

    11)]([

    stst es

    dtetuL

    s

    tuL1

    )]([

    The Laplace Transform of a unit step is:

    s

    1

  • 7/29/2019 Laplace Transforms1

    9/110

    The Laplace Transform

    The Laplace transform of a unit impulse:

    Pictorially, the unit impulse appears as follows:

    0 t0

    f(t) (t t0)

    Mathematically:

    (t t0) = 0 t 0

    *note

    01)(

    0

    0

    0

    dttt

    t

    t

  • 7/29/2019 Laplace Transforms1

    10/110

    The Laplace Transform

    The Laplace transform of a unit impulse:

    An important property of the unit impulse is a sifting

    or sampling property. The following is an important.

    2

    12010

    2010

    0,0

    )()()(

    t

    tttttttttfdttttf

  • 7/29/2019 Laplace Transforms1

    11/110

    The Laplace Transform

    The Laplace transform of a unit impulse:

    In particular, if we let f(t) = (t) and take the Laplace

    1)()]([0

    0

    sst

    edtettL

  • 7/29/2019 Laplace Transforms1

    12/110

    The Laplace Transform

    An important point to remember:

    )()( sFtf

    The above is a statement that f(t) and F(s) are

    transform pairs. What this means is that for

    each f(t) there is a unique F(s) and for each F(s)

    there is a unique f(t). If we can remember the

    Pair relationships between approximately 10 of the

    Laplace transform pairs we can go a long way.

  • 7/29/2019 Laplace Transforms1

    13/110

    The Laplace Transform

    Building transform pairs:

    eL(

    e

    tasstatat dtedteetueL0

    )(

    0

    )]([

    asas

    etueL

    stat

    1

    )(

    )]([ |0

    as

    tue at

    1)(A transform

    pair

  • 7/29/2019 Laplace Transforms1

    14/110

    The Laplace Transform

    Building transform pairs:

    0

    )]([ dttettuL st

    0 00

    | vduuvudvu = t

    dv = e-

    stdt

    2

    1)(

    s

    ttu A transform

    pair

  • 7/29/2019 Laplace Transforms1

    15/110

    The Laplace Transform

    Building transform pairs:

    22

    0

    11

    2

    1

    2

    )()][cos(

    ws

    s

    jwsjws

    dteee

    wtL stjwtjwt

    22)()cos(

    ws

    stuwt

    A transformpair

  • 7/29/2019 Laplace Transforms1

    16/110

    The Laplace Transform

    Time Shift

    0 0

    )()()(

    ,.,0,

    ,

    )()]()([

    dxexfedxexf

    SoxtasandxatAsaxtanddtdxthenatxLet

    eatfatuatfL

    sxasaxs

    a

    st

    )()]()([ sFeatuatfL as

  • 7/29/2019 Laplace Transforms1

    17/110

    The Laplace Transform

    Frequency Shift

    0

    )(

    0

    )()(

    )]([)]([

    asFdtetf

    dtetfetfeL

    tas

    statat

    )()]([ asFtfeL at

  • 7/29/2019 Laplace Transforms1

    18/110

    The Laplace Transform

    Example: Using Frequency Shift

    Find the L[e-atcos(wt)]

    In this case, f(t) = cos(wt)

    so,

    22

    22

    )(

    )(

    )(

    )(

    was

    as

    asFand

    ws

    ssF

    22)()(

    )()]cos([

    was

    aswteL at

  • 7/29/2019 Laplace Transforms1

    19/110

    The Laplace Transform

    Time Integration:

    The property is:

    stst

    t

    st

    t

    e

    s

    vdtedv

    and

    dttfdudxxfuLet

    partsbyIntegrate

    dtedxxfdttfL

    1,

    )(,)(

    :

    )()(

    0

    0 00

  • 7/29/2019 Laplace Transforms1

    20/110

    The Laplace Transform

    Time Integration:

    Making these substitutions and carrying out

    The integration shows that

    )(1

    )(1

    )(

    00

    sFs

    dtetfs

    dttfL st

  • 7/29/2019 Laplace Transforms1

    21/110

    The Laplace Transform

    Time Differentiation:

    If the L[f(t)] = F(s), we want to show:

    )0()(]

    )(

    [ fssFdt

    tdf

    L

    Integrate by parts:

    )(),()(

    ,

    tfvsotdfdt

    dt

    tdfdv

    anddtsedueu stst

    *note

  • 7/29/2019 Laplace Transforms1

    22/110

    The Laplace Transform

    Time Differentiation:

    Making the previous substitutions gives,

    0

    00

    )()0(0

    )()( |

    dtetfsf

    dtsetfetfdt

    df

    L

    st

    stst

    So we have shown:

    )0()()(

    fssF

    dt

    tdfL

  • 7/29/2019 Laplace Transforms1

    23/110

    The Laplace Transform

    Time Differentiation:

    We can extend the previous to show;

    )0(...

