laha asoke kumar 1972 - university of saskatchewan

198
:' -. , .. �: .' .' •••••• •••• ',' :.:. ':. : "'.' .'. .'. '. .'. ", .. : ". : ': : TEdiNtt)UES FOR DESIGNING CONTROLLERS" .. OF A. MULTI-MACHINE .�YSTEM .. : .. '. , A �heS1s' S"bmitted· ·to the Faculty o':Sraduate· .. Stud1e.·S. '. '. in Partial· Fulfilment of the ftequ1r.eme"t$·: . ". f tr the ()egr.e. Qf. .: ".ster '.' of':Scitrtte ," .: '.' :. '. " -: -,' : ..... '. •• ':. :"." ..•..... bY··· .'. .'. : ... :.�... ..'. : ......... ; ................ ' .. .. ' " .' '. �: .. •• ;' ••••••• I' ::, ...... .: ':" saskatoon."Saskatch,ewa� •.. JU1y.:,:i�72 .. ::.!' .. : ", .. ". .... .' ..... .' ;':: ". ". " .' The' auth«r claims 'copyright� Use shalf' not be· made of the fftlterfal' .'.: contain. ·hert!1n without' proper acknowledge"""t ••• ,:"clh:ated on .... the fol1�nq paqe.·· ." ". ""'. .' d "'.' , .' �, #

Upload: others

Post on 05-May-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laha Asoke Kumar 1972 - University of Saskatchewan

:' -.

.

, ..'

'

.. �:.

.' .'.

•'

•••••• * ••••',' :.:.

. ':. :

"'.'

.'. . .'. '.

.'. ",

..'

: ".'

.

:'

. ':,

:.

. TEdiNtt)UES FOR DESIGNING CONTROLLERS".

.. OF A. MULTI-MACHINE .�YSTEM ...

: .

.

.. '. '.

.

,

A �heS1s'.

S"bmitted· ·to the Faculty o':Sraduate· ..Stud1e.·S.. '. '. .

.

in Partial· Fulfilment of the ftequ1r.eme"t$·: ..

". ftr the ()egr.e. Qf. .:.

.

.

'

.".ster '.'of':Scitrtte

.

," .:

.

.

. '.' :. . '.

"-:

-,': .....

'.

••< ':. :"."

..•..... bY···.'.

.

.'..

.

.

:... :.�... ..'. :

......... ; . ................'

.... '

..

.

"

.'

.

'. �:.. ,

••;'••••••• I' . ::, '

...... .: ':".

• saskatoon."Saskatch,ewa� •.. '

JU1y.:,:i�72'

..

. ::.!'

.. :", ..

. ". .... .' � .

"

'

..... .' ;':: .

. . ".".

"

.'

.

The' auth«r claims 'copyright� Use shalf' not be· made of the fftlterfal' .'.:.

.

contain. ·hert!1n without' proper acknowledge"""t••• ,:"clh:ated on....

.

the fol1�nq paqe.··." .

.

".

""'..'

• ••

d

. "'.'

.

,. ' .'

�,•

#•

Page 2: Laha Asoke Kumar 1972 - University of Saskatchewan

"::. '.',

.''.

'

....

..; '.

''

•'

... '. '.1 .

�..

. .'

,; ." .

'. ,.... .

.............

,'

••i

,

T�e author has agreed that :·the : ·Ub.�.�. �1ft"1 ty of ,s..skatchewan .·

shall' make this' thesis' freel, av.ilable for inspection. Moreover. theauthor has agreed that parmisst. for ext�stve copyfn, of'thh thesis .•for scholarly purposes may bf! grantecfbyl,tJte pr�essor' or. professors

·

Who supervised the. thesis work .·��o�ed· heNi,,·.. or� in the·i'r:.ab$ence. by' ..'.'

the Head of the Department' or the nean of tht Col'"e ,fn Which the......

thesis work was ··date. It is 'understOOd that due reCOgnition will tie·.

'" given to. the. autho_" of thft. thesis' aft(f: to··'the U,ftfYers1;�y of ,Sask.tch.wan·.1n any use· of material in this thei.f$.· Copyfnt or.: ..pu6·l1catton:. G!' any .

.

other use of the thesis 'for ffnan�i.l· O,f", w1� ItPp�".l·�y :the .:.

· Unh'ersity of Saskatchewan. and ttl'- .ut�or·"·s ··Wit.. '""'ils1on is'..

.

prdafbfted.·..

';', _.: ".,. :

..i:' ':' :. :.

.

. Req",sts for'periiissfon to·t�py:.. or:. to :,,�.·:'Other·us" .C)f·'ma�r1·al";·in this thesis frt �ole 0; "n' p�,.t sho�i4··.be ��"'�� toi:: '::'

'. '... .' '.'.

. '. .

�. : ". '.' ." , '.' .•

' .. � .'.... . . .',

. '. 7' c,. ';" I ' ....I '. '�. '. ' .

..

.....:..': : ...'

..

..

'."

", '.' .:..

: .. '. Head �:.th�·.Depar_flt· rt Electricai.f!n91ne.pf"�.·:. �"

,,:.,:..'

�fv'"-f;ty of saska�ch""ari. .

.

. .' ': : .•.••....•.•..• '

Sask'toa.. Canada. .•.. .".

'. , .. ,

. .' ,.' ':" .

.'.

.

.':. '.,�..

..... '. ".

; ..... ," ". '" .

: ....

'\;- . "

...'

'"'.

, :. ...

'

.� .. '

.'.'

.. '

.'..

.

. fi·'··..

: ..:...,:,

.

" ".

.

....

,,:.

Page 3: Laha Asoke Kumar 1972 - University of Saskatchewan

", ..

.' .' .

.

'""

,

. .. .: " . ,

"

"

.

",

,,' .

. '.; .'

'..... ".. .. : .....

, " ACKNOWLEDGEMENTS" "'

'

The a�thor wfshes to express his 1ndebtednes$' to' Pt'Ofess�K�E. Bol11nqer far sugqesting th1,s project arid ,for:'his �u1dance.

'

encouragement and 'assistance dQr1n�J the cCllf.se' c1. the i-esea.-eh and,.

. . .' .

.

, ,

preparation, of this thesis.,'. ' '\. .

.

The 'author also wishes to acknowledge the saskat�hewan POwer.

Corporation for providing the data used in this thesis. '

, ',Acldu.ledgellient of fineneil'l �UPf)or� by the ,N'at1dri., _.searchCouncil of Ca�.da, under:Gra"t No�' :A5124 fs' 'made. ·

'

• .' �'. M •

. . :'

"

'.'.'

.'

0,'.' • ;.. t' .�' "

'.' � ,r: \0

, '

..�

...

...

. ....

: .' .' � "".' .-'

'..

'

'··.0.

.

.�.: " ,

'�

.

0: .

:'. :..

'

.. ' .:.:

... ,., .

",: itl, .....

"..

Page 4: Laha Asoke Kumar 1972 - University of Saskatchewan

.'. :

. .

.

:'. .

..

':.::

. .'.:' .'..

'.". .

.

..

UNIVERSIty '* SAsKATCH�Aif.

.

Electrical Eno1neerinq Abstract,72A147' ".

• '..""'. . .�. .'

.

.. .•...

.'': ":'. i·· ....

", '.'

. .'

.

" ,.'

.• -TECHlugUES· 'Oli D�S!GI!I"G.

ctIlTROLlERS OF A HULTI-MCHINE SYSTEM" ..

. ; �

Student: AsOke KlIMr Lalla·...

... .. .. S�.GI': It.�. 601Hnlll'r

..

-. M�Sc. Thesis pr&$ented to the C�Uege of G�ad.uate· Studies·, du·ly .,.'1912 ••.'. .'

. ." .

.

. .

.' . . . ..

.'

.

..

.

A�STRACT .•

'. .

... In recent years consider,ble' _phasis hi. bt�n. placed orrtt)e ..'

.

• enhance.ment � dynl�ic stability'Of ,�r S.��t_�;"�hfS;fnvolves the •..'

.. ,' ".:' :.

addition'of external coriboilers or .�""$at�S. to the eXi$t1t'tQ'" ..

. '

. ..'. . .. . .. . .

.

.... ';',� ..... ". '.. '.

.

.

power p lan·t..

.. v .

•.

'. ;' .', i.'

'. ·.ThiS '. thesis'. describes' the ,·a·PPneat.1,,", o'.�.ffe"n�<tech",gUes·.. "

•.,

'...

• •

":'"

.: ," .> .'•

1nclud1nq �timal 'cmt�ol theory in ilnPro.v.irn.tth•. dY.n.Jmi� stabn+ty· •.•.......

.. .. .'.' :' .... .' .':. .'

: . .'. :' . .'

of the multi.machine system. the c'�l�)t: �.:r� 'sY$tetYi 1s con�fdf!red.

as a dual .. leve' forin 0' systeftl M,prese,ntati()n, rathe� ·than: a s1n('lle.'

mac:hine�1nfin1te 'bus 'SY$�; 'The' pel'ti�tm�' s".11�,qn�1 :equatfms.

'. . . .

,

.

.: ...' .

'" • t' .�

. : ,"-, '. . :"': �:.. . ". .

.

.'. .

are derived and· 'the. state .Plce "',�etJs,:deve,lt)�. Different tech- .....

n1ques' ,including optimal control the'cry lllld. its modff.1eatiofts' and',

conventf�naJ 'eigenvalue searCh' .thods: 'have been' .pplf,d in design-.

1ng' dif'e�nt types of c�trol1ers 1" D'der to �1ve improved'system .•.per'forNnce, in the dynam�c· qleratfng' r'�ge of' a· power syst.... 'Aprllct1ca' appl1cati:Qn, fnvolv1nq' the �e�i'" of f.,;cen�r,011�r fqi', the ....

.

'.

Squaw Ral'fd$ Gener.ating Stat.1on,of s�;�atchew.n' P_�'·CO""4)�8t10n-'1:S. '

..'.

'.' .

..

. :.;'"..

". ".

':'. :', ':.'. ,

Page 5: Laha Asoke Kumar 1972 - University of Saskatchewan

,TABLE OF CONTENTSPaae

COPYRIGHT H

ACKNOWLEDGEMENTS'

i {i

ABSTRACT iv,

, TABLE OF CONTENTS '

'

v

LIST OF ILLUSTRATIONS AND FIGURES vHi

LIST OF TABLES xii

"1. INTRODUCTION t

,1.1 (;eneral 1.. ..

1.2 Review of the previous'work 2

1.3 'lAtHne of research reported in this thesis 7.

.

. .

2. THE APPLICATION, OF OPTI";AL CONTROL THEMY TO PCMEP. SYSTEt-4 10

2.1 State space modellin� 10.

.

.

.

.

.

. .�. .

2.2 Pertinent optimal control theory' ,13

2.3 Power system representati,on 19

3. STATE SPACE MODELLINn 'OF A MULTI-MACHINE SYSTEM 22

3.1 Introducti on 22

3.2 t.1athe�tical model of tie line equati ms '23'

3.3 Mathematical model of qenerator equations, 32

'3.4 Mathematical mode' of the plant controller, 39

3.4.1'

Governor and pr1.me mover 39, '

3.4.2 Automatic voltaqe regulator'

41

3.5 Transf�tion into state space form 44

3.5.1 Stat� variable, fO","ulat1on for th� • study' system '

'���'' �

,

3.5�2 State variable formulation, for the 'external'system 'generators 50

Page 6: Laha Asoke Kumar 1972 - University of Saskatchewan

.3�5.3 State variable formulation for the tfovernor-. prime mover of .the 'study'system and 'external'

.

system plants'.

51.

3.5.4 State variable fonnulati·on for the' automatic. voltage regulators of the 'study' system plants 51

3.6 Reduced state space model neqlecting transfomer action 53

4. DESIGN OF THE OPTIMAL STATE REGULATOR 58

4.1 Introduction 58

4.2 Solv1nq the matrix-Riccat1 eguati on 60

4.3 Basic system specifications 6S

4.4 Desi� of state regulator and trlfncated state regulator 68

4.5 Time domain results 83

5. DESIGN OF A SINr,LE TRANSFER. FUNCTI� DERIVED FROM TUE fPTI"1ALSTATE REGULATOR 92

5.1 In.troc:fucti (J1 92

5.2 Modification of Pearsm's Theory.

. :94

.5.3 Des.ign of the opti�l transfer function for a low order 10.0system

5.4 .Design of the optimal transfer function for the system: '.' under �study ..

·

.

107

6. ADDITIONAL STUDIES . 114

5.3. Feedback of twO. control variables.

114

6.2 Design of d(llble feedback optimal state regulator '. 117

7. LEAD-LAG AUXILIARV CONTROLLER-DESIGN AND COMPARISON 128

7.1 Introduction 128

7.2 General form of a lead",lag feedback.. 129

7.3 Selection of the optimum parameters of .the c�trollersusing eige.nvalue search 133

7.4 Comparison of results . 139

8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARC� 142

9 •. LlST OF REFERENCES 146

.

vi .

Page 7: Laha Asoke Kumar 1972 - University of Saskatchewan

10 •. APPENDICES 153

'10.1 Appendix. A 153..

10.2 Ap�ndix B 157

10.3 ·Appendix C 174

10.4 ,Appendix 0 179

10.5 Appendix E·· 182

vii

Page 8: Laha Asoke Kumar 1972 - University of Saskatchewan

<

••

••

LIST' OF 'ILtUsrRATlcIIS MD FlUES

.�� �1.1 AsS_d structure of overall feedback control sYs" 3

2.1 The block df.gr.. of • system represented by equations(2.1) and (2.2) 12

.'.: .

.

'...'

3.'1 Gene...,.conffgu....tton of ttle subsysa. 24

3.2 $Ct._tfc representatfon shawlng the cOnnection of the.

jth node to other nodes'..'

25

3.3 Df.,.._ sbowing the positions of Q axis'� dfffeNnt.

•chines with 'respect to the.NfeNnce·· f... 27

3.4.

Gene... '· block'dt.g....of the govemOl'-PMme ."e..

..., of ·study" syste".. and ·extem.'· systelt plants 40.3.5 Voltage NgUla�·canponents· for a· ..otary ty.,e exciter .42

3.6 Block diag.... for the autoMatic voltage regulato.. ·of . the.

·study··.systetn generating plants ." 43

O1agnll showtn, the ,art •.tion 01 K( or) with " :. . .

SchelBtie representation of • portion of the Saskatchewanp.,... COl'poratfon Systell used as en illustrative ex..."l.otlgmt showing the loeet10ns of doIrInant syst. roots f.n

cOllJPlet.e S-planeSquaw Raptds Sp"d error ,ersus time for the uneOMPBns.tedsYStc. (tncl-..df1'g transfcr.-r action) .

.....

67

74

85

4.4b Queen Eliza�th speed error versus tt. fo.. the. unc..,en-sated system (tneludfng transfonaer action) 85

4.6a Squaw .Rapids speed error .."US ti. for the unc.-n,.tedsystem (excluding' ·transf�r aetton) 86

4.Sb Queen EUza.,.th speed e...-or versus time for the ....e..nsateet

S1$_ (exclud1n, tr.nsfo.....ctton) 86

viii

Page 9: Laha Asoke Kumar 1972 - University of Saskatchewan

Page

'4.6a sq-.w Rapids speed :em»r "rsU$ ti••n the systan is

coupled with ',the' state' regulator 88

4.6b Queen Elizabeth spaid err"" versus ti. when the systemis '�oupled with the state regulator ,

88

4.7a $qu. Rapi4s,speed emr versUs ti. when the systeM is'coupled with the t.runcated state regulator' ,'" 89

4.7b Queen Elizabeth speed error versus ti. when the systemis coupled with the truncated 'state regulator,

'

89

4.81 Squaw Rapids speed error versus tile'<a> UftCOlllf)ensated system

,

(b) apprac11t1te state regulator(c) ,stlte regulator 91

,'

4.81;) Queen Elizabeth speed error versus ti.

(a). UncOlPlftsated systeM ,:

(b) approxi•• state regulator.(c)' state regulator 91

,,

5.1 Gefter,' block diagram or a plant coupled with the optf.''

'

transfer function '98

5.2 T1. dcafn resul ts. ffir hypothetical s15_ for all the

three cases 106

5.3 Block ,�fagrllt fI �e. ·autOMatic voltage regul.tor. of the'

Squaw Rapids plant cdlpled with the' opt1a., transfer',function. 108

'S.4a '$qua" Rapids speed ,ferror ,ersus ti.' when the sy.stem is

coupled 'wt�b the opti., transfer'fuoct1on5.Se Squaw Rapids speed error verS.us ti. for t... ",c__nsated

sY$_ 113

5.5b· Que.. Elfabeth speed error ve"�s' time .10r the unCClq)en�

sated system

112

113

1x

Page 10: Laha Asoke Kumar 1972 - University of Saskatchewan

. P.ge·. . "

.. . .

6.1 Sch_tic.

di....·

01 the· excttatfon.

and' gcwemor-,n·t.lIWer '" with two utemal' feedback variables' 116

6.2a squaw. Rapfds speed elTOr versus tf. �en the system fs

. coupled wf·th opti., state regulater with two feedbacks 124

6.2b.

Queen Elizabeth speed elTOr versus tf. when the systeMis coupled with op.tf.' state regulator with two

feedbacks .".

. 124'.

6.31 Squaw •. Rapids speed error Versus' t1. for: the un�en';'-.

sated system .

6.3b Queen Elizabeth spaid error 'WI'SUS tf. for the.'.

anc(llllpen$ated system .

. 6. 4a Squaw Rapi'dS' speed e,,"r versus' ti. when the sYsteit 1 s .

.:

. coupled 'with opti.,' state regulator with one feedback

6.4b Queen Elizabeth 'speed'errCl' versus ti. when the systelltfs coupled with Optf., state regulator with one

feedback:

125

125

126

'.126

"..

7.1 . Block df.agl'lJl of aux111•.., control' 129

7.2a Squaw Riptds speed err.. versus ti. for the sys. coupled .

with lead-lag feedback auxn1ary contro11e.. , 136

.7.2b Queen Elizabeth speed errOf' versus ti. for the·s1st.coupled with ,.d.llg feedback aux111ary controlle.r 136

7.3 Ge�eral auxfliary controller conlllCted to the Squaw Rapfdsplant 131

7." Squ.. Rapfds speed error versus ti.Ca.) unc;�.ted· sys_'(b) �pproxf..te s�� regul.tor(cl 's�te regulator

'

..

'

(cI) le,d.lag feedback 140'

Page 11: Laha Asoke Kumar 1972 - University of Saskatchewan

'. : "

'.'

..�'.

.

,; :

.' .: .'

....:.

. :'. .....

'. '.