    )0(')0()()(

    )0('')0(')0()()(

    )0(')0()()(

    )1(

    21

    23

    3

    3

    2

    2

    2

    n

    nnn

    n

    n

    f

    fsfssFsdt

    tdfL

    casegeneral

    fsffssFsdt

    tdfL

    fsfsFs

    dt

    tdfL

  • 7/29/2019 Laplace Transforms1

    24/110

    The Laplace Transform

    Transform Pairs:

    ____________________________________)()( sFtf

    f(t)

    F(s)

    1

    2

    !

    1

    1

    1

    )(

    1)(

    n

    n

    st

    s

    nt

    s

    t

    as

    e

    stu

    t

  • 7/29/2019 Laplace Transforms1

    25/110

    The Laplace Transform

    Transform Pairs:

    f(t)

    F(s)

    22

    22

    1

    2

    )cos(

    )sin(

    )(

    !

    1

    ws

    swt

    ws

    wwt

    as

    net

    aste

    n

    atn

    at

  • 7/29/2019 Laplace Transforms1

    26/110

    The Laplace Transform

    Transform Pairs:

    f(t)

    F(s)

    22

    22

    22

    22

    sincos)cos(

    cossin

    )sin(

    )()cos(

    )()sin(

    ws

    wswt

    ws

    ws

    wt

    was

    aswte

    was

    wwte

    at

    at

    Yes !

  • 7/29/2019 Laplace Transforms1

    27/110

    The Laplace Transform

    Common Transform Properties:

    f(t) F(s)

    )(1

    )(

    )()(

    )0(...)0(')0()()(

    )()(

    )([0),()(

    )(0),()(

    0

    1021

    00

    000

    sFs

    df

    ds

    sdFttf

    ffsfsfssFsdt

    tfd

    asFtfe

    ttfLetttutf

    sFetttuttf

    t

    nnnn

    n

    n

    at

    sot

    sot

  • 7/29/2019 Laplace Transforms1

    28/110

    The Laplace Transform

    Using Matlab with Laplace transform:

    Example Use Matlab to find the transform of tte 4

    The following is written in italic to indicate Matlab code

    syms t,s

    laplace(t*exp(-4*t),t,s)

    ans =

    1/(s+4)^2

  • 7/29/2019 Laplace Transforms1

    29/110

    The Laplace Transform

    Using Matlab with Laplace transform:

    Example Use Matlab to find the inverse transform of

    19.12.)186)(3(

    )6()(

    2prob

    sss

    sssF

    syms s t

    ilaplace(s*(s+6)/((s+3)*(s^2+6*s+18)))

    ans =

    -exp(-3*t)+2*exp(-3*t)*cos(3*t)

  • 7/29/2019 Laplace Transforms1

    30/110

    The Laplace TransformTheorem: Initial Value

    If the function f(t) and its first derivative are Laplace transformable and f(t)

    Has the Laplace transform F(s), and the exists, then)(lim ssF

    0

    )0()(lim)(lim

    tsftfssF

    The utility of this theorem lies in not having to take the inverse of F(s)in order to find out the initial condition in the time domain. This is

    particularly useful in circuits and systems.

    Theorem:

    s

    Initial ValueTheorem

    Th L l T f

  • 7/29/2019 Laplace Transforms1

    31/110

    The Laplace Transform

    Initial Value Theorem:Example:

    Given;

    225)1(

    )2()(

    s

    ssF

    Find f(0)

    1)26(2

    2lim

    2512

    2lim

    5)1(

    )2(lim)(lim)0(

    2222

    222

    2

    2

    22

    sssss

    ssss

    ss

    ss

    s

    ssssFf ss s

    s

    Th L l T f

  • 7/29/2019 Laplace Transforms1

    32/110

    The Laplace Transform

    Theorem: Final Value Theorem:

    If the function f(t) and its first derivative are Laplace transformable and f(t)

    has the Laplace transform F(s), and the exists, then)(lim ssFs

    )()(lim)(lim ftfssF0s t

    Again, the utility of this theorem lies in not having to take the inverseof F(s) in order to find out the final value of f(t) in the time domain.

    This is particularly useful in circuits and systems.

    Final Value

    Theorem

    Th L l T f

  • 7/29/2019 Laplace Transforms1

    33/110

    The Laplace Transform

    Final Value Theorem:Example:

    Given:

    ttesFnotesssF t 3cos)(3)2( 3)2()( 2122 22 Find )(f .

    03)2( 3)2(lim)(lim)( 22 22 sssssFf 0s0s

  • 7/29/2019 Laplace Transforms1

    34/110

  • 7/29/2019 Laplace Transforms1

    35/110

    The Complex Plane (review)

    Imaginary axis (j)

    Real axis

    jyxu

    x

    y

    r

    r

    jyxu

    (complex) conjugate

    y

    22

    1

    ||||

    tan

    yxuru

    x

    yu

  • 7/29/2019 Laplace Transforms1

    36/110

    Laplace Transforms of Common

    Functions

    Name f(t) F(s)

    Impulse

    Step

    Ramp

    Exponential

    Sine

    1

    s

    1

    2

    1

    s

    as

    1

    22

    1

    s

    1)( tf

    ttf )(

    atetf )(

    )sin()( ttf

    00

    01)(

    t

    ttf

  • 7/29/2019 Laplace Transforms1

    37/110

    Laplace Transform Properties

    )(lim)(lim

    )(lim)0(

    )()()

    )(1)(

    )(

    )0()()(

    )()()]()([

    0

    0

    2121

    0

    2121

    ssFtf-

    ssFf-

    sFsFd()f(tf

    dttfss

    sFdttfL

    fssFtf

    dt

    dL

    sbFsaFtbftafL

    st

    s

    t

    t

    theoremvalueFinal

    theoremvalueInitial

    nConvolutio

    nIntegratio

    ationDifferenti

    calingAddition/S

  • 7/29/2019 Laplace Transforms1

    38/110

    LAPLACE TRANSFORMS

    SIMPLE TRANSFORMATIONS

    Tr f r (1 f 11)

  • 7/29/2019 Laplace Transforms1

    39/110

    Transforms (1 of 11)

    Impulse -- (to)

    F(s) =

    0

    e-st (to) dt

    = e-sto

    f(t)

    t

    (to)

    4. Laplace transforms

    Tr nsf rms (2 f 11)

  • 7/29/2019 Laplace Transforms1

    40/110

    Transforms (2 of 11)

    Step -- u (to)

    F(s) =

    0

    e-st u (to) dt

    = e-sto/sf(t)

    t

    u (to)1

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    41/110

    Transforms (3 of 11) e-at

    F(s) =

    0

    e-st e-at dt

    = 1/(s+a)

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    42/110

    Transforms (4 of 11)f1(t) f2(t)

    a f(t)

    eat f(t)

    f(t - T)

    f(t/a)

    F1(s) F2(s)

    a F(s)

    F(s-a)

    eTs F(as)

    a F(as)

    Linearity

    Constant multiplication

    Complex shift

    Real shift

    Scaling

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    43/110

    Transforms (5 of 11) Most mathematical handbooks have tables

    of Laplace transforms

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    44/110

    LAPLACE TRANSFORMS

    PARTIAL FRACTION EXPANSION

  • 7/29/2019 Laplace Transforms1

    45/110

    Definition

    Definition -- Partial fractions are several

    fractions whose sum equals a given fraction

    Purpose -- Working with transforms requires

    breaking complex fractions into simpler

    fractions to allow use of tables of transforms

  • 7/29/2019 Laplace Transforms1

    46/110

    Partial Fraction Expansions

    32)3()2(

    1

    s

    B

    s

    A

    ss

    s Expand into a term for

    each factor in the

    denominator.

    Recombine RHS

    Equate terms in s and

    constant terms. Solve.

    Each term is in a form sothat inverse Laplace

    transforms can be

    applied.

    )3()2(

    2)3(

    )3()2(

    1

    ss

    sBsA

    ss

    s

    3

    2

    2

    1

    )3()2(

    1

    ssss

    s

    1BA 123 BA

  • 7/29/2019 Laplace Transforms1

    47/110

    Example of Solution of an ODE

    0)0(')0(2862

    2

    yyydt

    dy

    dt

    yd ODE w/initial conditions

    Apply Laplace transform

    to each term Solve for Y(s)

    Apply partial fraction

    expansion

    Apply inverse Laplace

    transform to each term

    ssYsYssYs /2)(8)(6)(2

    )4()2(

    2)(

    ssssY

    )4(4

    1

    )2(2

    1

    4

    1

    )(

    ssssY

    424

    1)(

    42 tt eety

  • 7/29/2019 Laplace Transforms1

    48/110

    Different terms of 1st degree

    To separate a fraction into partial fractions

    when its denominator can be divided intodifferent terms of first degree, assume an

    unknown numerator for each fraction

    Example -- (11x-1)/(X2 - 1) = A/(x+1) + B/(x-1)