7.4b QuMn Elfzabeth iPeed error versUs tt.,"

(a), uncGMpefts.�d systell"

(b) approxt.te state regulator'(c)' state regul.to, ',",(d) lead.1.g f�ck

'

.

,

...

" .... -'

"

."

.'. :':"':".

.' .' '. .

.: xi '

... :....

';'

" ."

.

'.'

.... , :

Page

,140'

Page 12: Laha Asoke Kumar 1972 - University of Saskatchewan

.

LIST' OF .

TABLES .

Table

4.1 The.char.Ct8rtstfc ..trtx· A of the unc....sated systeM'.

(with transf"'r .ctton excluded)· .

.

.. .

.

4.2A· Eigenv.'ues of the utlCaMpens.ted systeM. :W1th tr.nsfo,.r

.ct1an exCluded'.' .

.

4.28 DaMinant roots 'of. the above ....t1oned 51stan.

.

. ·4.3A Eigenv.1Ues of. t... .....,.....tecI systeM with tranifonner.' actton 1"cluded '. . '. .'

.

.

'. .'

.

4.38: DGllfnant roots of the. above _tfoned system4.4

.

"11 _t,.tx.. ".4.5 . "21' ·.trtx ....

.'

4.6 K* .trtx·

.

4.7 The char.cteristic· .trfx A'll of· tilt· cCJllpenSated .,s.couPled with the stete. regUlator'

'..

. .

..4.8A· �fgeftv.'ues of the' c""sated syS_ coupled.with stlte

regUl.tor·.

4.88. OoMflJlftt roots of the abewe .ntfoned sYsteM4.9A Eigenvalues. Of the caapensatecl. systeM caupled.:with .

'. truncated state regul.tor.

.

4.98 DaIit1nant ,.ts Of the above .ntfoned s,stell. .

.. .'

.5.1 Etgtnval. or the lQlCClllpensated sys_.

5.2 Eigenvalues of the c..ns.ted s1$- with the optf.'state re,,'ator .... . .

.

5.3 E'genvllues of the e�nsated s'"teIl coupled with tht

cptt., transfer '...etton..

5'.4 ConIpar1son of d"'nan� $"_ roots'

P.ge

69

71

71

.,'

72.

72

76

77

78

80

81

81

84

84

102

103

104 .

110

.

6.1 . K* .trtx 110 .

6.2 The character1·stfc .trt)( A. ·of:the COIIIP'ltSated sY$.t- 121

."..t••

xii

Page 13: Laha Asoke Kumar 1972 - University of Saskatchewan

Page

6.3 Eigenvalues of the e......sated systeM eq�1pped with two

feedback GPt1.' control variables 122. 6.4 CaMp_rison of doIIfnant systelll roots

. 123

7.1 SysteM roots for varying. auxiliary c.troller paraMeters 138

7.2 CoIIparisan of daaiMnt s,Stell··roots 141

xiii

Page 14: Laha Asoke Kumar 1972 - University of Saskatchewan

1

1.1. a.eNl.

Power SysteM voltage and frequency are controlled near accepted

values through the use of autGllttc voltage and' frequency. regulation. .

devices. DeViations' fran s.tepoint values of voltage and frequency. artIe

as a. result of cansUlller load', delJllnd fluctuatfons or system dfsturbances.

. . .

due to faults or s�tch1ng. For many years fnvestigations ,of power. .,

.

system stabflfty was ltmfted to two specfal facets of the prtblem -

'

tNnsfent stabf lit, and steady state stabilfty. To detentfne whether•

the p_' systeM fs stable after a disturbance ft is necessary to plot.:: ... .

... .::

.

and fnspect the swing curves. '!f the system fs stable fn steady state. .

and also on the ffrst .�wfng. it is a well established fact that it will

not be usvall,Y' unstable fn "ttMt subsequent perf.od,· for there � 11.

be

enough d�fng to reduce the ..1ft� of the mng� The.

latest 'Uter-. ... .. . .

ature1,2 'has shoWl'sOlle interesting developments in the :i"" of stability."

It has been reported by S�leff !t,.!!..1 that stabi1fty curves begin to

.

shelf divergence �th machine groups punf"g out of step after several

osctllaticras rather than the first swing after a .disturbante. In short

'"sufffcieflt damping often beca. evident. Hanson !!!l.2, whileinvestigating frequency oscillatfons bebeen the fnterconnected utility

systems of S�katch_n. Manitoba and �tarfo (_st) had drawn sftrilar

" cORcl"sfcns. The reason is that although there Ire sever., SOll�s of,

.

positive daMpfng fn p�r systems, there are also sources of ne�t1ve

,41....,1"g, nC)tably voltage ,,"ul.tors and sl*d governor$. The s.,1

Page 15: Laha Asoke Kumar 1972 - University of Saskatchewan

synchronizing power' coefficfents' due te lirge electric distances between',

,

majGr groups 'of gene,.atfon and low time constants 'Gf mode"" high-speed,

,'

'VGltage·�gulators aggravate the situatfon. Furthel"lllOre although' theinherent pOSitive damping predcmfnatesunder most situation�,'frt so.

, ,

ciJ-CUlllStan,ces· the net damping fs' negative. With negative net d.mpin�. anqular

swings Of' the machine. instead of dyfng out. increase _til either'equilibrium IIIIPUtude (If.it CYcle) is reiched or syncbrOnism i5,lGSt•.. : . .:.. ..

. .:". '.'.' '.

If the inherent damping fS' negative ane c_'re is to, add arti1icf.""pMitive damping. Fran the'dffferent stud'es and field tests it has

been found that f"'Proved system dutpfng can be achieved by adding

supplementary. tit' stabilizing. ,control to the voltage regulatGrs at

selected plants. III tIM! contrGl theory terms this leads one fn visual ..

1z1ng that one "st construct a ��YSfCal d�v1ce which shall be talled the.

.

.

.

'canpensator.' or 'c:uatro}ler'" and which when driven by the, sensor ._asu-

,rement signals' will gtnerate the c_nded inputs �o the phySical'.' .'

'... ..'. .

.

'. .'

process such that the ti. evolut.ion of the physical plant state ",

.

.

. . '. .

variables is' satisfactory for the applfcatfor, at hand. The' feedback

structure is fllustr�ted 1n Figure 1..1.

1.2. Revf.., Gf the Previous Work

Power system dynlmfc stabi1fty has �een th, $ubject of e.xtens1ve

investigations by man� authors, to ascertafn a control system design"

,'",'atf" to, the p,rfonnance of fndfvid"", ""chines. A rlc'"t paper3 has.

'.

.

.

,

s...rized the backgrQUnd of eire_tenees and' hi$torf�l develOJ)111ents

of the stability probl_ fn the w.stern $tates and �he work 'that has been

Page 16: Laha Asoke Kumar 1972 - University of Saskatchewan

... 3

.,.

-COMMANDED· .INPUTS TO ..

..

, .... PHYSICAL . P.ROCE·SS...

.

..

.

..

. .

..

. ·PLANT::

,.

. .',.':.

.

_____

L. COMPENSATOR �

".

___..

.....__-----II (to be des.ig"rled.) ��---

.. SENSOR·MEAsUR�MENT.

·SIGNALS

Figure 1.1 -. AssUllled structure of ove..an ·f_edback control· syst_ •

. ....

',:'" .:

' ..

Page 17: Laha Asoke Kumar 1972 - University of Saskatchewan

4 ..

. ... �

done on the ·prob lem.· ...

The. methods that have been used· so. far ina, be. classified as .

f�l1ows:.

.. ·a) Rotith-Hurw1tz criterion: In .this method the sign .of the.·1'eal

parts. of the roots· of the .characterfstfc equatfon is calculated on

the basis of· the coefficients of the equatfons. Thfs approach has·

been effectively used by Concordia. vi. and Gthers5,6.7,8. Its _jor.. disadvantage is that. rio fnformation regarding the degree of·stabilfty

.

is avaflable..

.

. ". .

.

.

. ... ." .". .

...b) Nyquist Criterion: This classfca 1 c�trol technique has been

used by Mess��le and ·Bru�k9. Jacovides and Adkfns10• Aldred and·

Shackshaft11 and··Ewart;and De�ell012�··Even though this .thod is ..

capab·le of showing the degree· of stability and indicating the possibleproc�dures for fts fmprovemt!nt•. it suffers from the disadvantage of .

extensfve canPutation time..

..

...

... .. .. .

c) Analog Computation: This method ·has been used by Messerle13...

and Heffron and Ph1llfPs14.Whf1e ft pennfts the detenninatfon of

stabflity.by dfrect cbservation of the resulting perlormance� it is

lengthy· and tfme consunrfng.. ....

d) Root· LocuS; Using standard root locus techniques, Stfpleton.1Sinvestigated the effect or varfous voltage ""ulator paruteten .0" .

stability and dyna�c response.

e)· D..Part1on or �in separation: TMs method has �en lISed by ...

.

. 16.

·7 12 18 19... ...

....

Stlrana·· and Harfharan and others '. • .' .•. Since 1� renders possible

Page 18: Laha Asoke Kumar 1972 - University of Saskatchewan

5

,

"

the graphical ,representatf'(;n of stab111�y Hm1ts in the plane of one

or �wo parameters of interest. ft appears to have considerable app1i�"

'

cation to problems involving the selection of regular parameter

,'values for optfmum results.

f) Matrix Techniques: These techniques whfch are based: 'on "'odem'

cOntl'O1 theory, have been suggested by Vln Ness30, LlughtOn20 and

Undrn121• Using 'the cOn,capt of state variables, 'the dffferent1�'i:�'.

...

equations deSCribing the small�signal perfonnance of the synchronous,� .. .. .

..

machines' and' assocfated control' apparatus are expressed in,:,'vector -'

matrix fonn. '�ce such a fOrmulation is achieved, a variety of met�odsthat have been'dev�loped for'thfS fo� of representation can'be're�dnyapplied.

'

Prev'ioUs studies clearly advocated the', necessity,0' a pOwer, systemstabilizer,tIIe functten o{ which ,is to ,sense shaft'spfted or" 'requency

.

.... .. .. .

'.�fltfon. conditiOn the Signal thu� obtained. and then'; feed it into '"

. ."

the voltage regulator as a supplementary signal. The subsequent 'studies

had concentrat4td mainly on ,the methods of '(les1gr) of sueh cattronerl �,."'

the pioneer being F.R. Schlief 1.22-25. His philosophy of design was to

calculate the frequency response" of the system from field tests and. .

..

the" adjust the gains and time constants of the stabilizer to canpensate

for the phase lag of the syStem. 'n his recent paper25 Schl'fefcalculated the damping coefficient Owh1ch is given by O-'M Sfn: e

where M is the' ga,1n an4. e is the phase lag obta1n8d frOm the f.req�encyresponse curves. His analY$.1s showed ,that for all frequencies �f inter.est tht �a�1ng coeff1c1ent is n�at1ve for the �"compens��d system but

.

. ..

" .

Page 19: Laha Asoke Kumar 1972 - University of Saskatchewan

6

pOliti ••; "for the'cattpeftsated system. Similar 'approaches had 'been:

reported,1n O.ther literature :26.27.28'. Bollinger and Flem1ng29 used. .. .....

f�uency response technique to' dei1gn the auxl1iary controller with. ".

.

'.'

,

the help of a� analOg contpUter. other researchers att8lllpted to s1mulat.

a ponion O.f the poWer sys. on the analog computer22 as we11' as' on'

'the digital cc.puter2•31 and then adjust the para_tars of the control­

ler to fncrease the dlMPing O.f the overall sYstem.'laughton32 and Kasturf

et al.33 designed the controller using sensitivity 'analysis. Grainger�-". . .' '.

'"

and' Abinerf34 and Undri1135 utilized Lyapunov's method to increase the

d..�ng of the pCMr system. Krause and Tow1.36 investigated tl1e effects

of two 'field windings instead' of a conventional one to' achieve the', sameobjective.

Recent, cleve1�nts of optimal control, theory ,prtlllpted many

researchers to' widen thefr methods of attack. The prime' philoSophy O.f'optimal control technique is ,to' select, Control over, an admfssible

'control· set such that a cost (or� performance) functional is minimized

(or max1m1zecJ ). 'u !!!l.37 'designee. the opt1.' signals fed 'to the:

vol�age regulator and the governor Qf the power plants on the basfs of '

Pontry,g1n's .xillUl pri"ciple. ,In another paper38 the authors conceived

the voltage re.gu'�tor .s the plant and then designed the optimizing ,

,,

'

stab1lf�1ng s1gnal feedback to the voltage regulator. The stabilizer

thus 'designed .s tried on an actual nem-linear model of ,the powr system.Davison and Rau39 used the theQr,y O.f para_tel' oPt1m1zatf�ndeveloped by

Athens and Levfns40 to desfgn the QPtillla1 controller b�sed on the output

Page 20: Laha Asoke Kumar 1972 - University of Saskatchewan

7

..'

, "

feedback. All the above pape" used the quadratic cost functional.Yet another gm..rp of. researchers41,42 have thought of the problem as

....

.

, ,

a' time ·.opt1.' one. Their controller seeks to drive the powr syStem to.

a stable target state in mtn1l11UM time. This fonnulat1on leads to a

classical bang-bang control through the solution of a non lfnear �

point bouiu:fary value, prOblem.: nits theory has been ,used in the past in'

transient stabflity studf" of, the power sYstem by Jones43 and Sm1thlM.A review of all the _bove papers reveals that the solution of the

, .

probl. is far fl'an complete, although a large number of papers have. .:.

been' published so far. 'The appl1catfon (jf optt., contr()l, theory is"handicapped by the abSence of a well..oestabl1shed theory of outp�t feed­

back. :Moreove� the mathematical model of the plant used by mOst of the

authors was the simpliffed single machi,ne-infinite, bus system�.

"

. .,' ..',: ..

..

.

"

1.3� 'Outline of Research ..,.rted in This Thesis. ','.

In'this thesis � power system comprtzing i number of generating, '

,

stations has �en modelled in a dual-level form of representatiOn. The

pertf·nent algorithm has . been developed to accOIIIodate the above fom

of representation. Optimal cOJ'ltrol theory and other techniques are then

applfed to this mathemati�l model in o�r to,invest1gate the effects

of different forms of controllers on' system damping.

In the ffrst etlJpter the pertinent background, meterial has been

revf_d briefly to l1lustrate the methods which are now used to design

au�111ary controllers or compensators. These techniques are quite arbi-'

'. '.

trar,y and require a cons1derable measure of subjective judgement and,

....

Page 21: Laha Asoke Kumar 1972 - University of Saskatchewan

�.. ...

..

'.8..

e�per1eftce 11 they are to b.e used stiecesS.full.v•.·The ·probl... of t.rOv1n,·•...,

.s)is_d.pt"g for'

•.�'t1",chfne sys_ :ust'n� .' 'dua,,,:'e.'·.· 10l'Il of .

...

'. . .. ... .'

syStem'rep,.sentatton fs··taken up fn the :subs..uent chlpt..,. of thfsthes1·s•.•.

'

.. In ·the second' chapter the var1OU�' iIIth_tf�l COfttepb requfY'ed ....

to tmpl.ent the .•thod are discussed br1ef1Y�''rile par.t1�lar:"th�·::..

' .tics·Nqufred is dnwn '"'" the areas : of.,state: spece theory"and'.

optfmal control theory... .

' .

. The applicatfon of any contrOl theor,y' necessitates the fafthful.... .' .. .

math_ttta'" description ·of. the' :e,xfstfng pl.nt. "... thfr.d .t:h.pte;rf$; .''

..

.

'devoted 'to the'mathe.'ti·cal·

...nu,. ':Of� the ,"'ti..thf�'· ."S-'"

.

including the plant :contrct1ters•. Iftftf:ally, th. �11e<i"fcm.,"1 5YS_.

.: .

..' .

..�

,.

'. .Odel1fng fs described and later tltt recI�C.ed· 1.0"' is' outli·"cl. ..

.:'

..

The' f�rth ':chapter is' de�oted ',to tilt:",.'01 '�';Optf_l' and"'"'.

... . .. .

. .; .

•ans of a 'SP"fff'C .n "feat e...,l•• ·'. ,: ",' ..

.' :

. '. I,n the fifth Chapter the"single capt,., trans'er f,unetten based on·

.

the' output· feedback is dfsigned� The pertinent' thttotY 'fs developed 'and.;, .'.,

...*...

. ... .

then' applfed to. the design of. ,. eontroller..ff.rst 'for. ttYpothetictl'system. ind'la,ter. for. pra�tfcal Powe�:�'y�,.· .•dt up of $Iveral·.chfnes•.". .:The'siXth ch."ter '1nVest1gites; the posst·bit-fty ..o' t.rt_t 'fn>,

system dalllpfng by feeding bact. coftt�' Yar1abl�;'1nto,:the'90verno" and"

automatf.c :voltage reg�1ator� The optf.' state regqlato" is: designed for'.

'. this case. and the results 'N,e�red W:1·'th the ,'..s..,� of.,t.�l':"'" .

. .' : .. .. .) �.. "

.

.'.: ': .... '. '.,' .,: .: ': .: .

..

.

'......'

Page 22: Laha Asoke Kumar 1972 - University of Saskatchewan

"

.'

"

: .. '

,

"

9, '

'.: .. :

'

..".

"

In' the" seventh chapter '.' c.p.nsator consfstf,ng of • thrft.stage, '" '

.

'. ... .' '. . .

..

. ... : .

.

transfer' functiOn is ass...d as a' gen....� f�....of the control1.� and'

then with, the help of 'eigenvalue' se.rc�· the par_ters of the cOntrol-"lers are' determtned� The tf. d0llli1n results are calculated and c"red

,"

,

,with the rf!sults of other caapensa'ors. ,',In, the eighth chapter the conclusiOns draWn based on 'the overall

"

�S.rch project are present�. s_" rec....d.tions', ,for futu" , work,

arei also pr'Oposed fn thfs chIP"". '

t,

:. : '.':

.... ,

", ',., : '.,

.. ;..,.

. ; ......... -:

'

... :.: ..'

..'. : .':.' ;: :.

".:.:'

v ", ",� ;,r. ·

.....

.

.'

.

. ''

Page 23: Laha Asoke Kumar 1972 - University of Saskatchewan

.

10

2. THE APPLICATIm' OF· OPTIMAL CONTROl THEORY

TO ELECTRIC PClfER'SYSTEM

2.1. State'Space Modelling

The state space fonn of system representation 1·s a tnnsfoPlltltion

of the original sets of differential equations of all orders to a set of

first'order differential equations. The transformed set of differential

equations with provisions for additional control can be written in the

fonn•

X • AX + BU + GF

y. ex

. (2.1)

(2.2)Where,

X ... nx 1 vector describing the .st�tes of the. system :

. ..

'. X - n·x·1 vector containing the f1rst:der1vatives of •

the state variables.

A - n x n coefficfent matrix

8 - n x m control matrix ..

U - m x 1 vector containing the designated �tput variablesfrom the contra11er

F ,.. E x 1 vector containing controllable input variables

G -. n x E coupl1"g matrix.

The use of state variables offers considerable benefits concep';'

tually, notat1�fll1y lind analytically. The cOfl(:ept1onal convenience 1$

derived from the .representation of the instantaneous:cond1tion of the

system by the notion of the system 'state' which usually relates in a

one ·to 'One manner to the prob1etn. ,variable. The notational and ·analyti.cal

Page 24: Laha Asoke Kumar 1972 - University of Saskatchewan

.''

.

.

.. ':';.' 11

convenfences come thrOugh the use: of vecto.....trfx repreSentatfon which".

'

..allows the .s,ystellt equations �ncI' the···fO",,' of the soluttons to bt written...

' ..

'. '.. .

..

cOlllplctly. The state space approach petWft$ ....dy · •.,.,·ltcatfon of .tty.

"

_thematical.thods (e.g. oPt1.1 cantro; theory) whfch' have been ...

devel�d foi-· the soll1tfon. or the :qu.litatfft d1·scU.:sfon ef··these.

.'

. . .: ..

. .... ..

.

stlte space ,equat1ons.1he system tig,.ll flGl fo"" of, eqUation (2.1) .nd.

.

"'(2.2) can be portrayed by Melnsof the.

block df'agranfshCMI' 1ft Ffgure '2.1.Figure 2.1 is a con-ventent way of represent1ng the linear. plant

and the general extema, contrOl l00p�. Open·c,f.cuftfI\9 thefeedbeck'

path gives the schematfc of ·ihe s"'"ll"d�·unc.ns... ·

f)l'''t� :11", :,'. .

..

. . .

, . .

cOntrolle��y be a l1:near.cGnibfnatt. of·the .tI�s or- of'*.l.c�;.····".

states as'described 1n :the S_'bsequeftt·.teMI1.'·Thedott.r1;.n6S ',.p;e-''.' sent �the·c.se:wh.re:·not all ttlestate. a",':fed b.�: •• ·.:tht.'f,,"t t'o

. tbe controller.' Al�mat1vely the:�ontr.ol1er lIllY eofItafn '.d�1.U _t-: .•s as':"desctibed: l ..ter�· 'Fo.r thl's' "synthesis to ;.&e····feas1ble:·:"ttae stite

.

..

.

.' .

.

'...' .'. '.'

'.'.

space model.of 'a .'ti'...chfne.syst...'fs �u1red ,...4h" to :.triceS··'· ..

'

A. B. G:andC Of:equatfans (2�1) a�d (2.�). This state··S�'C.�fonR i� the

.: major cmtrlbut1cn of this thes1s •..A:.seccnd co\t"1.but�fon fs.:t�"'COMpar-··. tsan· of .the different forms C;f'cmtr.oll_.n·, "rGii optflllll tC)·�the' ...

fntuft1ve·.1e.ad-lag·whfCh 1s';tained by �Ply1·n.gdfffe.Hn.t$.vnthes1s.,'I .

.

.' .' .

tecbn1�" to this s·tate $pace "1. Before .scl'ibiht the ;.pM... :sYstem.

·1IIOde111ftg pr.ocedure· a brief descrfptf.". ,

or.the.: pe"�in."� .'.opt".:'. ,.

... .

..'.

.

"

.

c�t"ol theory':'" 1-1 be 91ven/.

.' ....

.

.....'

.

.

: .,:.

.....

,

.

.

'.: :.: . :'�" ..<

.'•

'

.. :"'.

'.' ..,

... '..

• "<' '.',' .",

':."

Page 25: Laha Asoke Kumar 1972 - University of Saskatchewan

:. " ,

,'

i.

'...

'.,'

. .''.

" .. '

.

B····

.".

,'.. :'

A·' .

,

, .. ';

. :.'

.'.

. .

:u ".

�--� CO·NT;R,QtJ�- �"'.' .

. ER

'.": .

12

y.

C:

i .:II

'·1.

.. .. :,. I..

. J ..

'

1.1I

. ]�._ ....... ....__ -J ,

. ", ':'. .'.

'. '.

.

.....•,

'

Of'; ::�.;' .

'

-, :' '.' (�r .... ' '

.... '

.,

,

" ",...

'.

F1qure 2.1. The blOCk d1a!lNIIt of • 5ystat representee..- by equations (2.1)..

..' . '. .

and (2.2). '.

Page 26: Laha Asoke Kumar 1972 - University of Saskatchewan

".\ 13

2.2. Pertinent ·�ti.' Control Theory. .

.

.

With the help .of opt1.1control theory one fs .abl. to minimize

system disturbances by applying these methods to the state space form.

.

.'. .

.

to generate an optfma' controller. Other Methods described in ··the.

cont1'01 lfterature28•29 are essentially proce'sses' of para.ter. opt1.·.fzat1en. or tn o�r wotels. the structure of the cont1'OUer fs fixed':f1 rst and then an attenlpt is .de to detemne the OptilUl par..ters

of the assumed controller•

. In 'determ1q1ng the optfmal cOntrOl strategy, ane dGeS, not mike any.

.: .' �r·. .'

pMOr assUMptfons or c0llR1t..ents -that would fix the coftt1'011er structu.....

,tt is assumed th••t' a iltathentatfeallftadtl of the P,.t·, ts '1(_. The aim. .'

.. : . .

'..

.

.

.

. is to ff"d .a 'unction Which when applied· to the plant 'inPut wi·'" Opt••

tze the syst..'s perfcnance with .respect �"s_ 'cost:crtte�fon•..

Paraphrasing. t he 10...' stateMent of �tht optf-.fzai1On "...,.. is as.

, "

"

"" ""

" " ""

10110W$:". """j

",

Gtven that the plant is described by the gen.ral vector equation.

"�

..

.

'x • f (X,u.t) ,(2.3) .

"

"""

"

.

"

"

. ffnd u(t)., tE [�o.T] such tha.t the cost functional :op pertor-. mince 'index J, g1v�n by

J. +(X(T» + jL(X,U;.t) dt ..

1i;.

is Mfnf"'zed. ,Since in dYftllR1c' stabflity studies the ,pl.nt 15 MOdelled""

" "" """

in small signal 10"", one can �'te that:,

+(X(T» • O. .' {2.5) .

Page 27: Laha Asoke Kumar 1972 - University of Saskatchewan

. 14

Thus·equat1on (2.4) can be modified to

J.

.;. ,T ·L(X.U,t)dt

toThe b8S�C mathematical descriptions leading to the equation linking

the elements of an optimal controller to the existing plant parameters

(2.6)

. ..

.

is Bell.-n's functional equation. It represents a necessary condition.

for opt1malfty and is given by

_ &J(X,t) .•. III1n·· t L(X.U.t) + < aJ(X;t) f(X,Utt»] (2.1).

&t . U(t) ax

. :If there is no constraint on. the magnitude .01 U and. if L a.nd f possess. . . ..

first partial derivatives with· respect to U. then U*(t). the optimal·

eontrol.ler output varfable or vector, can be found by diffe....t1at1ng

the left hand side of equation (2.7) and setting th� result to zero.

This. yields the condition'

(2.8)

where .

pet) • aJ(X,t)aX

and is known as the adjoint or co-state ve�tOr. If a quadratic pertor­mance·'ndex is selected. (the reason fer this chofce is explained. in

the last part of ·th1s. section) one can write

t . • .� [IlXI12Q + IIUl12R]where. q .. a pO$it1� �em1-dE!fin1te sytWtric matrix·

.. R·;" a positive definite .$ynanetrfc .trix.

(2.9)

Page 28: Laha Asoke Kumar 1972 - University of Saskatchewan

15

Thus

,.!l:. • RU,

aU(2.10)

,

Equating equation (2.3) wtththe standard fom of state spac�,'.'

equation given by X • AX .... BU, yields•

X • f(X.U.t) • AX .... SU (2.11)

Thus

'.!t.S"aU

,Substituting equations (2.10) and (2.12) into (2.8) leads to

, (2.12)

U* • _R-1STpAccording to Pontryagin's in1nfnun principle,

.', aHp • - --, (2.14),

aX

(2.13)

where H is defined as the Hamiltonian expression and is given, ,by"

H • min[l + fT (X.U.t)P)' (2.15)

U'

It follows then that

• ' ,

aHp. -��X

,(2.16)

For conveniellce. let

, p .. KX (2.17)

Page 29: Laha Asoke Kumar 1972 - University of Saskatchewan

, 16.'

Thus'.

.: .. .

p.• ·KX.+ KX..

' (2.18):.'

.

'.

and" equation' (2.16l reduces to the.�ne"l .xpressfon.

:Ki'. Ki • -QX .. ATp.

..

Subst1�utfng equation (2.11) into (2.19) gives• .,....

. .'. .

..

···T.

KX + KAX .+ KBU • -QX;. A KX .:

.

(2.19)

(2.20)

or .

.

'"

. ..

.

KX + KAX· ..·

KBR-1BTKX .• '

-QX' _ ATKX .'.

(2.21)

. or.. �K". KA· .. KBR-IBTK. ATK + 'Q'

.

(2.22) .'

this 1ast.equattcm is the well-known .tl'i:x Rf�tf d1ffet'en�1al··equation subject to the' boundary �ond1tie»n at the' terminal tflle T

.•

K(T) • 0

�trfx K* is. g1.en· by,'K* .. 11m K(T) where l' • T .: t

t-toQ ."(2.23)

As 1-+0 , K • 0 .

thus equation (2.22) reduces to

o • K*A .. K*8R-1bTk* + ATK* + Q

. The a�ove �uat1on is known as the 'algebraic: .irfx "R1cc:atf .qu,�1qn�•.Matrix K* can be foun.fby solVing the above non-linear :equatton (2.24).

.

The optfnt1zed 10"' of equat1e»n (2.1)-15 now given b;..'

� i • AX - BR-1BTK*X + GF.

(2.25)

or

.

(2.26)

," ...

Page 30: Laha Asoke Kumar 1972 - University of Saskatchewan

.

11"

.X • A*X + GF

where, .

'A* :' A.- BR-1BTK*.The applicatiOn' of opti.'·· cantrol: theory. has thus··::tMnsfoiWd .....

the Orfginal'c�f�1efent _trfx " frOl:� _rginall�' stable condition ..

to 'the well _ed fol'lll given by eqUation (2.27).

'

... (2.27)

..

:. ...'

.' .

.

.

·2.2.1. Selection of a quadNt�c pe�,..nce index

The choice of a syst" peMtorlillnce index wh1chfs a reason­

ab.l. _asure of transient responSe fl"Clll time :te to T is o� �at. 1l11POrtan� to a···.s1gner when applying OPtf.l cantrOl thf!Ory.· The;'

.'

quadratic cO$t functional or perfo....ce index (QPI) is :'prefltftd over

" the others Ixtcause of the 1011ow1 ng reasons:· .... ..... ..

.

. ....

.) ',The Ql'I .f� the c_fn.�f� of fntegril Iq"''''� (' I X112Ql·.

and.�ate of ene..gy expenditure (llul r2R) of .the pl.t an4 hence .it· ..reflects a 'desired perlonnance constraint' of the powe.. systelll unde.. .

study'.'.

. ." .....

.' .

.

.

b) The choice of perfo,.nce· index also reduces the effect of;.

......

:... "

....' ,',

..,' ..

neglecting second order te.. ··in the -..th_t,cal mode.1 0" the system.

Th1s:can be illustrated by con�idering the lfn.�,zfng ·PNCectU".'The ..dfffeNntfal. equations' r.ep....."tfng. the·dynUrles.of·the ;'_"

. s1.S_ are essentfally. non-Un... fn 'nature.' For dyn..'e 'stability"studie�.the·�$.11· signal' 'lfnear'equ�tf�$ are develOp� Pout a .

.

'

qufescent Ope"tfng point (X�(tl.tJo(t». :The Tayl0� se"._:_'x""S10n48

.' ".'

leads.tO...... ,

Page 31: Laha Asoke Kumar 1972 - University of Saskatchewan

18,

f(X(t).U(t» • f(XoCt).UO(t)) +!i Ix.xo 6X(t)

+.!! I' aU{t) ,

+ ' F(aX(t).aU(t»,

aU U·U "

,

,

, 0 '

" "

,

(2�28)

where F denotes the higher order tenns. F can be represented exactly

by the following expression'

F(ax( t) .aU{ t» .;.l2

.

'1'

,

,

' '2f', '

"

+ auT(t), .!!:.!t 6U(t) ,

'

, ,',', aU2fu-n ,"

,

f " ,,'

, + 24xT(t) 82.1' I,' 8U(t)}ax(t)aU(t} u.u '

1\'.x·X·

where ai• the natural bastc vectors 1n the vector subspace R,.

'"'

X • X + a.ax I"

'1\' , ,0 < 8 < 1

U • U + a.au','

In order to reduce the error of the small-signal model. one must

ensure that the higher order �nns F are indeed small for all t C[�o.T].Since from equatiOll (2.a9) ().Re can readily see that they are quadratic

in X(t) and U(t}. the obvious choice is to se,ect the performance,

index as described by equation (2.6) �o be quadratic.

Page 32: Laha Asoke Kumar 1972 - University of Saskatchewan

19

2.3. POWI' System Representation'Two .1n app'rOlches can in· general be taken when' considering '

..•>. ". .:

-,

• .' '.

t.chntques for. stooying the stability of complex power syst_. One,

.

.>.", " . ',,'. .

..

can rely··on· the concept' of.

input-oUtput stabili ty and study the non�

11near system 1n the tfllle dOMain OJ' alternatively one can utilfze the.

... .

.

.'

.concept 'of dynamic system stab11ity on. the l1nea'rized small si�ar

. .

· model. in the sense of Lyapuntlf.. Although the fdea of fnput-output. .

. .

stability appears to be lION suited for certain applications in.

partfcular' for systeMS driv-m by constantly actfng disturbanCeS. it'. .' ". .'

.

..

. '..

is. not.ll sutted fol' deal1ng with the. dynamic stability problem of

POWI' systems. The' pOwer system i.s safd to be dynllltfcally ·stable at·

an equf1fbrf .. pofnt if the state of the power 'systeM ...1ns.elOse to·

. .... "..' .

this point··for small'fnft1er deviations of :the system var1abl" (PoWer

input. load ·angle. ,.ehine speed, ·etc).· from thefr, equ1.1fbrhlll ·vllues•.In' other words the system does not· ·lose· synchroni'sm for·' $l1li11 variations

..

.

.

..'.

. .

of the variables. ·Thfs property is eq'uivalent to loCal stabf:'ity fn the.

sense of.. Lyapunov and can be �nalyzecl by considerfng 'the l1ne�r1zedpower system.·· .

.

. .'. .

.

.'

.

. The general power system ..urtc control' prObl.. consists basieally. ". .'

of two parts - voltage control and speed ·control. These twc;:control .

, '

processes .interact to a certain extctnt a.,d should,both be,fnclu.d.ff

llleanfngfu1. �sults, are to be obtained f.-ollt studies whfch ,tncorporate ·

th, plant _del. With the size of interconnected areas be�o..fng 1ncreas-· 1;'91y large .. and .nON cCIIIPlex the concept of treating tile power Syst., '

,

•• ,. of

Page 33: Laha Asoke Kumar 1972 - University of Saskatchewan

., ....

as • ,1ragle ..chint-1nfinite bus -'ctel' is being discarded fn fayorof the lIult1-machine systetn.

'

...

.. ;

'The dynamics of the phys1calplant _de up of IIIny C�1natfonsof IIIch1nes can be described �th..t1cal1y by extending the equations

of the single .Chine syst•• The end resul.t is a' set of state space,·

equations of the fonn given by equation (2�1) and (2.2) ·de.scl'fbed. sch_t1cal1y in Ffgure 2.1.

. The' power system equations can' Hst be descHbed by treating': the'·.· system description .as groups of'differentfal equations deScribing"

.

.

. ,"

major portions of the system 'as fonows: •..a). The differential and algebra1c..:equattons des.crtbing the power

. flow in the tntertonn�tec" tfet1nes. ".'. . . '..

....

::·:r: ..... , ..

. .

". generators ... '..

......

: .. : .

.

.. 'c) ···The differential equations :deserfbfng .

the 'dynaMiCS 'of "the'.speed· gOYe",ing devices •. e.g. governon and: prime movers •.

:

.

4) .The· di ffet'entia1 equat10fts desc:rtbi ng.

the (Jjna....es . 01; the

excftatfon:systems. i.e�. the exc1·�". Irtd voltage ·,regUlato\-S.::: ..

.

.

The abo� equations are essentfal'y non-11near and· since one fs.'

inteNsted 1�: .·i.ocll stabilitY'. �e linearized fo"" of the equat16ns" '.'.

.. ..

,..... . .,.' ..

· 1.s required.: These are obtained bY'expand,ng the non-litle.r �uatton$..

about .1' quiescent . operating point•.IS 'per equation" '(2.28). and' n8g1ec�ting the .hfgher order �rms F. The resulting 11near equations .are· ';'

referred. te ·ls····'.. ,1 signal' equations'. D�J4t4.ff· the �a· nO_,t1on .

'

..

�: .'

t., '

: "<, "

:' ,'..

.. :;.

.

.. ,'

Page 34: Laha Asoke Kumar 1972 - University of Saskatchewan

21.

which sign,1,.s the small signal variables in eq�at1on (2�8), the

resulting equations can be WTitten in the state spice form

• •

X • AX + BU + GF .

·U. KX.

(2.30)

(2.31)\ .

.

.

rhese two equations describe. the dynam1� of a power system .

.

.

.

.

.

.

'. '. ..

.

consisting of the process .nd the auxiliary controller, [K), whic� is

to be designed.

Results obtained from stability investigations on the small signal

representation are valid only in a small neighbourhood near the

quiescent operating point. No conclusions can be drawn �th regard to

the stability of the system for large excursions of the variables on·. .

.

the basis of the results obtained in a study using 'small signal' fonDs.

The linearized model is a valid representation of the actual system.

when the generator is subjected to small cyclic load variations, a

.. condition which predominates in the norwqal operation of a power system•.

Page 35: Laha Asoke Kumar 1972 - University of Saskatchewan

22

3. STATE SPACE MODELLING OF A MULTI.MACHINE'SYSTEM

3.1. Introduct1�

As outlined in the preceeding chapters ,the dynamic stability.

..

.

.'. . .

pr.Oblem �st be approached from an overall system basis. In a mult1-.. . .' .