    = [A(x-1) +B(x+1)]/[(x+1)(x-1))]

    A+B=11 -A+B=-1

    A=6, B=5

    Repeated terms of 1st degree (1 of 2)

  • 7/29/2019 Laplace Transforms1

    49/110

    Repeated terms of 1st degree (1 of 2)

    When the factors of the denominator are of

    the first degree but some are repeated,assume unknown numerators for each

    factor

    If a term is present twice, make the fractions

    the corresponding term and its second power

    If a term is present three times, make the

    fractions the term and its second and third

    powers

    3. Partial fractions

    Repeated terms of 1st degree (2 of 2)

  • 7/29/2019 Laplace Transforms1

    50/110

    Repeated terms of 1st degree (2 of 2)

    Example --

    (x2+3x+4)/(x+1)3=A/(x+1) + B/(x+1)2 +C/(x+1)3

    x2+3x+4 = A(x+1)2 + B(x+1) + C

    = Ax2 + (2A+B)x + (A+B+C)

    A=1

    2A+B = 3

    A+B+C = 4

    A=1, B=1, C=2

    3. Partial fractions

  • 7/29/2019 Laplace Transforms1

    51/110

    Different quadratic terms When there is a quadratic term, assume a

    numerator of the form Ax + B Example --

    1/[(x+1) (x2 + x + 2)] = A/(x+1) + (Bx +C)/ (x2 +

    x + 2)

    1 = A (x2 + x + 2) + Bx(x+1) + C(x+1)

    1 = (A+B) x2 + (A+B+C)x +(2A+C)

    A+B=0

    A+B+C=0 2A+C=1

    A=0.5, B=-0.5, C=0

    3. Partial fractions

  • 7/29/2019 Laplace Transforms1

    52/110

    Repeated quadratic terms Example --

    1/[(x+1) (x2

    + x + 2)2

    ] = A/(x+1) + (Bx +C)/ (x2

    + x + 2) + (Dx +E)/ (x2 + x + 2)2

    1 = A(x2 + x + 2)2 + Bx(x+1) (x2 + x + 2) +

    C(x+1) (x2 + x + 2) + Dx(x+1) + E(x+1)

    A+B=0 2A+2B+C=0

    5A+3B+2C+D=0

    4A+2B+3C+D+E=0

    4A+2C+E=1

    A=0.25, B=-0.25, C=0, D=-0.5, E=0

    3. Partial fractions

    A l I i i l d Fi l V l

  • 7/29/2019 Laplace Transforms1

    53/110

    Apply Initial- and Final-ValueTheorems to this Example

    Laplace

    transform of the

    function.

    Apply final-value

    theorem

    Apply initial-

    value theorem

    )4()2(

    2)(

    ssssY

    4

    1

    )40()20()0(

    )0(2)(lim

    tft

    0)4()2()(

    )(2)(lim 0

    tft

  • 7/29/2019 Laplace Transforms1

    54/110

    LAPLACE TRANSFORMS

    SOLUTION PROCESS

  • 7/29/2019 Laplace Transforms1

    55/110

    Solution process (1 of 8)

    Any nonhomogeneous linear differentialequation with constant coefficients can be

    solved with the following procedure, which

    reduces the solution to algebra

    4. Laplace transforms

  • 7/29/2019 Laplace Transforms1

    56/110

    Solution process (2 of 8)

    Step 1: Put differential equation into

    standard form

    D2 y + 2D y + 2y = cos t

    y(0) = 1

    D y(0) = 0

    l f

  • 7/29/2019 Laplace Transforms1

    57/110

    Solution process (3 of 8)

    Step 2: Take the Laplace transform of both

    sides

    L{D2 y} + L{2D y} + L{2y} = L{cos t}

    S l i (4 f 8)

  • 7/29/2019 Laplace Transforms1

    58/110

    Solution process (4 of 8)

    Step 3: Use table of transforms to expressequation in s-domain

    L{D2 y} + L{2D y} + L{2y} = L{cos t}

    L{D2

    y} = s2

    Y(s) - sy(0) - D y(0) L{2D y} = 2[ s Y(s) - y(0)]

    L{2y} = 2 Y(s)

    L{cos t} = s/(s2 + 1)

    s2 Y(s) - s + 2s Y(s) - 2 + 2 Y(s) = s /(s2 + 1)

    S l i (5 f 8)

  • 7/29/2019 Laplace Transforms1

    59/110

    Solution process (5 of 8)

    Step 4: Solve for Y(s) s2 Y(s) - s + 2s Y(s) - 2 + 2 Y(s) = s/(s2 + 1)

    (s2 + 2s + 2) Y(s) = s/(s2 + 1) + s + 2

    Y(s) = [s/(s2 + 1) + s + 2]/ (s2 + 2s + 2)

    = (s3 + 2 s2 + 2s + 2)/[(s2 + 1) (s2 + 2s + 2)]

    S l i (6 f 8)

  • 7/29/2019 Laplace Transforms1

    60/110

    Solution process (6 of 8)

    Step 5: Expand equation into format covered by

    table Y(s) = (s3 + 2 s2 + 2s + 2)/[(s2 + 1) (s2 + 2s + 2)]

    = (As + B)/ (s2 + 1) + (Cs + E)/ (s2 + 2s + 2)

    (A+C)s3

    + (2A + B + E) s2

    + (2A + 2B + C)s + (2B+E)

    1 = A + C

    2 = 2A + B + E

    2 = 2A + 2B + C

    2 = 2B + E

    A = 0.2, B = 0.4, C = 0.8, E = 1.2

    S l i (7 f 8)

  • 7/29/2019 Laplace Transforms1

    61/110

    Solution process (7 of 8)

    (0.2s + 0.4)/ (s2 + 1)

    = 0.2 s/ (s2 + 1) + 0.4 / (s2 + 1)

    (0.8s + 1.2)/ (s2 + 2s + 2)

    = 0.8 (s+1)/[(s+1)2

    + 1] + 0.4/ [(s+1)2

    + 1]

    S l i (8 f 8)

  • 7/29/2019 Laplace Transforms1

    62/110

    Solution process (8 of 8)

    Step 6: Use table to convert s-domain to

    time domain

    0.2 s/ (s2 + 1) becomes 0.2 cos t

    0.4 / (s2 + 1) becomes 0.4 sin t

    0.8 (s+1)/[(s+1)2 + 1] becomes 0.8 e-t cos t

    0.4/ [(s+1)2 + 1] becomes 0.4 e-t sin t

    y(t) = 0.2 cos t + 0.4 sin t + 0.8 e-t cos t + 0.4

    e

    -t

    sin t

  • 7/29/2019 Laplace Transforms1

    63/110

    LAPLACE TRANSFORMS

    TRANSFER FUNCTIONS

    I d i

  • 7/29/2019 Laplace Transforms1

    64/110

    Introduction Definition -- a transfer function is an

    expression that relates the output to theinput in the s-domain

    differential

    equation

    r(t) y(t)

    transferfunction

    r(s) y(s)

    5. Transfer functions

    T f F i

  • 7/29/2019 Laplace Transforms1

    65/110

    Transfer Function

    Definition H(s) = Y(s) / X(s)

    Relates the output of a linear system (or

    component) to its input Describes how a linear system responds to

    an impulse

    All linear operations allowed Scaling, addition, multiplication

    H(s)X(s) Y(s)

    Bl k Di

  • 7/29/2019 Laplace Transforms1

    66/110

    Block Diagrams

    Pictorially expresses flows and relationshipsbetween elements in system

    Blocks may recursively be systems

    Rules Cascaded (non-loading) elements: convolution

    Summation and difference elements

    Can simplify

    T i l bl k di

  • 7/29/2019 Laplace Transforms1

    67/110

    Typical block diagram

    controlGc(s)

    plantGp(s)

    feedbackH(s)

    pre-filterG1(s)

    post-filterG2(s)

    reference input, R(s)error, E(s)

    plant inputs, U(s)output, Y(s)

    feedback, H(s)Y(s)

    5. Transfer functions

    E l

  • 7/29/2019 Laplace Transforms1

    68/110

    Example

    v(t)

    R

    C

    L

    v(t) = R I(t) + 1/C I(t) dt + L di(t)/dt

    V(s) = [R I(s) + 1/(C s) I(s) + s L I(s)]

    Note: Ignore initial conditions5. Transfer functions

    Block diagram and transfer function

  • 7/29/2019 Laplace Transforms1

    69/110

    g

    V(s)

    = (R + 1/(C s) + s L ) I(s) = (C L s2 + C R s + 1 )/(C s) I(s)

    I(s)/V(s) = C s / (C L s2 + C R s + 1 )

    C s / (C L s2 + C R s + 1 )

    V(s) I(s)