.',,'

machine system when there are a 'number of generitlJr'S involved, it is

frequently 1mprac'tica 1 or uneconomical to simulate on a df�iital

computer th,e cOliplete sets of differential and al�bra1c "uationsdesf;r1b1ng the whole interconnected system in detail. In' order to

adequately study the resPonse of interconnected machines or groups of..' .

machines, 'ft is conVenient to represent those synChrtftous machines in, ,

detail where dampinq forces are felt to be significant. In contrast to

this it is expedient it') areas remote frem, the machines being ,1nYest1"'!'

'gated and where the amplitudes and phase changes of the system voltages

are s,man, to s1mp11fy the system representat'm. It is therefore '

beneficial to divide the complex power systel'l, havin,g " machines into':the foll�n9 sUb-system:-

a) Study System - This system contains m plants made un of those'

, ,

machines which are closely electricilly coupled to the plant which is

of fn�erest. Each simulated plant model in this block includes,

g�vemor. p,rime mover and voltage regulat'(Jt" representat10n and the

�nerators are modelled us11')9 Park's equations or. slight mGtif1cations

thereof.

b) Externa,',

Syst.em "" This part canteins p qe"_nt1"� pl�nts which

are of second�ry importance.' The madels include 1nel't1al and ,�peed

Page 36: Laha Asoke Kumar 1972 - University of Saskatchewan

23

damping effe.cts only and· are represented by I cOnsqnt. voltage behind

the equiValent ·.transient reactance.'.c) Inf�.nfte 8us - The balance 'of:maehines .(n-m-p) are represented

'.

by an equ1va'lent 'Infinite'Bus' ",odel�' This is includ� if 'the m + p. .

. .

Rlachine's have a total capability wttich 1$ s.11 relative. to a coneen-.

.

"

trated energy source ',n the syStem.· In s;stem (a) and. (b) it is also

assumed that when two or mOre' �im11ar machines are connected to the.

same node, they can be representeef by. an"equivalent parallel machine.'. .

.

..'

.

.

The above subsystems are illustrated by F1qure 3.1.

The· "st· Of this chapter 15 devoted to dev.1Op1n� the·: small signal

equations of: the tfel1ne.: qene�ator's, prime mtYIet's and !tovernors and

automatic v�ttage.

regulators. ·A.list of constants and Ya��ab.1es used

in the fol'lG-iing equations is given in Appendf'x A� •"

. '.... .

.

.

·'.3.2. Mathematical Mode' of Tie-line Equations': , .

..

:. : ". ,

. \,,'

.'The· genera1 configuration ,,1 an interconnect,d .,_r' sYst. : tI .

'. .'. ". .

. .

) .

.

n 'nodes:ts shom in Figure 3.2 ••...

The c�t t.f in· 1:h� jth node of Ftgore 3.2 can be Wl'ftte.. as

1j• t1 ·/(v:.-vk)'dt·.".·.·.·· (a.n

.

.

.k-l L1k.··.· ,J '.

.

k,rj··

where th� tie.line resistances and admittances are negleeted�'.

",' . . ..

".. .

',' ... ,"

Equations descr1b1n� the behavior of the entire s�stent a� '

..

.

developed �. the basis 'of a Nferenee' frame' rotating at- sYnchronous·.

. .

angular ;v,.lOc1t;v. Because of the different al'lgular position's 'of the .:

.

quadrature "axis: Of. eath machine r�or' ..e'latfv� to the. ref'eren,ce p�asor,

.

Page 37: Laha Asoke Kumar 1972 - University of Saskatchewan

..j '".. NODE OF THE SruDY SYSTEM ( Is: �$·III)

r---- �-

� -----�----.----�------�.--,-..,.---��..... - ...

I .

1,

II11II

.

,.II·I·I.

IIIII1I·I.I•,II . 1L

.� ..."'!'"'------�------:...----------- ..----.... - ........

.24

Ui'.MITilUI

• r--,TIl- LI" ---: :

I I

...IiM.ATIOIt I:I

L__J

I

L_� �.;.. .. .:.- ....--.,.-....--�--..;------...----J ...

Figure 3.1 General configUration. of the S.._ys".

Page 38: Laha Asoke Kumar 1972 - University of Saskatchewan

'. '··25

VrJ

v·I

) i·J

,',. .:.'

..

':..;..

Figure 3.2.' ScheNt1e representation showing the 'ccnnection 0' the

jth node to the other nodes.

Page 39: Laha Asoke Kumar 1972 - University of Saskatchewan

26

.

the reference frames far each machine is different and durinq distur­

bances they oscillate With respect to the synchronously rotating·.

connon reference frame. Machines are connected to the.network at

..

. �'.. .

·

their specific nodes. The DQO voltaqes and currents of these ftOdes are.

.

.

. ..

· ·related:·to each other by an axis transfonnat16n. The relative positions

of the Q-ax1s or the rotor posf.t1ons of different machines with respect

to the COJllllOn rotating reference frame are shown in Figure 3.3.

The relation of the phase ·voltaqes and currents with respect to· the DQO components of the jth machine is given by ec:tuations (3.2)' and

. .' ..

(3.3).

(3.2)

.

dj·.

qj."Yk • vk

.

Cos 8j vk Sin 8j ; 1 � k � n (3.3)

where 8f is the.intantaneous angle betwen jth rotor axis and fixed

st. tor frame..

.

Equation (3.1) can be .rewritten as

d n 1.

- (1 j) • Vj'; --dt. k-l L,ikktfj

(3.4)

or

. d. (1 ). 1 '1-.(1t j ._-j

Lpj . (3.5) \

1 1 ·1·+ - +- + - .. - +- ·(3.6)

Lj1 Ljk .. Ljn

Page 40: Laha Asoke Kumar 1972 - University of Saskatchewan

27

.. Substituting'· (3.2) ··into (3.5) leads to

dj C· 6 qj S·1 e. Yk

.

OS.vf- �k. n

j (3.7).Ljk .

er .

(3.8)

RfFERf;NC:E FRAIU ..

����--�--------

F1gu�· 3.3; Diagram shorlng thtt position$ 'of 0 ax1$ of cUff�rentmachines with re$J')ect to the refer..ce frame•.

Page 41: Laha Asoke Kumar 1972 - University of Saskatchewan

28

..Equating the coefficients of Cos' !.1 and Sin c!.1' one can write

S f dj _ " qj's e .. V..J_dj _ � Vkd.1

. j .i j. .

k�l- (3.9)

.

lp'� k,.j Ljk

.

.'.

v q' n 'v- q' .

- 1jdj S 8j - s f ..qJ .._� + a .:.

k.. '

(.3.10).

.

. ,J kal-

.

Lpj k,.j· Ljk

where S a Laplacian ooerator

Equatfon (3.9) in small signal form fs given by

S 1 dj_ (1 qj + f qj)(W + s � ) - I qjw a

j j. ,1 j j. j . jdj' n y.d,1L� r k (3.11)kal-

l j k,..f ljkP.

or

s ., dj _ I qj S 6 -'f Q,f W' a Vjdj _; 'kdj '.. (3'.• 12)'j j j j. j k·l-

Lpj. k,.j· .l.fk..

.

. Perunitizing all the varfables in equation (3.12) using the Xad base

per unit system yields,

S i dj. dj' n y' dj

3 a' I qj .:..:t + i qj + i - t ..:.L..Wb···

. j Wb. ,1

lpj' kal lk,rj' jk

(3.13)

Similarly equation (3.10).1n small si�al and per unit form is (fiven by,

S 1 qj' "IdjS6 .

V qj n vkqj3 a -1 dj_ ·3 ·1 + :L. - t (3.14)-

w. j , .

w� Lpj kal Ljkbk,r.1

Page 42: Laha Asoke Kumar 1972 - University of Saskatchewan

.

29

..

In'order to maniPulate' the tie-line equations given by (3.13).

.

. ." .

. '. .''

.

.

and (3.14) into a f"nn that can be directly used in state space

modelling, the. small signal fonn of the vOltages vkd.1. vkqj are.

. '. .

.'.

.

replaced by voltage components referred to their own 'reference axis.. .

The relationship between the' D and (\ axiS 'components of voltages of the jth';

and kth machine contained in equations (3.13) and (3.14) :i5 (Jiven by '.

.

(3.15)

(3.16)

The sman signal fonn of the above two equations (3.15) and (3.16)

yields,.

dj''. dk'" .

.

.' dk .

. .. '.Yk ....Yk. Sfn (�kjH. cSk �j) + vk Cos (cSkj)·

.. - ykqk COs (6kj)( 6k • 6j> - 'kqksfn hkj) (3.17).

. ......

.... .

'..

:. .

. .

ykqj • ykdk Cos (cSkj)(cSk ... cSj>, +V kdk Sin (cSkj)

(3.18).

. . where 1 < k' < 1ft- -

. .

For t.he 'extenta l' system plants where each generator is repre­

sented by a constant voltage.behind the transient reactance, equations

(3.17) and (J.lS) are m�1f1'ed as follows;-

.. '.

Page 43: Laha Asoke Kumar 1972 - University of Saskatchewan

., die. 0Ie

v. qle. 0.k .

.

V .dle. 0.... ". :.Ic •...

'

.. '.' ",

.

.

Vieqk ,,·.'Vk:

where In < k � (In ... p)

. 30 .

.

(3.19).

(3.20) .

i

.Thus the small: s1gn'a1 forn; of tile ·v.,lta(te equat1'ons' for the .

.

'external' "systent IIlchines 'can be obta1n&d by substituting (3� 19).. into (3.17) and (3.18). fhe' resulting equati'ons' are given by (3.20)

and (3.21) •.'

.. dj .

(" )"( ).

"k .• -Vk Cos &kj . cSfc ... 6,1 .'

. (3.20).

. ,....

�'kqj -: .�Vk S1n (cSfcj)(&1e -a:;l: ....'

.

(3.21)

SiMilarly fen' the infinite bus systelll, The follllWfng 1IIOdiffca­. tims' are ..de, to' (3�17) and· (3.18).;'

vdfc �, 0

.. k ...

,V' qk it' y' "

.

. k. .

. Ie

':y' dk. • 0·".Ie .

V.fcqlc ... 'VIc

where'. (III ..+.p): < .. � !. n "

.

. ..:

.

..

,

.

..

:

'(3.22)

) ..

t3.�3).

The small sign'al :fonn of the ··�r.t1nent equations for fnfin1� ·bus .

. ..' .'

system are ·obtained by' substitutf"9 (3.2t.l1nto (3.17)'.an'd ('3�18) �.

The'" ',' .. .

',.; ..

Page 44: Laha Asoke Kumar 1972 - University of Saskatchewan

31

."

.resulting equ.t1ons are given by.

.

'kdj - -Vk Cos (6kj)(6k :- 6jl - Vk Sfn (6kj) .

,�qj - .Yk Sin (c5kj)(6k .. 6j> + Vk Cos (4kj)

(3.24)

(3.25)

substituting equations (3.17) it . (3.18) •. (3.20). (3.21). (3.24)and (3.25) into (3.13) and (3.14) the generalized direct axis node

equation for the .1th machine of the m machines represented in detiii.·is'given by.

I Qj Y. dj mI. dk.:L ..

s �j +' 1:r ..+ .J...... (CQ

.

- t - "'k os 6k1W L 1(-1 l . ,

b..pj. .It".i jk.

n

+.1:k-m+p+l

v Sin �. m' y" dk S1··n· �.. +'y qk Co's' .',. k . Qkj � [to .

k. Qkf· It· . Qkj

ljk ·k-l ljkk"j

n+ t

k..i (3.2�)

. arid the quadrature axis eQuition.. by•.

S qj Ijdj S 6'

.

y.-qj m.. j .

1 dj t.+ .:.L. 1: ·1- •

j- -

k-l._

,Wb W Lpj lkj. b k"j

Page 45: Laha Asoke Kumar 1972 - University of Saskatchewan

'.." .. 32

.

. In·'+ [( t

kal. k"j

(3�27)

··Equations (3.26) and (3.27)' describe' the· tie.Hne 1nte..eonnEt(tions for',

.'. . .

'..

t�e n machine systehl. The equivalent, 'tie-Une Plr.�ters can be Nldi.ly.

obtaf.d from "etWork' reduction �C:"hn1que.,� All steady state, yoltaqes·. :'" .:' .�.: ..

a,ut angles can. be obtained directly. from a load. flow' fOl' .

a given' set ··Of.

operating conditions. .

.

.

.

'� ..

"

..

\.

\

3.3.' Mathematical Model of Generator EquationsThe dynamics of the' synchronous:gene.-.tors are descrfbefJ by· Park IS

eqUation's .tn a reference frame f1�ed to:1t$ field winding and'rotating'with it -.The general equations desc�bing >the characteristics. �f" ,'"

. . '.. .

synchronous generator can be written in per. uniti%�d form using Xad ..:

base(�.:4) '5 follows:�' ... ; ..' :_ ..... : ...

:.._...

"..' .• . ··l"S.. ... .;:

..

_: >:,�·.·iisS1·f : La;';kd .... .:� .

'd • -(R� +- ) .1d + hid,:-.+ .. 'il '.+ .

W� lad ....kq. (3.28)

: Wb .. b ..

·.

b

'".

.

,."

� -,

"., .:: .... :

...�:. ':::� �:.. :'. ':. :' :'i

;

Page 46: Laha Asoke Kumar 1972 - University of Saskatchewan

33

(3.29)

(-3.30)

(3 •.32)

t-

-' t .... 2HS CI) + 0,.,. m e. '; .' .'

te = .:�. (Ladiflq + (L,,-Ldlidlq .. L.dlkdVlaafknfdJ(3.33)

(3.33a)

.. .

An. initial asstmption in the • study· . systPm mcdels is' that t\-/O or more sim-.

l1er eenerators which are . connected to a COOlmOO node can be represented. . .

. ..

" . .

by a $1nrJle-mach1ne ecluivalEmt. The equivalent reststances and reactance

parameters are. obtained by treating them as if the corresnondtne resis­

tances or reactances of the individual 'machines �re coonected in·parallel.

The eouivalent inertia constant is the sum of the inertia constants of

the individual machines. The other assumptiC1l is that the damper

circuits and currents ikd and iko are also neglected. The electrical

effects of the ·damner windin(Js on the stator and rotor coils is assuMed'

to be neq1iait"lle for the linearized model and the me:chanical da"",inQ.

.

". ..

contributed by these w1ndfnos is assumed to be included in the da�er :. .'

con�tant n a lana. �rlth the �rime mover and external system da�"ina. other-

56.

.

".studies done indicated that the overa.ll effect of·damoer windinns is

Page 47: Laha Asoke Kumar 1972 - University of Saskatchewan

'34

to generate two large rea,l eigenvalues which have ,little effect on the"

dynam1� stability 01 the system.'

Park's �uat1on (3.28) - (3.33a) can be r.ewrftten with the above

ass�t1ons' "�cluded', for the jth Nchine of the' stud;' system generators

as follows;.'

L S 1 " L 'S1 djffj , fj. R' 1 ,+ adj j +'y,

-

1j fj W fj"Wb b

" . LS1dj LSi, 'V

dj • _ R 1 d,f' + dj j + L .. 1 qj + adj fjj " a.1 j "

Wb ,',qj j j W,b

,

'

" ',"

qjqj

,

dj qj , LgjS1 ..,

Vj • - Ld�1"jij "

-, Rajij -

W". '+ Ladj�jffj'

, b

,

(3.34),

,

(3.35)

(3.37)

The small signal gen.rator equatiOns can be derived from the above.

.: ..."...

. . .

eq�ations by expanding them about an operating point according to

eQlAat10n (�.28)' and neglecting 'the, h1qher order temS F. The resultinq

equations listed �low are in a fo",,', which allows them to be tran's-,

"

,"

fo�d di�ctly 'into ttl, state �pace notation,"

djlff! S if! Ladj S 1

jat a& " - Rfj 1 fj+ , + Vfj

Wb Wb,(3.38)

Page 48: Laha Asoke Kumar 1972 - University of Saskatchewan

. !

···.35. !••

1

.. '.: .....

.

'

. '.

.

elj..

.''.

.l·. I' qj.. dj .. ' 'dj ' ..Ldj S 1j'�'" ..

j j jV '. :;.,. R j1j.. +. - - + L i q

: + 9 . Saj. , ,a.. ,. .

'Wb. .

. qj j Wb' j

..'

(3�39)�.'. '. .

(3.40)

2M s1. a. I)' SIS

. if '. '.', '.".. j J .' - \nj .,. tdj ". 3 . t+ ::stULqj <II .ldjlwb " '. wb:· wb

.'

.'

qj dj' .'.

"

qj -.

'

.' dj'Ij 1j + Ladj Itj 1j . + (Lqj.,. Ldj)lj ,

. qj '.

q:t ..,�., ..,

ij + Ladj Ir� 1fj}

.... ',.'.:"

. '.

(3.41)/",. >

The generat.or, mOdels f� the plants extemalto '''studytt systemare repre'sented by a constant voltage behind trinsient reactar)ce. The,

.

. ',:. ; ":, ..

."

'..'. ..'. ",

.

',.:..

equations .-elating the mechanical torque, electr1c�l oUtput and,inertiascan be written for the Kth generator in per,' unit forM as:�

.

.

.''.. .

,

. 2H '526 '.

'.

D', S, "',..

.... '

.

'.. .' Ie Ie ·k k (. tmk + �dk • tek +.

,

+.. 3�42)

. .

Wh, Wb

1It:< K i;�(III+p).:

.

. ..

',',,", .. r,' ;-, ',.

,,'

Page 49: Laha Asoke Kumar 1972 - University of Saskatchewan

36 ..

.

.',..

. ". ..' .: .." ".

.

.' '. .

The elect,.1cal torque tek can be' Written as.

-.

:

Wmk..

. '.' • ·'.qk.'."

.

'. dk

'

qk.'.

tele·'Vb

[Ladle ff(( fie': + (Ldk • Lqk) fie fie ] (3.4S.)

Since the plants belonging to t"':·extemal· System generators a ....,'. '. . .' ,', '. '. ,: .

.', .

represented by ·a constant voltage behind transfent Nactance. the'.

-...' '.

.. .

..

equat10n (3.43) reduces to .

.

W.

t... mk L

.

f 1 qle'.

ele·- adle fk IeWb

(3.44)

I.

or'.' W

.

' .....

t'. ink' f qk ..

'

. ek· - �. Ie ...'. ,Vb

.

(3.45)

", ':.

The exp��sfo" for fieqk: �.n be obtained from the tfe�11ne equations

as de�fved. f�' the: 'study' system generators. This expressfon for 'f'kqk :"sgiven by equatfon (3.26) and repeated· here for c(llvenfence.

.

S fledk '. Ikq.. Ie. sak'" .

.

. �vdie ... ' .. . '. .

• + f.kqle + -l-.... .

-.t ...!.. ( ,'I' dj Cos.a· •.

. j.·I· j.... kj.Wb ' Vb Lple' Ljlc .

. .'

. "

f·�"·"dj'.

'qj... >: .

-L'( -V'j '. S1n6kj. + Vj .. COS4k.j)"j

jk .

.

.

".

.' .

n ,

... t

.'

j.....l.j� .

.< .

"

Page 50: Laha Asoke Kumar 1972 - University of Saskatchewan

. : . 37

..

'

..'

, For, the generators,belongi�q to the "extemal' 'system, the

derivative tems of the :current can be �eglec:ted.:Moreover, there will '

.'

be·.·�o direct, aXi.S component of' voltage vkdk. These cons�r.aints can be'.',

.':' :' '. ". '.' '.'

expressed mathematically as,

Vkdk '. 0

S1kdk--'-0'(3.48)

Vb

By substitUting .(3.48) into (3.47)ikqk can be obtained as a'fu�ct1on of,,'.

.

'.. .

,

the currents and voltages of' all other' .odes. Tbe result is given byequation (3.49).·.

ikqk • _Ikqk

S4k + ;. II ('tjdj Cos4kj -+ ¥j

qj Sin4kj)•...

,Vb ,', j-l jk ''

, ,

m. + [ 1:,

j-1

...; ..... :

n'

V! COS6k.1 "

'

E � -)5 (3.49)

J--.&.1'

t'"

,k'-nIT' jk

',

�,.

.

'.'

...... ...

' .

. ... : .... :.:.:. .

Substituting (3.49) into '(3.46) and th� resultant i,nto·(3.42) yields,

Page 51: Laha Asoke Kumar 1972 - University of Saskatchewan

38

o ._ Wilt\' . I qk.

k It''' k k .

b '.

). S "k

\4mk m Vie. dj qj'+ - t - (Yj Cos�k� + v ... S1.n�k")W j.l L .J J.. J

b. jk

Wnt m. Vie qj

.

dj- - E - ( V

j COS&kj - Yj . Sf:n�kj)cSjWb j·l Lik. ."

(3.50)

Although the generalized equations in summation fo� as developed

in the pre.ceeding pages appear to be carlplex. the state space 10m

describing ·the dynamics of the generators belonging to· the 'study'

system and 'external' system can be easily derived from them, The

details. of 'd1fferel1t'matrices" associated with the states describ1nq the

dynamics of the. generators are «jiven in Appendix B. The above equations·

are sufficient to calculate the dynamic stability if the effects of the

plant controllers are neglected, or in other words, if the input power to

Page 52: Laha Asoke Kumar 1972 - University of Saskatchewan

39

the generators and f;eld voltage are assumed to be' constant. J10wever.

. �.

.

.

in this thesis the effects of the plant controllers are included and

their dynamics are described in the next section.

3.4. Mathematical Model of the Plant Controllers

3.4.1. Governor and Prime MOver

A generalized block diagram �f the govern'or-prime moyer system

is Shown in Figure 3.4. This form of controller representation is

identical to the one suggested by General Electric to represent

hydraulic turbine in their transient stability proqrain and is flexible.

.

.

..

enough to cover most other types of:governor-pr.1me mover combinations

encountered in various' power 'plants.

In deriving the transfer function shown in Figure 3.4 the, non­

linear differential equations descr1bin� the operation of the prime

mover �re expanded about an operating point in the, same manner as

the generator equations. The, differential equations leading to the

state space form of the governor and prime 'moyer are obtained from,� ,

Figure 3.4. They are,

+T43 T

3JtrJ ..

'

T4.1T3J

"

Tsj

Tc.1 T5.1 T

cj

(3.51)

Page 53: Laha Asoke Kumar 1972 - University of Saskatchewan

.....

1 hj· 1+ ST3·.·____ .....��..... JI + S TeJ I + S Tlj

CJ· . I + S r.j1+ S T5j

.. tmJ

S Ii

.•. i,

Figure 3.4. General block diagram of the qowerno....pr1"" �0'Ie" MOdel

.

I

Rj

.

...

of ·It.lfdyll system and -Ext.mi,- systilt plants.

Page 54: Laha Asoke Kumar 1972 - University of Saskatchewan

41

T TT � Sgj • hj· :(1 -�) - g� - �S,I T ,I Tcj . cj

• tj_.:.:.at - hjr ..

WbRj

(3�52)

(3.53)

3.4.2. Autanatic Voltage Regulator.

The stabili:ty of. a power system is usually very sensitive to

the parameters of the voltage regulator loop. and hence in ord�r to ...

.. .

obtain nean1ngful predictive ·results these elements·must be modelled.

.

fn detail. Excitation systems for synchronous generators have been dealt

with in general. by Kimbark45• A schematic· of a basic automatic voltage

regul:ator .ts shCM1.in Figure 3.5.. . .

.

The fonn of voltage regulator (selected· for the� study) was· comp�:rfsed of· a magnetic amplfffer-amplfdyne. combination. as shOt'" in

Figure 3.6. In this block diagram the transfer function Kaf (1 + TanJ S)

1 + Tadj S

is equivalent to the combination of the m�9netic ampl1ffer..ampl1dyne

equivalent and the amplifier feedback path. The ·last block � is

Vfbj.the conversion factor calculated on the basis of th� Xed base. This.constant nonnalfzes the actual exciter voltage with the base field.voltage. ·This type of excitation system representation closely rese�bles

Type 1 of the four ex.citation systems to be used in computer represen­

tation as recommended by IE�E Workin9 Coomfttee46, Various other types

Page 55: Laha Asoke Kumar 1972 - University of Saskatchewan

42. i

;

"

vr SENSING Si GN "l P'OW£R MAl N v-

10,- ..

CIRCUIT AMPLIFIER AMPLIFIER EXCIT�� ..

" ,

AMPLIFIE,fSTABILI �ER

,

..

. : " ' '

, ,

:" :: '2t, '

' ,

MAIN EXCITER " '

,'

STA81LIJER-

"

" .<;'

":

TERMINAL VOLTA-....;,. , Vt

GE STA81LliER,

,

. .' .

, Ftgure 3.5. Volta�' t"eCJUl�tO,. e�ts for a rotary t"" exciter.,

,

Page 56: Laha Asoke Kumar 1972 - University of Saskatchewan

43

K.j Vtoj. KajU+Tqni.S) V.xj.

I.. T. J S.

1+ Tadj S .

I

Vtbj

i a f b j K a fb j S.......----i--_--'

.1.·.TofbjS·

Figure 3.6 Block· diagraM for the automatic voltage regulatOr01 the ·study" system generating plants.

Page 57: Laha Asoke Kumar 1972 - University of Saskatchewan

,. 44·""

of regulators are in use and these forms: can be readily. incorporated .

.

into .the modelling procecure,

The differential equations deScribing the' voltage retlutator

dynam.1cs can be obtained directly from Figure 3.6 and are given by...

. .

. ... .. .". ". .

.. .... .

.

S (Tadj Vexj � KaJ Tanj

Vtaj) .� Ka,1 Vta.i

- Vexj.

'5 Tej Vtaj • - Vtaj .+ KeJ vrj + Ke.1 'Uj - Kej'1afb':

.

(3.54) ..

. .

.

...... .;. Kej iYfbj - Ke�iVj'

.

S (Tafbj 1 afbj-'Kafbj Vexj') .•

'

.;. ·i·afbj·

(3�55) '.

.

'(3.56)· .' : . '. .

'..

S. ,(TVfbj.·.fVfbj ... Kvfbj· Vj) .••1·vfbj ..

·

.... ," .(3.57)

· .Although the models .of· the governor' prime" mov&rs aod vol�age .'

regulators as shO\�n 1nFigu�es 3•• 4 and 3.6 app�ar tobe restr1cted� 'the'computer pr'ogram:used for this .study 1s.:.flexible enough.. to.atcomodate··

other types' of nlant controllers. In the *pecific exa�ple described. in.

the next chapter,involving'the three-machine reduced' model of a p�rt of. .

�.

Saskatchewan Power' Corporation. the plant controller models of Squaw. .

Rapids and ,Queen Elizabeth plants are similar.to the one$ described ....

.

..

.. ..

.

in' Figures 3.,4 and 3.6.' ...

·..:. '. ,",:'

. 3;5. Transformation· Into State-Space Fonn: '..

.

.

.. As 'ex.Plained' in·Chapi;e.r 2.1. the state spa.c.e f.orm .of the ;set$·..of ..

'. d1ffe.r.e,rti�1 equatf.ons .. des·cr1b1ng. the dynamic�' of. the Pow.e.r' 's'yst� can

.

'

.. :

.

, .

..', . . ',

.• ,'.,0'

.'.

. .

··.·1 . ","I

Page 58: Laha Asoke Kumar 1972 - University of Saskatchewan

45

be written as:

X = AX + BU + GF (2.1)

(2_2)y == ex

where the vector X describes the states of the system.

The above two equations can be derived as follows:-·. . .

By sequentially defining a vector X for. the variables on the left

hand side of the equations developed in sections 3.2. 3.3 and 3.4. it

is possible to set up a matrix equation of the form

OX .• QX.+ EZ + RU + SF•

Z • JX + PX

(3.58)

(3.59)

where:·

X is the .vector describing the states of the system•....

' .

..' .".

.

.

-...'. .

.. :" .' ..

"

.

X 'is the vector containing the firSt derivatives of the' state

'. vari ab les •.

. ..

. .. .

z is the vector describing the linearly .. dependent variables.

of the'system•

.

U is the vector contain1nc:t the deSignated output variables from

the controller.

F is the vector containing the' input variables. and.

. .

D. Q. E, R. S, P·and J are the 'coupling matrices.

Substituttnq (3.59) into (3�58) leads to,.

"

..

.

(0 .. EP)X • (Q+ EJ)X + RU + SF

..

(3.60)or

i.' (0 - EP)-l (Q + EJ) X + (0 - EPr-l RU + (0 - Errl SF (3.6i)

Page 59: Laha Asoke Kumar 1972 - University of Saskatchewan

·.·46

let

(0 _ EP)-l (Q + EJ) .; P-

(0 - EP)-l R -.B

(0 � EP);'1 S . • G.

.

(3 .•62)

. .

Thus equat10n (3.61) reduces to•

X • AX + BU + GF

which is the same as equation (2 ..J).. .

.

In order to derive the coupling matrices O� 0, ·E, R, S,· J� P of" .

. .

the. �uat1on$ (3.58) and (3.59), the state space equati·ons of each. ... .

.

section of the p·ower system is first derived, and . then they are inter-

linked ·to each other by algebraic manipulatiOn •.. ". ....

• .'I

"

Le·t .

... :..... .

. ..

.. . .

.

.

Xl � the � vector representing the sta.tes· which describe· the· .

.'. .

·dynamfes of the Synchr010us generators 01 the. "study".

'. '. .

.

system (Ref. equations 3.26, 3�27, 3.37, 3�38·, 3.3�. 3.41)•.

X2 .,- ,the vectpr. representi n� the states whi ch deseribe the·

dynami cs .

of :the 'external' sy$terll genera:tors (ref. equation.

j�50).·'"

" .

.. ..

'. '" .

.

.. Xi, ·x4 �··the vec�ors rep'resenting �he.·states wh"chde$·c�be the·. .' . .... .

-: dynamics of governor-prime· movers of the 'study'. system atid.

'external' sys·tem respectivelY(ref. equations· 3.51, 3.5·2•.. . '. �'.

and ·3.53)

. X5 - the: vector· reJ)1'.'esentfng t� sta·tes which ·.de.scr1be the dynamics·. . .

. .

.

of .the·autOlMt1c ·voltaqe.

regulato" of the: ·stud.\f·;··System .

generators (ref. equations 3.54 ..... 3.57)�'. '.' \1"..

. :.',

" ,'"'" ....

Page 60: Laha Asoke Kumar 1972 - University of Saskatchewan

.

'The vector X can therefore be·written·as,.

.;. �'. .

. .

':.

.

.. ,.'..

X •

X ... 1X.2X3

X4X5

" '. .' . . .

EqUations (3�58) and (3.59) can therefore be rewritten in

47

(3�63).

partitioned fom as follows:";•

Oil °12 °13 D14 015.

X···. 1•

021 ...... °22 °23 D24 °25 X2•

°31 D32 °33· ... D34 0 X3 •

·35.• .

°41 °42 D43· ··°44.

°45 X..

4•

°51 .052 • °53 °54 °55 X5

. �

Qll· •.. Q12 Q13·· . Q14 Q15 Xl .E1

Q21 °22 Q23 Q24····· Q25 X E22

031 °32..

Q. Q34 (f X3 + £3 Z +...

.

33 35

Q41 '142 °43··· °44 Q45 X4 E. 4

051 Q52 .°53 Q54 Q55 Xs ...• ES

..

;...

Page 61: Laha Asoke Kumar 1972 - University of Saskatchewan

48

.. ,

..-;

" RI, SU' S12 S13'F.j "

,R"

'S21 S22' , ..

,

S23,2, '

'R,' , U, + S31 " S32 533, F' (3.64) "3

" 2

R4 S41 S42 S43RS ,SSt SS2 SS3, F3

,Z Ii [JIIJ2IJ3IJ4I'Js] ,tXtlX21X3'IX41XS1T,'

.

'. • . e. 4 .. ,� • T+[PIIP2IP3IP4IPSl (Xl'X�IX3IX�IX5]

"

·

The rest of this section involves the definitiOn Of all the

,.

'

, (3.65)

".

.

.

'. '. '.

,

vari ab les 'and" techn" ques to ea leul ate the subritatr1 ees � "

,

"

,'3.5.1. State Variable Formulation for the, 'Studyi 'SYS�,,''. Genera tors.EQuations (3.26), �(3.27) and' (3.41) indicate' that there'

are five first order differential equati "'s requirtd to describe the.'.. .... , .

',: :,.'

dynamics of each • study' system �enerator a"d hence five 'state vart'ables'

are required for them. let' fjdJ, Jjqj, lijt c5j and S�jbe selected as z

the state variables for the ,1.th machiri�. ,,"'

. :',

(3.66)

the • study' system qenerators. ...

�"

.' �" . �.,,'

: ','.

.� .

..

"

.;'

Page 62: Laha Asoke Kumar 1972 - University of Saskatchewan

or Z.·

y dl1

.

.

,. ql. !1

. d2Y2Y q22

·dmYmY qm:m

. 49

Z€R_· .

. ·"Zm (3.67)

. For this particular configuration the vector U CGnsists of ml

controllab�e outputs for m1 'study'· sys_ generators. It 15 .sslIned.

that the external cOQtrollers are to be connected to ml' generators.

U1

U"'! -1

U�It follows· that. m1 �m

The vector F contains two subsets of vectors - ·F1 and F2asspc1ated wfth the 'study' system generators..

. .. .

.

The d1s�urbance vector Fl comprises 4. and "t>- tile angle and

�oltage variation of the equivalent 1n.f1n1te bus.

or U·

U·2

.

(3.68)

(3.69).

(3.70)

Page 63: Laha Asoke Kumar 1972 - University of Saskatchewan

50

. ... .

... .

·

.' .... . .•... ..•. ..•...•. .

th':

.

.

.'·

. The vector F2 comprises tdj' td arid 'Yrj for th'e j ma�h1ne 01

'the .' study'. system' generators • :

"

. �.

.

. or.

T"--------

.' tdm tnn vnnl.·'.'

.

(3.71)�

....."

"

.

.

Thus. USing state, space techniques on equations (3.36). (3.37).'. .

. (3.28). (3.39) � and (3.'41) the coefficient matrices associated with.

vector' Xl can bedeveloped. These I'1atrices are given tn deta111n

Append_1-�. ·13.

3.5.2. State Var1'able Fo""ulat10n for the 'External' SystemGene rato

.rs •

.

Equation (3�50) indicates that two state':variables:are.

necessary to describe .thedynamics for each generator of the 'external'

system. Let 6k andS�\' descr."be the states of the: kth lex.terna.l' systemge.nerator,

.

.. .'

.

Thus. one '.can wrf te

.

. x2• [�l S151 c$2: S152 --...�..�-- 6p S8plTX2£ R2D (3.72)

Vector F3 contatns the disturbance input variables tdk and trk .

for the kth machine' of th� 'externale. system. .

'"

or. .

.' ...: ". .

.

:F3 •..[t�11 trl td2 tr2.With the abOVe def'fnitiQns the state '�paee fonn .of the :coeff1cfent: :'

· '., . . " .,":..

matrices. associated wf,th vector X2can·be·wrftten. The� are g·fven....

··

Page 64: Laha Asoke Kumar 1972 - University of Saskatchewan

,

51 ,"

'

in Appendix'B.,

',

3.5.3. State Variable Formul�tion 'or 'the, Governor,,"riwne movers,

,

of the ·Study· System and "Extemal' System Plants.. .

. . .

Since the mathematical model' chosen "or the cH"ernor-prime.

.'.

mover is essentially a 3rd 'order system as can b� seen from Fiqure 3.4,: '.

.

. .' '.' .... . ,',',..

.'

',and equations (3.51),. (a.52), and, (3.53). :the variables tid' ,9j' h,1 can,

, be designated as the state variables 'or the jth plant. This leads to,

:,

(3.74)

.end:

.

.. .

X4 • [tm1 91 hl tm2 92 h2,

The coe'ficient matric.es ass()cfated: with the vectorcs X3 andX4 are"

developed f�, the equations,..(3.�1). (3.52.).. and (3.53). ,'They are '9iven

in AppendiX B.

, It, should be poi,nted out that Jf ,a,ny other prf� 'rrtOvet:'-govemor.

.. . '

.. ,

.

model is' used. it can be tran,sfom.ed into the saine f()m as sho.wn inFf<ture 3.4 ot" the ,coupling matrices· aSSOC1'ated, with the v�ctors X3 �n� ..

X4 or both can' be' changed.''

3.5.4. State Varfable'Fo.nnulation 'or the Autanatic Voltaqe,

Re�lators of the ·Study" System Plants.

The transfer, function. rep�senting the; automatic v:oltage'

regul'ator as shown fn Figure 3.6 has 'our characteristtc roots a�d'�herefore 'our ',state variables are re�u1red' to describe its dynamics •

."

Page 65: Laha Asoke Kumar 1972 - University of Saskatchewan

. .

.. 52.

.

The v�riables (Taaj' Vexj - Kaj' T�nj Vtaj)t Vtajt (Tafbjiafbj'.. Kafbj "eXj>. and (Tvfb3 1vfbj .. Kvfbj' Y.1' : have been selected as' the

.

four states for the jth plant� The reason for selecting these variables.

'as >states is to. make 0ssd1agonal and hence O· alin�t diagonal. sothat.

.

it will take much less cOmputer time to·calculate the inverse matrix•...

..."....

Thus'the .vector 'Xs can be defined as..