    5. Transfer functions

    Bl k di d ti l

  • 7/29/2019 Laplace Transforms1

    70/110

    Block diagram reduction rules

    G1

    G2

    G1

    G2

    U Y U Y

    G1

    G2

    U Y+

    + G1 + G2U Y

    G1

    G2

    U Y+

    - G1 /(1+G1 G2)U Y

    Series

    Parallel

    Feedback

    5. Transfer functions

    R ti l L pl Tr f r

  • 7/29/2019 Laplace Transforms1

    71/110

    Rational Laplace Transforms

    m

    sFsAs

    sFsBs

    bsbsbsB

    asasasA

    sBsAsF

    mm

    n

    n

    poles#systemofOrder

    complexarezeroesandPoles

    (So,:Zeroes

    (So,:Poles

    )0*)(0*)(*

    )*)(0*)(*

    ...)(

    ...)(

    )()()(

    01

    01

    First Ord r S st m

  • 7/29/2019 Laplace Transforms1

    72/110

    First Order System

    Reference

    )(sY

    )(sR

    S)(sE

    1)(sB

    )(sU

    sT1

    1K

    sT

    K

    sTK

    K

    sR

    sY

    11)(

    )(

    First Order S stem

  • 7/29/2019 Laplace Transforms1

    73/110

    First Order System

    Impulseresponse

    Exponential

    Step response Step,exponential

    Ramp response Ramp, step,

    exponential

    1 sT

    K

    /1

    2 Ts

    KT-

    s

    KT-

    s

    K

    /1

    Ts

    K-

    s

    K

    No oscillations (as seen by poles)

    Second Order System

  • 7/29/2019 Laplace Transforms1

    74/110

    Second Order System

    :frequencynaturalUndamped

    where:ratioDamping

    (ie,partimaginaryzero-nonhavepolesifOscillates

    :responseImpulse

    JK

    JKBB

    B

    JKB

    ssKBsJs

    K

    sR

    sY

    N

    c

    c

    NN

    N

    2

    )04

    2)(

    )(

    2

    22

    2

    2

    Second Order System: Parameters

  • 7/29/2019 Laplace Transforms1

    75/110

    Second Order System: Parameters

    noscillatiotheoffrequencythegives

    frequencynaturalundampedoftionInterpreta

    0)Im0,(ReOverdamped1

    Im)(RedUnderdampe

    0)Im0,(RenoscillatioUndamped

    ratiodampingoftionInterpreta

    N

    :

    0:10

    :0

    Transient Response Characteristics

  • 7/29/2019 Laplace Transforms1

    76/110

    Transient Response Characteristics

    statesteadyof%specifiedwithinstaystimeSettling:

    reachedisvaluepeakwhichatTime:

    valuestatesteadyreachfirstuntildelaytimeRise:

    valuestatesteadyof50%reachuntilDelay:

    s

    p

    r

    d

    t

    t

    t

    t

    0.5 1 1.5 2 2.5 3

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    rt

    overshoot maximum p M

    pt stdt

    Transient Response

  • 7/29/2019 Laplace Transforms1

    77/110

    Transient Response

    Estimates the shape of the curve based onthe foregoing points on the x and y axis

    Typically applied to the following inputs

    Impulse Step

    Ramp

    Quadratic (Parabola)

    Effect of pole locations

  • 7/29/2019 Laplace Transforms1

    78/110

    Effect of pole locations

    Faster Decay Faster Blowup

    Oscillations(higher-freq)

    Im(s)

    Re(s)(e-at) (eat)

    Basic Control Actions: u(t)

  • 7/29/2019 Laplace Transforms1

    79/110

    Basic Control Actions: u(t)

    :controlalDifferenti

    :controlIntegral

    :controlalProportion

    sKsE

    sU

    tedt

    d

    Ktu

    s

    K

    sE

    sUdtteKtu

    KsE

    sUteKtu

    dd

    i

    t

    i

    pp

    )(

    )(

    )()(

    )(

    )()()(

    )(

    )()()(

    0

    Effect of Control Actions

  • 7/29/2019 Laplace Transforms1

    80/110

    Effect of Control Actions

    Proportional Action Adjustable gain (amplifier)

    Integral Action Eliminates bias (steady-state error)

    Can cause oscillations

    Derivative Action (rate control) Effective in transient periods

    Provides faster response (higher sensitivity)