. X ..S

Tadl Ve)(l" Kat Tanl Vta1'. Vta1

'. '. Tafbl iafbl ... ·Kafb1· Vex!.

'.T'fbl·i,ffbl .. Kvfbi VI' .

Tad2 ·.VeX2· ... Ka2 Tan2 Vta2 .....

Vta2Tafb2 ia�'2

.. Kaf.b2. Vel_{2 .

.

.. .. .

:..

Tvfb2 1 vfb2..

'

'Kvfb2 y2

....,

"

.

..... Tadm. Vexm ".Kam ta�m.Vtam •

Vtam.

.

.'. ..' ""

.

· Tafbm 1 afbm.. Kafbln Vexm

. .

..

.. Tvfbm 1vfbm·"· KYfbm Ym

.:.4'"

x.s. €. R4m: (3.76)'

Page 66: Laha Asoke Kumar 1972 - University of Saskatchewan

,

53

T.he coefffcientmatrices assoc1atedw1th the vector'X5 are

developed fram equations' (3.54) - (3�57) and are given In Appendix O.,

"

....

"; ...'.

-.

'Thus with reference to the'submatr1ces given in Appendix B.,,

,

equations' (3.64) and (3.65) are definedln a fonn that is readily.

. . ... . .

,

adaptable t'o' the dig1,tal c�uter.' Using the transfomation defined,

', ,

'

.,' , ."

' "

by equation (3.62) the final state space fonn X • AX + BU + 'GF of.equation (2.1)' can � readily obtained. The total' number of state

,

variables required to describe the models cMsidered in this, study'

is given by,

q .,12m + 5p' (3.77)

This can be reduced to (10m +",5'-) if the tr4ris,fo�r action in.'". '. '"

.,'.

the statorrw1ndings and the tie lin, is 'neglected as described in' the, '

, "

nel(tsect1on.",",'

.

,',:",

.,:.'.' '.:' .. ,': ., .

',.. -, .. "

..'

,

3�6.' Redticed State Space'Model'Negl�ct,ing Trans10nner Action.,

"

In ·the' foregoing' anal.Y$f.s: the "tranSf()hne�' voltages,: hi ,the direct'

.: . .

'" '. . : . .

.

, ".

. . . .' .

:. ..' '. .'.

. .... .

consfde�d� Further Simplification is possible by ,neglectfn!J' these,'

. '. ...

voltage terms. This assumption 'is, justified as the predorrrinant roOts:,aN little ,affected :by this assumption. The adva�tage lies ,in 'the·:fact

" that since' �1s asslJlnpt10n :,mak�S tlte der1vative,!�enns ,of: ij��' and ijqj,

equ�l to ze�'C). '1jdj �nd 1jqf can be conceived of as dependent varfables,

instead of states and hence the number of state var1:ables w111 be

reduced by 2' per• study' system \gener�tor or, from (12m + 5p,) to';

,

"

(1Om'+ 5P).,' in, total.' This "'in' turn' redue.e$:�e, colnputer,t1me,:�ons1derably ,. . .

: : '.'.

.

. '. '. . \'.' �.

.

','. .

,', .:

#: . "

.. : '",.

.,',"'_ , :. !', ','"

.

. �..

.' :.�.' ,,':: '"

'."':'.

.

. � .

.. :; ..•'. ... ....

'. :-

Page 67: Laha Asoke Kumar 1972 - University of Saskatchewan

54,

with a minimal reduction in accuracy.

The state space equations of the reduced system model can be

. deri ved by e1 ther of the fon ow1 ng two methods:-

Method 1

, S'1nce the state space model of the power system with transformer

,action included are already developed as given by equations (3.58) and

(3.59), the state space fo� of the reduced system can be obtained

indirectly by perf'onning algebraic manipulations on these equations.,

Let the new state variables' be defined as

I1

X2

l' • X' Ie Ref'3

X4

Xs

(3.78)

where ' q.. 10m + ,5p,

The vector Il can be defined as per equation (3.80)

TII • [al �1 S61 a2 62 S�2 am 6", S6m}

(.3.79)

", (3.80)

La,d 1 1 <ii,'where "

81,. 1 f1

-

iLffi'

(3.81)

Page 68: Laha Asoke Kumar 1972 - University of Saskatchewan

55

.'...

'')he, new dipe�ent v''''lb le'

vector 1" ,. defined. IS , '

, (3.�)

(3.83).

.

..' .

.

Let' the, new, state SPIce" 8quation be wi t_" IS,

...

.,.' .

"

(3.84),

, (3.85)tt·,'J"T+RU:..8F,,'

, ,', .i:; , : 1;� "1,

,, ,

The p�lem therefore is to de"ive �he t".nslonned .trices 11. tr. r..

.

.

"..

'. '. ',. .....

I. I.�. J'. Iti an.d 81 f"om equations (3.68): and' (3.69). The teChnique, '

used ,for 'this 1s'desc"ibed in Appendfx C.'

MethOd g'The 'above method wis, used in the cQIIPuter pr09ram fo" ,the' analY$fs

'

"of the II1Ult1-lIIch1ne systeM.' It allowed fo" the inclusion 0" exclusion '

of tNnsfo..r act.ion. On the othe" hand if one prefers 'to �velop a

comPuter PY'09". fo" the reduced model direct,ly fram' ,the system' equa-, ,

.

tfons,., the following' procedure can be adopted. '

,The equations ,g�m1ng the dynamics of the •study' system",

'macbines can be obtafn�d f� (3.26). (3.27>' ('3'.37). (3�38). �nd (3.39)

by neglecting the i"ansfonlllar a��fon. 'They Ire given by,'

- 1 jflj • ttjs�;t.y�� • �•.. J.. '''tell< Cos4kj - "kqk Sinakj)Wb ' lp4,., k 1 l"k' ,",,

' :' " """ k,.j

,

,oJ

"

. : .. : '.

Page 69: Laha Asoke Kumar 1972 - University of Saskatchewan

..•• m.·+ t·

.

k·l.

k,ej

.

.

".:.'."

..,'. :.' .','

'Lt.. (Vkdk S1n.s·k"j' + vkq.k Cos.a'k'··j)�k +..'.� .: Vk COS6k:f'\k-m+l. L·

.

jk . .

. jk

n .'

+ t·•.: kam+p+l

.

.

V· dk S1 ·v· qk c: .

. '.'.

'. y .5in4 .'. m .' k . n6k3 +k. . OS6kj.·:...k . kj -I t

.. L' . k-l Ljk .'. k,rj" jk

. {3.86)

I d.1 S4..

V qj1 dj

.

j J +.:L_. ._�. i· (.y. dk. S1'n'� . y' qk Cos�. )j.• ..

. W .• k.l L- >k .'. Ukj .... k .'. '.' Ukjb

. lpj k�j jk

m. 1 (" dk.

qk .

).. n.· � Vk. S1n4k3, .

- t ..-. . Yk. COS6·kj.� Vk ..... S11'1�kj 6k + =.....1·· 'L ... ,

.' .4k.

-. �;� Ljk . ..

.

'.'. '.. .

.''.

• Jk.'

.

.', ,'. .'

.... � . vk 51n6k3 )]6 ..•..k L'

. j...1 '

.. jk '

(3.87)

.\ :

........

'

::.

.

'. ': : .

..

..

.'.' '. qj

'V dj • R' 1 dj + L 1 qj.' Lgj I". ·s � .

j .

-

aj j . qj j .:.

. ...; ., .

."j.

. . �b. ..,

,. (3.89)

Page 70: Laha Asoke Kumar 1972 - University of Saskatchewan

........... �.'

57

The other equations describing the dynamics of the system w111 be'

unchanged from the ones used when' transfonner action is ·included •.

'The new state vectol"S.l' and l't will .be identical to those de.fined

. by equ�tions (3.78) and (3.80). Thus with the definitf()n .oftl as per

.. (3.80) and with 'the help of:the equat1·ons.(3.86). (3�87),.(3.88). (3�89).

(3.90) and (3.41l1t is. possible to Write the reduCed s'tate spaCe fonn.' :

.

.

'..'

.' . .' '.

.

for the '.study' system generators. The state space models associated ...

with other vecu,rs, X2' X3• )(4 and Xs 'remain unchan�•.'

The state space model of the: multi-machine Sy.st�ni has been derived

using a 'dual level i form of $ystt'l!1 representat10n�" In the 'next ch4pterthf·s· model is used to design an' oPt'iina 1 state regulator fn order to .'

.

. .'

.''.,

. .'. '.' '. ".

enhance the damping' of this sys·tem.· TM s . CompeAsated perforNnce is...,

.'.

. � ..

..' .'

·then· cOlripared with the' dynamics" of the sistem compensated by- �t�er. ,:""': .

controllers.' ..

. '.'

...•.

\,' .. :

.

. ..�"

..

..

.

-;'.: ". .

.;

... ',.

.... ;;.,

. ,

::', .. :'./

. ':'....

,."

Page 71: Laha Asoke Kumar 1972 - University of Saskatchewan

58"

..'

.

' .. '. ..,. :.., ..

4. "DESIGN OF THE OPTIMAL STATE REGULATOR

4.1 Introduction

As explained" in Chapter 1. to enhance"

the damping of the power

"system." which 15 essential fr. a dynamic stability. pOint of view,

.y require additional feedback elements in addition to the voltage

regulators and governors. As outlined in Chapter 2 optimal control" "

"

theory provides the designer with a mechanism for finding a general.

. .'

"stabflizing signal by adjusting all of th, control parameters s1mul ..

taneously. thus mfninrtzing the syStem response and control signal

excursions. This can be" effected by .pplyin� opt1.' control theory

outl1ned in Chapter 2 and utilizing the math_tical models of the

power system whfch. have �een developed in Chapter. 3." "

The -problem" can be restated as follows:-

Given that the plant equation is given by•

X • AX + BU

and "the cost"" functional J 1$ given by

(4.1)

"

(4.2)"

""

the Optimal control variable U as derived 1n Chapter 2. can be written

as

(4.3)

where K*fs the solutton of the IJIItrix..R1ccat1 algebraic equation given

by"

"

-1 T T"

"

"

o 1!11 K*A.. K*B � .8" K*' + A K* + " Q

Page 72: Laha Asoke Kumar 1972 - University of Saskatchewan

.59

..The first step in applying q>timal control theory 'to the nwlti�

machine controller q>timizat1on problem is to select the weightinQ.

..

...

_trices Q and R. There .s no mathematical guideline: in this respect

but the following rules can.

.,e· accepted as a starting pOint:.·

1) The larger elements in Q lead to a larger' gain matrix (R-laTK)and a faster time response.

.

.'..'

....

2) The larger elements in R lead to a smaller gain matrix and a.

.

. ..

slower.t1me response.

In, the subsequent study described in this �hesis Q is selected as

a diagonal matrix because of computational convenience. This �ll not

yield any error because. all the .states are already coul)led to each

.

other by the coeffici'ent' matrix A� Because of the fact that t"e' basic'

requirements of the controller is to minimize the 'angle and frequency.. . . .

..

.

deviation o'f all machines in the system. heavier "enalties have been.

.'

imposed on' the corre·sponding states. After a trial and error method

us1ng'different Q matrices the .we1qht1ng ma.trix was selected as the.

unit matrix except. for a wei�hting of 10000 for the state variables

repre�entinq ,the speed error and angle change 'at the 'study' system

and 'external' system' pJants. In light of rule (2) as stated above,

. the R matrix was chosen to be'�nfty.

The 'important hurdle is to find the solution of the non-11neer .

matrix-Ric;catf equatton �e$crf�ed by equation (4.4). �he next section'

describes the pertinent al qorithm used to solv.e .th1s 'equation.

Page 73: Laha Asoke Kumar 1972 - University of Saskatchewan

4.2.

Solving the.Matr1x-R1ccati Equation

The matr1x-R1ccat1 differential equation can be written as

'. -K(t');. K(t)A + ATK(t) -K(t) aR-1aTK(t) + Q

Putting .-r • T - t , where T + CI

equation (4.5 is changed to .

.

� T .

.'

1 tK(-r) • K(-r) A.+A K(T) - K(-r) aR- a K(T) + Q

60

. (4.5)

(4.6).

The variation of K(T) with time can be graphically "presented as shown

in Figure 4.1.

K(t') .

,

.'

.

'. .�.

Figure 4.1. Diagram showing the variation of K(T) with .T.

,.'.

Page 74: Laha Asoke Kumar 1972 - University of Saskatchewan

.

61:

..,. ..

.

.

'Since it 'I' ... u , K('l')'. 0, the steady state solution K* can be obtained

as'.'

.,. ,',

LimK*· . ,

.

Kh). '1"'" u··

(4.7). .

.

�e Obvious way of f1ndfng K* fs to fntegrite n....feeny' 4Mtuatfan .

.

'. .... . '. .'. ... ,,: '.

(4.6) until the steady s�te is Nached, 1.e. until K('t') becomes ze1"O•.

AlthOugh quite adtquate for. the solutfon of a low ,order' sy'stem, this'system suffers 'from 1 eng, computation time, as the step size must,' fn...ost eases, 'be quite small to insure· numerfcal accuracy. A computer

run Using the high speed CON of the IBM '360/50, waS unable to obtain'.

_. steady state solutton for' a l$th order system encountered in this.

.'.

. .

.

.. .

..

.

.

project wf�fn 60: nrlnutes. So other methods described in the literature

were ..tnvest1gated•.

AlthGUgh there are several 'other methods available fn the literature

for solving equation (4.6), most of them were found to',be n..r1cally

unstable or inefficient when IPplf,ed to the higher oreIe ... system en.coun';'

tered in �h1S application ·where the' coeffiCient, matrfx A of equation

(4.1) is sparse. An alternate method suggested by Fath53 was used to

detennfne the matrix J<*'. the pertfnent algorithm fs described belOW.

Equat10ns (4.1) and (4.3) yield

X(t) • AX(t) .... Br�lBrp(t) (4.8,)

where p(t). KX(t) 1s the co-state vector.

Equation (2.16) can �e rewritten as

"p(t) --Qx(t) - 'ATp(t) (2.16).' .'

.

.

The .•bow two equat1(1flS can be written f'n .trfx fom 1$ .

Page 75: Laha Asoke Kumar 1972 - University of Saskatchewan

62

. _BR ...1B! . (4.9).X(t) A X(t)

'. ..• , Tp.(t) . .Q .-A . p(t)'

Def1n1�g l' •.T-t equatfGn (4.9) changes to

·BR-1BT. X(or)x(T) -A.. (4.10)

AT . .

p( 'f)p(1:) Q

or...•.

X(t) .

[M]Xed

• (4.11)i

p(1:) . p( 1:)

'. (4.i2) .

(4.13)

The solutf. Of equatfon (4�11) can therefore be obtained as·

.. .. ..

. [. �(t)] =.. [Atl(') ..

. PCd �IC1:) .

'..

'..

· �::; ] .• I :::LJ i (4.14).

I·..

. .

:.

Since p(1:) Ii 0 froM ffgure (4.1). equatfan (4.14) reduces to -.

[::::J = [��::: 11 X(.) ., (4.15)

01" ph)· �lh) sa 11-1(1:) X (d

-1.

Thus Khl • "21( 1:) 011 (d.

(4.16)

(4.17) .

Page 76: Laha Asoke Kumar 1972 - University of Saskatchewan

63

.The eigenvalues of M are synnetric with respect to the real and

.

. .', .

imaginary axfs and are ass..d to be distinct. For the real efgenvalue .

Ai' define • Ix 1 matrix Cf as

(4.18).

.

For a set of complex ei�envalues Arf :t Alf .: deffne a.2 x 2 matrix Cf �s.

C1 . [AM·

�11 .]' .

.

.'

Ali Ari

Let C be defined as the q x q block diagonal matrix

C· DIA (Cil all i: such that the diagonal. elements.

. are posftive]. . '" .. ,

..' .

(4.20)

'(4.19)

and 'C" as

'C" .: D�A [ttl all 1 s'uch that the. diagonal .,..ts .

are negative] ,

'.

Let 'w be defined as' the tr�nsformatfon matrix' such that· .

W-1MW .•. OIA [c.'C"]

(4.2�)

(4.22)

The fundamental matrix o(�) can therefore be written with the

(4.23)

V12]..

Vu •.. (4.24)

Page 77: Laha Asoke Kumar 1972 - University of Saskatchewan

.', .. 64

Equation (4.24) can be. reduced to

wllec-r in • W12,T:'t·1l21.n( 't). • (4.25)

C't '" u' 'f't 'IT.

\II e yr. +. "22e . "'2221 '. 12

substituting the values of 0l1(tl ando 'll( t) f�an e"uatfon (4.25)

into (4.17) yields

K('t) • (w21eCt "11' +'. W'l.2e'f't V21) (WlleC't '11.

+

.

w12e"f't V21) -1 ('4.26) .

as. 't + (I , eT!'t + 0 .nd hence the steady state solut1.on K* is obtained

fran equatfon(4.'l6)as

(4.27)

. ..

.

..' ..,

.

1l •...

'K* • W21WU- (4.28) .

:

.

As can be noted from equation (4.28) only' twO·blocks Of the tt'ans­

formation matrtx W are needed to calculate the CGnstant coefficientfeedback matrix K�.

To solve for W it is re(lu1red to generate the eigenvectors. �f; M.

These e·igenvectors fann the colUlll1s of a 2q x '2q auxiliary matrix. W*� .'.

�.

The first q' columns are the eigenvectirs corresponding to the'efge�valuesof M having positive real parts. Thus w* is the transformation matrix by

wbich matrix M can be cClnverted to the canm1ea1 fo,,"_ 1 �e•.

'.

(4.29)

A,be1ng the eigenvalues (real ·or canplex) of the augmented matrix M..

.'.. . ...

.. .' .

Since matrix W transforms M into the block dfagen.l fonn as .'

. defined in equation (4.21), W is related to W* by the equation (4.30).

Page 78: Laha Asoke Kumar 1972 - University of Saskatchewan

65'

(4.30)

(4.31). �. .

whereas matrix'S ·'DIA [Z1]I

and

1 for real eigenvalues, and''

It '[I-j 1+"J' for pair 01' �amplex eigenvalu,es."

'

l+j I-j ',,',

,

.

'

'

Thus the computat1an of K* is divided into the following four'

steps:-. .'

'.

.

Step 1. Fonn the auqmented matrix M as defined by equation (4.12).

Step 2. Calculate the eigenvectors, of M and fonn the transformation "

" matrix W*..' ....

Step �. Fo"" the matrix S accordinq to (4.31) and calculate W with

�he help of ,equatf� (4.30).

Step 4. Calculate K*·, fran equation (4�28).� . . . .