    Never used alone

    Basic Controllers

  • 7/29/2019 Laplace Transforms1

    81/110

    Basic Controllers

    Proportional control is often used by itself

    Integral and differential control are typically

    used in combination with at least proportional

    control eg, Proportional Integral (PI) controller:

    sTK

    s

    KK

    sE

    sUsG

    i

    pI

    p

    11

    )(

    )()(

  • 7/29/2019 Laplace Transforms1

    82/110

    Root locus Analysis

  • 7/29/2019 Laplace Transforms1

    83/110

    Root-locus Analysis

    Based on characteristic eqn of closed-loop transferfunction

    Plot location ofroots of this eqn Same as poles of closed-loop transfer function

    Parameter (gain) varied from 0 to Multiple parameters are ok

    Vary one-by-one

    Plot a root contour (usually for 2-3 params)

    Quickly get approximate results Range of parameters that gives desired response

  • 7/29/2019 Laplace Transforms1

    84/110

    LAPLACE TRANSFORMS

    LAPLACE APPLICATIONS

    Initial value

  • 7/29/2019 Laplace Transforms1

    85/110

    Initial value In the initial value of f(t) as t approaches 0

    is given by

    f(0 ) = Lim s F(s)

    s

    f(t) = e -t

    F(s) = 1/(s+1)

    f(0 ) = Lim s /(s+1) = 1

    s

    Example

    6. Laplace applications

    Final value

  • 7/29/2019 Laplace Transforms1

    86/110

    Final value In the final value of f(t) as t approaches

    is given by

    f(0 ) = Lim s F(s)

    s 0

    f(t) = e -t

    F(s) = 1/(s+1)

    f(0 ) = Lim s /(s+1) = 0

    s 0

    Example

    6. Laplace applications

    Apply Initial- and Final-Value

  • 7/29/2019 Laplace Transforms1

    87/110

    Apply Initial and Final ValueTheorems to this Example

    Laplace

    transform of the

    function.

    Apply final-value

    theorem

    Apply initial-

    value theorem

    )4()2(

    2)(

    ssssY

    4

    1

    )40()20()0(

    )0(2)(lim

    tft

    0)4()2()(

    )(2)(lim 0

    tft

    Poles

  • 7/29/2019 Laplace Transforms1

    88/110

    Poles The poles of a Laplace function are the

    values of s that make the Laplace functionevaluate to infinity. They are therefore the

    roots of the denominator polynomial

    10 (s + 2)/[(s + 1)(s + 3)] has a pole at s =

    -1 and a pole at s = -3

    Complex poles always appear in complex-

    conjugate pairs

    The transient response of system is

    determined by the location of poles

    6. Laplace applications

    Zeros

  • 7/29/2019 Laplace Transforms1

    89/110

    Zeros The zeros of a Laplace function are the

    values of s that make the Laplace functionevaluate to zero. They are therefore the

    zeros of the numerator polynomial

    10 (s + 2)/[(s + 1)(s + 3)] has a zero at s =

    -2

    Complex zeros always appear in complex-

    conjugate pairs

    6. Laplace applications

    Stability

  • 7/29/2019 Laplace Transforms1

    90/110

    Stability A system is stable if bounded inputs

    produce bounded outputs The complex s-plane is divided into two

    regions: the stable region, which is the left

    half of the plane, and the unstable region,

    which is the right half of the s-plane

    s-plane

    stable unstable

    x

    x

    xx x

    x

    x

    j

  • 7/29/2019 Laplace Transforms1

    91/110

    LAPLACE TRANSFORMS

    FREQUENCY RESPONSE

    Introduction

  • 7/29/2019 Laplace Transforms1

    92/110

    Introduction Many problems can be thought of in the

    time domain, and solutions can bedeveloped accordingly.

    Other problems are more easily thought of

    in the frequency domain.

    A technique for thinking in the frequency

    domain is to express the system in terms

    of a frequency response

    7. Frequency response

    Definition

  • 7/29/2019 Laplace Transforms1

    93/110

    Definition The response of the system to a sinusoidal

    signal. The output of the system at eachfrequency is the result of driving the system

    with a sinusoid of unit amplitude at that

    frequency.

    The frequency response has both amplitude

    and phase

    7. Frequency response

    Process

  • 7/29/2019 Laplace Transforms1

    94/110

    Process The frequency response is computed by

    replacing s with j in the transfer function

    f(t) = e -t

    F(s) = 1/(s+1)

    Example

    F(j ) = 1/(j +1)

    Magnitude = 1/SQRT(1 + 2)

    Magnitude in dB = 20 log10 (magnitude)

    Phase = argument = ATAN2(- , 1)

    magnitude in dB

    7. Frequency response

    Graphical methods

  • 7/29/2019 Laplace Transforms1

    95/110

    Graphical methods Frequency response is a graphical method

    Polar plot -- difficult to construct Corner plot -- easy to construct

    7. Frequency response

    Constant K

  • 7/29/2019 Laplace Transforms1

    96/110

    Constant K

    +180o+90o

    0o

    -270o-180o

    -90o

    60 dB40 dB

    20 dB0 dB

    -20 dB-40 dB-60 dB

    magnitude

    phase

    0.1 1 10 100, radians/sec

    20 log10 K

    arg K

    7. Frequency response

    Simple pole or zero at origin, 1/ (j)n

  • 7/29/2019 Laplace Transforms1

    97/110

    +180o+90o

    0o

    -270o-180o

    -90o

    60 dB40 dB

    20 dB0 dB

    -20 dB-40 dB

    -60 dB

    magnitude

    phase

    0.1 1 10 100, radians/sec

    1/1/2

    1/3

    1/1/21/3

    G(s) = n2/(s2 + 2ns + n2)

    Simple pole or zero, 1/(1+j)

  • 7/29/2019 Laplace Transforms1

    98/110

    S p e po e o e o, /( j)

    +180o+90o

    0o

    -270o

    -180o-90o

    60 dB40 dB

    20 dB0 dB-20 dB-40 dB-60 dB

    magnitude

    phase

    0.1 1 10 100T

    7. Frequency response

    Error in asymptotic approximation

  • 7/29/2019 Laplace Transforms1

    99/110

    y p pp

    T0.01

    0.1

    0.5

    0.76

    1.0

    1.31

    1.73

    2.0

    5.0

    10.0

    dB

    0

    0.043

    1

    2

    3

    4.3

    6.0

    7.0

    14.2

    20.3

    arg (deg)

    0.5

    5.7

    26.6

    37.4

    45.0

    52.7

    60.0

    63.4

    78.7

    84.3

    7. Frequency response

    Quadratic pole or zero

  • 7/29/2019 Laplace Transforms1

    100/110

    Q p

    +180o+90o

    0o

    -270o-180o

    -90o

    60 dB40 dB

    20 dB0 dB

    -20 dB-40 dB-60 dB

    magnitude

    phase

    0.1 1 10 100T

    7. Frequency response

    Transfer Functions

  • 7/29/2019 Laplace Transforms1

    101/110

    Defined as G(s) = Y(s)/U(s)

    Represents a normalized model of a process,

    i.e., can be used with any input.

    Y(s) and U(s) are both written in deviationvariable form.

    The form of the transfer function indicates the

    dynamic behavior of the process.

    Derivation of a Transfer Function

  • 7/29/2019 Laplace Transforms1

    102/110

    TFFTFTFdtdTM )( 212211 Dynamic model of

    CST thermal

    mixer

    Apply deviation

    variables

    Equation in termsof deviation

    variables.

    0220110 TTTTTTTTT

    TFFTFTFdt

    TdM )( 212211

    Derivation of a Transfer Function

  • 7/29/2019 Laplace Transforms1

    103/110

    21

    1

    1)(

    )()(

    FFsM

    F

    sT

    sTsG

    Apply Laplace transform

    to each term considering

    that only inlet and outlet

    temperatures change. Determine the transfer

    function for the effect of

    inlet temperature

    changes on the outlettemperature.

    Note that the response

    is first order.

    212211 )()()(FFsM

    sTFsTFsT

    Poles of the Transfer Function

  • 7/29/2019 Laplace Transforms1

    104/110

    Indicate the Dynamic Response

    For a, b, c, and d positive constants, transfer

    function indicates exponential decay, oscillatory

    response, and exponential growth, respectively.

    )()()()(

    2 ds

    C

    cbss

    B

    as

    A

    sY

    dtptat eCteBeAty )sin()(

    )()()(

    1)(

    2 dscbssassG

    Poles on a Complex Plane

  • 7/29/2019 Laplace Transforms1

    105/110

    p

    Re

    Im

    Exponential Decay

  • 7/29/2019 Laplace Transforms1

    106/110

    p y

    Re

    Im

    Time

    y

    Damped Sinusoidal

  • 7/29/2019 Laplace Transforms1

    107/110

    p

    Re

    Im

    Time

    y

    Exponentially Growing Sinusoidal

  • 7/29/2019 Laplace Transforms1

    108/110

    p y g

    Behavior (Unstable)

    Re

    Im

    Time

    y

  • 7/29/2019 Laplace Transforms1

    109/110

    Unstable Behavior

  • 7/29/2019 Laplace Transforms1

    110/110

    If the output of a process grows withoutbound for a bounded input, the process is

    referred to a unstable.

    If the real portion of any pole of a transferfunction is positive, the process

    corresponding to the transfer function is

    unstable.

    If any pole is located in the right half plane,

    the process is unstable.