The eigenvectors of a ncn ..s�tr1c matrix can be calculated, using

a, computer program developed by Yan Ness. It was written: on: the bash

of the algarithm knClfn as the • Inverse Iteration MtthOdLas desCl'fbed

in reference 54, and was obta,fned fran th, NOrthwestern' University,. "

. .

Il11nois. This program was used in conjunction with the algorithm',. . .

.

, derived above to obtain the eigenvectors and subsequent optimal con-

troller K*. The problem encountered'using other techniques 'for solvinq

the _trix-Rtccatf equati()ft were eliminated by this approach.

,4.3 Basfe System Specifications,

A practical application involving the use of the 'dual' model

involVed a study into the effects 'of addt" an auxf'1iary e�trol1er at

Page 79: Laha Asoke Kumar 1972 - University of Saskatchewan

66,

, the Squ.w Rapids plant of the SiskatChewan Power Corporation SyStem.,'

The reduCed' system,is :shown in� Figure 4.2.

In this case the system consisted of:

1) The six-machine Squaw Rapids plant. expressed as' a single-'

machine equivilent. including excitltion, governor. prime mover and

syn,chranous, generator details.,

2) ,The two-mach1ne Queen EHzabethplant expressed as I single­

macht,ne equivalent. but'including inertial and st)eed damping effeets, "

only and assuming a constant voltaqe behind the equivalent transient'

relctance. "

. .'.

�.

, 3) The, power network ext?ressed in tems of a simple delta-connec-'.

. .

. .: ."' .'

ted system :with nodes at the Squaw Rapi�s 'and Queen EHzabeth 14.,4 KY

buses "and at, the Boundlry Dam 230: KV bus. the "atter being cCI"sidered

IS an infinite hus.,

'

The Squlw Rapids plant consists of:-. '. '.

.'

.

Ca) hydr�uHc turbine with teqJor.ary",droop type governor'

,

(b) rotary automatic voltage regu"ator.

The Queen Elizabeth plant consists of:;;o

(al non-rehelt steam turbine.

The 'system speetfica,ttons ind all the constants used 'or this study

are tabulated in Appendt)C D. All the values are in p.u.' unless otherwise

stated.

Page 80: Laha Asoke Kumar 1972 - University of Saskatchewan

67

"STUDy"SYSTEMSQUAW RAPIDS PLANT

INFINITE BUS.. EXTERNAL' SYSTEM

.

SOUTH EAST GENERATION Q. E. PLANT

GOV. w.AND .--­

. PM MVR

2·3.0 KV .

. BUS

tml S.R .

. 6-MACH·PAAK

r-&--_. EQlJlV 1---j�I---I-""----"""';'�'lm�-"'!""��_"-",\BUS

: �

.' .'..

LI2 . ····.,1- INERTIA.MODEL WITHGOVERNOR

• CONSTANTVOLTAGE ..

BEHIND "d

AV R· ........------t·14· 4 t( V

.

BUS

� ',: .''-:-

,', .. ', .

.

",".

.

. Ffgure 4.2•.Schanatfc representatfon of a portiM of the Sask.tchewan·Power Corporatian system used as an fllust...tfve ,Xllllf)le.: .:;:

•• 7 .:':

Page 81: Laha Asoke Kumar 1972 - University of Saskatchewan

68

.'. .

.

4.4 Design of State Requlator and iruncated State Regulator

. The state N!IU latol' . WlIS destqIled on the basts of the al!101'f tlmt

derived in Chapter 3 and usinq the syst.. parameters of Appendix 0.

Using the approximated fo� of the generator and tie line equations

the ve�tor rel�tion between the state variables arid the physical

va�1ables is given by:

(4.32)

where'. ·tad1a -1f1 - -

.

Lffli dl1

c -. Vta1. d - Tafbl 1 ifbl

- Kafbl Vext .

� - Tvfbl ivfb1 - Kvfbl VIThe state equations are qiven by

..

,':

X - AX + au

where

(4.33)

.. '. TX - [Xl Xz ----------.---------- X1S) .

and U is the scaler control variable to be applied' to the input of the

automatic voltige regulator of the Squa" Rapids plant•.

The numerical values of the elements of the 15th'order coefficient

matrix A obtained from the digital computer is given in Table 4.1.

Page 82: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.1. THE CHARACTERISTIC "1ATRIX A OF THE UNCOMPENSATED SYSTEM

..

(With Transfonner Action' Excluded)

..o�1731 0.0 0.0 . 0.0. . O�O 0.0 0.0 .". 0.0 ..

'

.'

0.0 '·0.0 .0.0 . 0.0258 1.29' 0.0 . 0.0 .

0.0 0.0 1.0 0.0 0.0 0.0 ·0.0. 0.0 0.0· . 0.0 0.0'

.

0.0 0.0..

0.0.

0.0'

-19.7 '-18.0 ...0.149 17.8 0.0 . 18.1''.

0.0 0.0' . 0.0 0.0' 0.0 .0.0.

0.0 O�O 0.0

0.0 0.0' 0.0· 0.0 1�0 .

. 0.0 0.0 0.0 0.0' 0.0 0.0 0.0 0.0 0.0' 0.0

3.03 19.8 .0.0136-22.2· .0.102 0.0 0.0' 0.0 18.2 0.0'

-,'0.0 .0.0 0.0 0.0' 0.0

0.0 0.0 0.0537 . O�O .. 0.0 .0.909 0.915 . 0.352. 0.0' 0.0 0.0 0.0 0.0 0.0 0 ..0

0.0 0.0 -0.0268' 0.0 .: 0.0 0.0 -0.0029 -0.176 0.0 . 0.0 0.0 .0.0 . O�O O.G 0.0.

. .

00 0 ..0 -0.937 0.0·' 0.0 .0.0 . 0.0. .

.

-6.25 . 0.0 0.0 0.0..

0.0 0.0 .. 0.0 . 0.0....

·0.0 . 0.0 0.0 . 0.0 . 0.0 O�O . 0.0·· .. 0.0 -20.0 20.0 0.0 0.0.

.

O�()· 0.0.

0.0

0.0.

0.0 0.0 O�O.

0.0 00",

0.0 .:

'

0.0 .. 0.0 .. -6.67 .. 6.67 .0.0 . 0.0 0.0 . 0.0'..

0.0 0.0 0.0·.

0.0" ....1.38 0.0; ,,' 0.0 0.0·.' 0.0

'.

0.0 -12.5 '·.0.0' 0.0 0.0· . 0.0

0.0 0.0. 0.0. 0.0 . 0.0 . 0.0 0.0 0.0.'. 0.0 0.0 0.0 -30.3-1015.1 0.0 '. 0.0

�3.55.. 0.141 -0.0159 -0.142 0.0 O�O 0.0' . 0.0 .. 0.0 0.0

'.

0.0..

-2.93 .149.0 �19.3. '-8.51

0.0..

. 0.0.

. 0.0 .' 0.0 .'. 0.00.0 . 0.0 0.0 .0.0' 0.0· ..... 0.0 -0.689 -34.4 ·-4.54 .0.0:

.0.313· 0.•0129-0.00141-0.0125 0.0. 0.0 0.0·

... 0.0 0.0 0.0 0.0. 0.0 0.0 0.0 ;..2.0.'

..

0.co

Page 83: Laha Asoke Kumar 1972 - University of Saskatchewan

" ,70

,

The co..,pl1ng matrix B is given by

B. [0" 0 0 0 0 0' 0 0 0 0 0 0 4.26 0 O}T (4.34)

In order to justify the necessity of the ad�ft1onal ccntroller '

, '

it is required to f1rid the root location of the uncompensated syst...

The eigenvalues can be readily obtained frain the s.tate space model of

the system mce the prot; lem 'equations have been tl"lnsfo�d into, this.

. .

..

convenient fOnD. The system is stable if the real l)a1"ts of all ei(len-'

values are negative. In the absence of ,

any control variable U. the. ..

.. .

coefficient matrix of the ,system is unchanged from ma,trix' A. The', ,

characteristic roots of A we:re calculated using the IBM scientific'

, subroutines HSBG and ATEtG. These roots are tabulated'in Table 4�2A.

The predominant roots of the system are shoWn in Table 4.28. .,

:."

It is worthwhile to cCJIII)art'the ,eigenvalues 'in' Table:'4.2A wfth

'those"1f the transfonner action is not neglected. In this case "idl'and "

,i1Q1 can 'no,'on�r �'considered'is,dependent variibletbecauseof the

presence of 'their first derivative �rms in the state equatiOnsas shown

in Chapter 3. The order of the system is thus increased to 11. The

coefficient matrix A was aqain canputed and the eigenvalues and the

pred(ftinant roots are shown in Tables 4;.3A and 4.3B. :'

,A ccnparative study of Tables 4.2 and'4.3 clearly demonstrates

that there is relatively little change in the magnitude of the pre­

dominant eigenvalues :by neglecting the ,transfontle', action in the stator

windings and th� tie'line. Thus little mathematical accuracy is sacri­

ficed by considering 'Ildl and "1Qlasdependent Variables', instead of

Page 84: Laha Asoke Kumar 1972 - University of Saskatchewan

11

,', TABLE·4.2.

A. EIGENVALUES OF THE UNCOMPENSATED. SYSTEM .

WITH TRANSFORMER ACTION EXCLUDED

No. Eigenvalues

1 ..113.9 + j 0.0.2 .. 17.42 + j 1.82·

3 ... 17.42 .. j 1.824 .. 9.46 + j·O.O5 .. 6.38 + j 0.06. '. 0.044 + j 6.687 .. 0.044 .. j 6.68'8 .. 3�26 .+ j 0.0·9· .. 0.63 + ,1 1.3410 .. 0.63 ..

. j'I.3411 .- 1.98 + j 0.0'

0.81•

"12' - + J 0.0 .

13 - 0.20" + j 0.2914 .. 0.20 .. J 0.29

15 .. 0.0029 + j 0.0, .

B. DOMINANT. ROOTS OF THE ABOVE .MENTIONED SYSTEM

No. E1ge"v.lues

1 ... 0.044 t j 6.68'2 .. 0,044 - j 6.683 .. 0.63 .+ j 1.344 .. 0.63,; 't .. j 1.34

•* ',.

,.

'5 _. 0.20 , + j 0.296 "

, .. 0,20 .. j 0.29,

,

".,,� . .'

Page 85: Laha Asoke Kumar 1972 - University of Saskatchewan

72

,

, TABLE 44!3'

,,

A� EIGENVALUES OF THE UNCOMPENSATED SYSTEr.1 '

, ,'

WITH TRANSFORMER ACTION INCLUDED

No. Eigenvalues

1 _

,

0.67 + j ,376.972 _ 0.07 '_ j' 376.973 -,173.85 + j 0.0 ,

4 - 17.42 + j 1.825 - 17.42 - j 1.826 _ 9.46 + j 0.07 .. 6.38 + j 0.08 ..

" 0.046 + j 6.719 - ,'0.046 .. j 6.7110 '

.. 3.23 .. j' 0.0"11 .. 0.66 + j' 1.3712 .. 0.66 .. j 1�37,

13 .. 1.98 + j 0.0"14 • 0.,81 + j 0.015 - 0'.22 + j 0.31,16 .. 0�22 '- j 0�3117 .. 0.0017 + j 0

B. DOMINANT ROOTS OF THE �BOVE MENTICWEQ SYSTEM

No. E1q.nvilues

1 .. 0.046 + j 6.71'2 - 0.046 - j 6.71'3 .. 0.66 '+ j ,1.374 .. 0.66 - j 1.37,5 - 0�22 + j 0.316 .. 0.22 - j 0.31

"

Page 86: Laha Asoke Kumar 1972 - University of Saskatchewan

73',3

.

-,

states. Fran a computational point of view this asstanpt10n is hiqhly. .. ....,'. '.' ,..,' '. .

welcome as it .would save considerable computer tiM 'in system analysis·. . '" .

because of the' fact that the system order would be �duced by �ce the

nu""er of study systC!flt machines. All analyses in this thesis were

.

carried out using the. mathematical model which neqlects the transformer.

voltage in the line and stator cons of: the generators.

Table 4.2A.conta1ns the combination of real and complex eiqen-'.' values of the uncompensated sYstem ... A real negative root corresponds

to an exponentially decayinq non-oscillatory nl()de. A pair of c.lex

conj·ugate eigenvalues yields a sinusoidal mode whose frequency is given

by the imaginary �rt of the e1getwalue and whose decay rate is fixed

t»y the negative real part� The eigenvalues as shown .in Table 4.28 ....

clearly ind1·.ca�· the necessity of. an additional. ext.",a' controller to

enhance the system damping. The predominant roots of Table 4.28 are'.

. . '.'. �. .

fairly close·to the imaginary aXis. as shown in Figure 4.3 and hence

.

they would produce sustained mechanical osCillations of tha : rotors. .

.

follow1ng a system disturbance. The purpose of the external contreller·is

to move these roots away from the ..imaginary axis.

In order to design the optimal state regulator the penalty matrices. .

..

Q and R were selected from a number of trials. The following' values.provided the·best system characteristics.

Q • DIA (1 10000 10000 10000 10000 .1 1.1 1 1 '1 L

1'.1 I] (4.35)

.... (4.36).... R. 1.0

Page 87: Laha Asoke Kumar 1972 - University of Saskatchewan

. ".

••

.

.. 5 .:

)C•

·74.

.+ - UNCOMPENSATEDSYS'TEM

.

j5 .: .)( � 'STATE REGULATOR

a-APPROX' STATE'REGULATOR

. j3

....j I

. . .. .

•.

'. ,. I • .,

3.·,' ,·5 .

.' .'

.' .' .

Figure 4.3 Dflgra. shOwing the locattans·.of dGllfnant systeM. NOts 1" cGllplex S-pltne. .

.+

+

-j3

Page 88: Laha Asoke Kumar 1972 - University of Saskatchewan

75

.... .... '

...'

.

. .... :.

'.' ....

' ..The mitrix-R1ccit1 equation is fonnulated from equation (4.4) by

..

... . . .

.

.

substituting A. O. Q' and R matrices as defined above. The steady state.

··solution K* .was found using the iE1�envector' approach described in.

...

the preceding section. The transformation-,matriX W was formulated from

...

.:.. .

.

. equation (4.30) and the submatrfces WI1 and W21 which were requfred to

'calculate K* were solved for;, the.se are given by Tables 4.4 and 4.5.

'The solution matrix .K* was next found from equation (4.28). This'

is given by Table 4.6.

Sylvester's criterf'on52 was ·."plied to check '1f K*'was positive.

. ',' .

definite or not. This' gives an indication if the solution to the'matrix-.

Rfcca,ti equation is correct.

The optiNl control variable u*,'was. obtained from equatfon • (4.3).

It was found ·to be .

..

tJ*. - (654.0 182.8' -142.6 . -261.0.

1.11 .";592�6 . -81.2

-16.4 2.6 ;.(i1.O .54.4 -0.12 8.1 -8.7 �4.11 (X} . (4.37).

These results �re obtained from a di�ital comPuter p�ram ,Which�. .

gave the optimal controller parameters for an arbitrary combination of

generatorS in the ·study· and 'ext�mal' ,system generators., .To generate the compensited characte,ristic matrix"requires s�bsti-'

tuting equa.tion (4.3) into (4.1).' This yields·.

(4.38) .

. or

X. A*X (4.39)

Where.

A* .[) - BR-1 OT K*J.

(4.40)

Page 89: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.4

Wu MATRIX.

(All ttle elements of the I"tatr1x are e�pressed in the fo"" mEn which is eaual tf' m x IOn)

-0.1199£-02 '().7asu..(16 '()�9312£..(16 ,.0.4011£-93 0.8215E'()5 -0.1610£-04 0.8991£-05 .0.30_-05 0.4445£004 0.275SE004 ,.0.2353£..04 '().SS57£-G5 ,.0.2794£-04 ,.0.1917£,.03 0.1808[-04O.7859E-06 0.4383£-05 0.558tlE-OS .O.15Z2E..04 -O.4221E.()S -O.7OS7E.()5 0.4742£-04 0.3821£.()4 0.1676£-05 1J.9347£-05. 0.334lE-04 . 0.2548£..04 0.1003£-03 c).1031£-03 .().U86E"()S

-O.13a4£'()3 ..().8S98E.:.o. -CI.89SlE-04 -O.S126E"()3. ·1).5225E-Cl4 -0.1983£-04 �.W2E"()3 -8 • .1062E-03 0.1238£-03 ..o.4678E-04 -O.1301E-83 .o.5091E.()4 -O.9899E-04 ;.0.9445£-04 O;U3SE"()7-0.1202£;'06 0.9518£.04· .O�a2S9E-04 ··0.1639£.-05 0.9010£-OS O.2823E'()S -0.1183£-05 0.2722£-04 0.111SE-04 0.8033E-04 0.3327£..05 0.2642£-04 .0.9281£.ci4 0.7072£;.04 0.1411£-05··0.2085£-04 -0.1_£,.02 -1).1265£..02 ..o.2387E-04 -O.295a£-04 0.5700£..0. ·0.7542£-05 .::0.1111£-03 0.6044E� -8.3097£-03 0.7555E..05 -0.5184£-04 .;0.91_.04 -G.6481£-04 -o.tI3OEo01

O�44OaEo07 O.ll!l7E:.os· 0.2S95£..06 0:3620£-05·0.2229(-06 oO.3S7lE-06 O.I62OE-03.o.321i£-06 0.1914£..os -0.2741£-04 0._4£-04 .0.1351£-05 ..().l690E-04 oO.1713r-03 1).1112£-04

oO�2181£-07 '().I663E..(16 ..0.2_..(16 ..().1646£-O5 -O.4169Eo07 0.i719E..06 -O.647aE-04 -0.5030£-07 "().8731£..06 -O.�S9E-04 0.4UII6E-04 0.....(16 0.5714£-116 0.7331£.006 0.1l0aE-04-O.7636E..06 ;.o�5832E.05 -0._..(16 oO.5782E..04 -O.I�-05 0�59!1OE-OS oO.2Z96£..o2 .:o.12�-05 ..()••3E..04 0.2352£.04 0.4M3E..04 O.I123E-04 O.IWE.004 O.i6s8E-04 -O.1928Eo08

0.9319E-09 0.1956E..02 O�ll1SE..()2 O.4988E-04 -O.SOl6E.os "().1524E.os -O.5GSn.:ll4 -O.335iE-os -0.2381£-04 0�1474£-O3 -0.3556£-114 0.1104E-04 0.1357£..04. 0.9325£;.05 -0• .3600£-09

-0.7152£-08 0.15iO£.;.o3. 0:_-03 o.I35SE-04 �.4195E-05 ..0.3070£-05 -o.3a62£-04 0.1019£-05 -b"�2123E-04 O.1l93E-03 -0.2599£.0. O�9!l32E..os O.moE-04 0._-05 ;.o.2905E-o!I.

O�i189E..(16 ·-0.3314£;.03 ..o�4781E..o3 .0.1667£-04 -o.3742E-06 .o.6144E"()5 -0.1701£-05 0.ilSx-04 -0.1240£-04 0.4t53E,.04 O.3516E-05 0�,""-05 O.1099E.04 f).7732E-05 -0.3898£-09

o.ioooE+oi 0.1115£.02 �.1_..()2 0.1000E '01 -O.6133E-02 .Ml46E...()2 -0.1207£-01 0.17�-Ol· o.4!109E� 0.2025£.01 -O.2925E'()l -O.lOlME:-Ol -O.1974£-G2 -O.IZ32E"()l -0.2404£-03

0.1411E00 -O.1858E-04 -O�-04 -0.1551£-01 0.1683E-03 0.7330E-04 '().2�-O3 -0.'.571£-03 '().1912E.()3 ...0.5352£-03 O.7546E"()' 0.2799£..04 0.57OOE-04 0.3M9E-03 ,..7163£-05

G.3284£-01 0.3766E..o.. o.3,2.ttE-G4 O.l543E-oi :-Q.301SE.()3' O.IMD6E-04 -1).812&£-03 O.12�;.02 .0.4398£-03 o�i!IUE-m -O.979OE-02 -0.1071£-03 .0.1697£-03 .,0.1047£-02 ..o.1694E�-o.2187E-Os 0.I788E-G7. O.�\I84E-07 -O.1009E..(14 0.4OO8E-06 0.4685£-06 0.4�2E-Q6 .O�4_-05 0.4405E� .o.2556E� 0.2642£-114 -O.li_-Ol .0._.-05 ·0.5583£;.04 -0.3931£-05

. . .. . . '.�' . .., .

. ..

;;c ..

Page 90: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.5

\�21 MATRIX

(All the elements of the "'atrfx are exeressed in the fo"" mEn which is eoual to � x IOn)

0.1229£..02 ..0.5540£..01 ..0.1425£..01 0.4922£..00 ..0.4341£ 00 ..o.4597E·00 ,o.I000E 01 0.1000E 01 0.1000E 01 O.I000E..ol O.I000E �1 O.I000E..ol.

..o.I376E 00 ..0.8691£..00 ..0.1923£..01

0.9842£..03 ..q.8337E 00 ..o.824-1E 00 0.3711£ 00 ..0.9190[ 00 ..0.9291£ 00 0�7904E 00 0.1843£ 00 0••4£..01 ..0.7103£ 00 0.5712£ 00 0.2401£ 00 O.iOOOE 01 0.1000E 01 0.5617£..03

..0.7846[..02 ..0.8611£ 01 ..0•.1076£ 00 ·.,0.3241£ 00 0.1506£ 00 ..0.8748£· 01 ..o�3457£ 00�.3605[ 00 0.2681[..01 ..0.2816£ 00 ..0.2081£ 00 ..0.1302£ 00 .0.923O£..oz 0.545....01. 1).3094E..o3

..0.9501£..03 O.iOOOE 01 �.999E 00 ..o.3329[ ,')0 O.lOOOE 01 0.1000[ (1-1 ..0.6693£ 00 0.14-10£..01 o.i541E 00 o.ll94E �l -o.3669E 00 0.17_ 00 0.9361E 00 0.7625£ 00 . O.IMOE..oZ

O.l195E..ot -0.8922£ 00 -0.7512£ 00 ..o.�E-01 ..o.Z303E 00 0.1788E 00 -O.849Z£-OI-O.316OE 00. ..0.1267£-02 -0.3922£ 00 -0.8335£-01 ..0.8116£ 00 O.8628E-Ol 0.5422£ 00 0.6162£..02

...0.8157£..03 -0.7389£041.00.1138£ 00 -0._ 00· 0.3325£ 00 0.3038£ 00 -0.8605£ oO:.o.I�I£ 01 ..0.8495£ 00,-0.1000£ 01 ..o.8569E 00 -O.8117E 0«) O.8828E-Ol O.5422E 00 0.6162£..oz.

-O.43OOE..os ..o.moE..oz �.6312£ 02 .oO.2388E-01 .0.3238£-01 !).5l25E..ol ..0.1235£ 00 0.5492£-02 -0.2880[.00 -o.2i86£ 00 -o.U03£ 00 ;.0.3707£ 00 0.8164£-01 t\.5409E 00 0.1000£ 01.

..o.�l599E,.()$ -0.9441£..03. ..0.1720£-02 ..o.�..o2 0'.2584£-OZ 0.1549£-01 ..0.2248£-01-0.2698£-01 -0.3819.£..01 .;.0.3035£-01 -o.269sE-01 -O.2675E-Ol 0.2313£..02 0.13.-01 -0.2783£-01.

0.1127£-03 -0.4158£ 00 -0.3862£ 00 -0.2034£-01 -0 ..2243£ 00 0�a305£-01 -O.5870E-Ol..o •.Z49OE 00 ..o.3196E..oi . .o.� 00 -0.6794£-01..0.8930£-01 .0.6598£..oz- 0;3839£..01' 0.7918£-03'.

0.1250£...04 -o.3i92E 00 -0.3447£ 00' -O.1917E..oi -0.4354£ 00 -0.1593£ 00 -O.9OO4E.oJ -0."78£ 00 ..0.2432£ 00 -o.S613£ 00 -0.14. 00 ..0.2061£ 00 0.1724£-01 0.1013£ 00 0.2406[-OZ

.0.4491£4 -0.6623£-01 ..o.8088E-01 -O.4725£..oz ..0.1-406£ 00 ..0.1463£ 00 ..o.318iE..ol-o.16S4E .00 -0.1438£ 00 -0.2272£ 00 -0.6_-01 ..0.9475£-01 0.852«-02 O.S03lE-01 0.1283£-02.0.5103£..oz 0.4557£-04. 0.6127£..04 .0.,3684£-01 ..0.315.8£-03 -O.3402E-03 .f).7909E.03 O.1189£..oz 0.7594£-03 0.1478£-02 -0.1714£..02 0.8506£"," -0.1787£..03 .o�1124E4 -0.2402£-04

-O.1592E..oi ..0.8463£.03 ..o.6199E-03 :.0.2866£ 00 -0.1424£..03 �.Z543£-02 O.5204E.o2-O.2OO9E..oz· 0.5857£-02 ..0••931£..02 0.41_-81 0.2462£-01 0.1683£..03 0._.-03 .o.1418E�

11.1914£,.02 O.6!170E�3 0.60!i0E-03. 0.2911E 00 .!).4064E..q! 0.3851£-02 .,.8.9292£,.02 0.1066£-01 -O.I086E-01 0.1526£-01 -O.!l574£-O1 �.7273E-Ol "o.619lE-03 ..o.36oaE-02 . 0.5591E-04

0.7721£..03 0.3425£.03 0.30_-03 0.1474£ 00 -O.Z566£-02 0.1405£-02 ..o.5289E�Z 0.7543£..oz -O.53OSE-02. O�t045E-01 -0.5943£..01 .:0.5522£..01' .0.4766£-03 -o.2797£..oz . '0.5682£-04.

....

...,

Page 91: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.6

K*.�TRIX

(All the elements of· the matrix are expressed in. the form mEn which '1s etlual to m x 10n)

0.5387£ 05 0.1555£ 05 -O.l1fiOE 05 .0.2199£ 05 -0.7025£ 01 .fl;4871£ os -0.6497£ �. -O.1356E 04. O.lUSE 03 -0.4846£ 04 -0.4323£ 04 0.2479£ 02 0.33OOE 03 -0.2545£ 03 ..0.7930£ 02

0.1554£ 05 0.8164E OS 0.5537£ 04 .0.6941E 05 O.S66IiF 04 -0.5275£ n4 0.4048E 03 .0.3372£ 03 0.8415£ 04 0.3054E \l$ 0.1486£ os 0.8331£ 01 .o.!J187E 02 .,.'}.5057£ 02 -0.1380£ 0.2 '

-o.U43E 05 0.5330£ 04 0.5630£ 04 �.2U7E 04 .0.Ziltj.' 113 1).1214E 05 (i.493fi� 03' o.2l64E 03 0.24� 03 0.�84E 04 0.2931E'" �.3785E 01 -O.711J9E 02 0.2657£ 02 0.4299£ 01

-o ..21s2E 05 -0.6954£ 0. -0.2364£ 0... 0.8149[ 05 .(1).3197£ 04 0.1204(05 -O.��,.t" 03 .

0.4653£ 03 .0.6_ 04 -0.2755£ 1)5 .o.l383E os ..o�I051E 02 -0.1265£ 03 0.6096£ 02 '0.1460£ 02. 0.1129£.03 0.5524£ 04 -0.2781£ 03. -O.30S8E 04 1).4334E .04 1).6$15£ 03--O.� 02 O.n84E 02 .D�3484E 04 0.4784£ 04 0.1041E 04 -O.6G63E 00 O�1496£. 01 0.1214£ 02 0.3914£ 1)1

..o.4896E os -0.5117£ D4 0.1231£·lIS 0.1195£ 05 0.7597£ 03 0.4697£ 05 0.3813[ 04 0.132ot 04 0.9is6£..o3· 0.889OE 04 0.6227£·04 -8.2162E 02 -0.3004£ 03 0.2126£ 03 i).5969£ 02

",0.3255£ 04 -0.3799£ 04 0.1341E 1)4 O.4361E 04· 0.1191E 04 .o.1361E 04 0.6293£ 05 -O.2� 04 0.142GE 04 0.9683£'4 0.7172£ 04 -0.4790£ 01 -O.4514E 02 0�22!i9r 03 0.3389£ 02-i).15m 04 -li.1S02E 03.0.2204£ 03 .0.26i8E 03 1).41iSE � 0.1523£ 04 -O.11illOE 'l2 O.I'l9OE 03 0.2_ OZ �.187SE 02 -O.2293E 02 ..o.w9E 110. -ci._E 01 0.3167£;;1 0.2106E.OlO.3088E 03 0.8244£ 04. 0.1986£ 03 .o.6�3E 04 9.3498E.44 0.8379£ 03 .o;1109f � .0.6333£ 02 0.3187[·04. 0.5722£ 04 0.1793£ 04 -O�3201E 00 0.2168£ oi 0.1009£ 02 0.322OE 01

�._ 04 9.2941.£ 05 9.4023£ 04 -0.2642£ 05 0.49200.04 0.7744E 04' 0.5255£ 03 0.2074£ 03 0.5781£ 44 0.1739£ os 0.7942£ 1)4 .0.15_ 01 .o.2438£.Q2 0.3141£ 02 0.8371£ 01

.0.3533£ 04. 0.1412E 05 0.2759£ 04 -O.130SE 05 0.1137£'04 0.5468£ D4. 0.4036£ �3 0.IU2E 03 '0.1836£ 04 0.7947£. 04. 0.4198£,04 -0.1236£ 01 ..0.2302£ 02 0.1788£ 02 0.4366£ 01

0.245� � .0.•8673E 01 .-O.3nSE 01 -O.IC)88E 02 .0.6747.£ 00 -O.21.teE 02 ..Q.3953E 0•. ..0.6658€ 00 �.3788E 00 -O.lOO2E 01 -O.l525E -01 M_..ol -O.W4E-Dl -O.2374E�1 -O.1026E 01

O.3273E.o3 0.9144£ � -O�7133E 0.2 .o.I305E 03 0.557SE 00 ..0.2963€ 03 ,J).4061E ot -8.81nE .01 . o ..129l£· 01 -O.3049E 02 -0.2721£ 02 -0.6382£.01 0.4068E 01 -0.4368£ 01 -8.2049£ 01

-o.Z34sE 03 -0.7287£ 02. 0.2108[.02 0.8433£ 02 0.1407£ 02 1J.l923E 03 c).SOIlE 02 0.6735£ 01 0'-1I!52E 02 .0.2874£ 02 0.1646E 02 -O.161gr-Ol-O.4257E 01 0.1036£ 02 0.�261E 01

-O.7n2E 02 .,.0.1574£ 02. 0.4512E 01 O.I66QE 02 1).4398£ 01 0.5739£.�2. 0.3371£ 02 tM843E 01 0.3744£ 01 0.1204E 02 0.7051£ 01 ..o.1043E 01 .0.2049£ ')1 ,0.6322£ 01 G.47ft£ 01

.. ,1,- •

.

•... CCI

Page 92: Laha Asoke Kumar 1972 - University of Saskatchewan

, 79

The new �haracteristic matrix A*, because of the presence of the.' .

.. .

.

'.'

opti,.' controller, is a modified fo"" of the orf�fnal A'matrix, as

described in Table 4.7.,

''

It is of fnterest to compare the eiqenvalues of A* with those of..'

.. .

..

,

A. The. eigenvalues of A* were' calculated usfng the' IBM 'SSP subroutines

HSBQ and ATEtG and are tabulated in Tables 4.8A arid 4.88. The pre­

dominant roots are p,otted fn Figure 4.3.

: A comparison between the" relative, locations' of the predominant'

'ro()ts in the complex S-plane fs shown "in Figure 4.3. these· results.

show that' an improvement'1,n system dampfng by :a 'factor of' 25' has' been

, '

achieved with the', addition of the optimal controlleJ"$I! The most dOmin-

ant,roots hive been changed from - .044 :I: j '6.68 to,- 1.1 1: j 6.69.. .

.

. .'.'

.

The time: domain' results as shown in the next seetion' 'give'.' pictorial,indication of the"improvement in $ystemdamping�' ".

Oesi9" ,of a Truncated' State,Regulator'.

The basic difficulty with the state regulator fs that it 15 often

impractical to implement althoUgh mat.,.tfcally feasible� Typically, "

the feedback portion of the optimal control system is a function of all. .

,

.

'. ,,'.'

the states of the system. This woUld be, satisfactory provided all the',states are accessible for measurement, however t�is generally is inot

..

�.

the case. From the'se consider.ations it 1$ desirous to develop a ·sub­

optimal· control so ,that the performance of the suboPt1Nl sYstem is.

."

.

.

.

:.:, ',.." .

I near' to that of the optimal system. One approach is to follow the

"Minimum no",," criterion as suggested by Kosut47 as described below••

Page 93: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.7.THE CHARACTERISTIC MATRIX A* OF THE COMPENSATED ·.SVSTEf.1 COOPtED WITH THE STATE. REGULATOR'

'-0.1730.0 0.0 0.0 .

0.0 0.0 0.0 0.,0 0.0 0.0 0.0 0.0258 1.29 ". 0.0 0.00.00.0 1.0 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 00 . 0.0 0.0 0.0 .

.

.. .

-19.7�18.0 -0.149 17.8 0.0 18.1 0.0 .

'

0.0 0.0 . 0.0 0.0 0.0 0.0 0.0 0.00.0.

0.0 0.0.

0.0 .. 1.0, 0.0 0.0 0.0 0.0.

0.0 O�O .0.0 0.0 0.0 . 0.03.03'19.8 0.0136-22.2 -0.'102 . 0.0 0.0

.

' 0.0 .18.2.

0.0 0.0 0.0 0.0 0.0 00. .

.0.00.0 0.0537 0.0 0.0 -0.909.0.915. .0.352 0.0 0.0 0.0 0.'0 0.0 0.0 0.0

0.00.0.-0.026.8' 0.0' . 0.0 0.0 -0.0029 -0.176 '. O�O 0.0' .: 0.0 0.0 O�O 0.0 0.0

0.0.'0.0 '. -0.937 0.0 '

0.0 0.0 0.0'

-6.25 '·0.0 . 0.0' . 0.0 0.0 0.0 0.0 . 0.00.00.0 '. 0.0 .: ··00.·.· 00" 00 0.0 .. O�O .

-20.0 20.0 . 0.0.

0.0 . 0.0 .

·

.• ··0.0 0.0 ..

.• e... e.

,.0.00.0 . 0.0 .... 0.0"

0.0 0.0 0.0 "

.: 0.0 0.0 . -6.67 6.67 0.0 0.0 0.0' . 0.0 .

0.00.0' 0.0 0.0 -1.38 .' 0.0 0.0 . 0.0 0.0 0.0 -12.5 . 0.0.

0.0 ·0.0 0.0"

0.00.00.0 0.0 0.0.

" 0.0 0.0 . 0.0 0.0 .O�O 0.0 . 0.0 -30.3 -1015.1 0.0 .

.•�1311.55-3($5.4 285.2. 521.86 -2.22 1185.2.' 162�4 .32.8 -5.2 122.0. 108.8 -2.69 -165.2' -1.9 -0.31

O�O0.0 0.0 ·O�O· " 0.0 . 0.0 0.0 . 0.0 . 0.0 0.0 . 0.0 �0.689·-34.4 .4.54 '·'0.0-0.313'0.0129-0.00141-0.0125 0.0 0.0 0.0 '. 0.0 0.0 O�o. . 0.0 0.0 '. 0.0 0.0 -2.0

!.

Page 94: Laha Asoke Kumar 1972 - University of Saskatchewan

,.

TARLE· 4.8

. A. EIGENVALUES OF THE COMPENSATED SYSTEM

COUPLED WITH THE. STATE REGULATOR

No." . Eigenvalues..

1 .. 173.5 + j 0.0

·2 .. 17.42 + j 1.82 '

.

3 ... 17.42 .. j 1.82

4 ,. 14 •.55. + j 0.05 .. 1.1g + j 6.69

..

6 .' 1.19 j 6.69... ..

7. .

6.37·.. + j 0.08 .. "263 + j 3.35. ."

9 .. '2.63 .. 'J .3.3510 ... 3.88 + j

.

0.1011 .. 388 '•

. j '0.10..

.

12 �. 20.

+ j 0.0. .

13 .... .. 0.98 + j.

0.014 .' 0.915 + j 0.015 .. 0.0026. + j. 0.0 ,

B. DOMINANT ROOTS OF THE ABOVE tENTtmED SYSTEM.

No. Eigenvalues

1 .. l�19 .. j 6.69.

2 .. .

.

1.19 . .. j 6.693 .. 2.63 :+ j 3�354 ..

. 2.63 • j 3.355 - 3.88 + j, 0.106 .. 3�88 .. j 0.10

81'

Page 95: Laha Asoke Kumar 1972 - University of Saskatchewan

.82 ...

If U*. _R-1 8T K* X for optimal state requlator. or, .

u* • .S*X

and if the suboptimal control vector UO is defined as

.

UO • -SoX·

.. then the proJ_)lem is to find SO such that •.Min ...

.

S 1'1 .. SO - S* IIo

.

. (4.41)

(4.42)

(4.43).

. .' ':'. ". ','.'.

let Z denote the feedback variables to be used in suboptimal control.

or

Z· MX

From equations(4.43) and (4.44) ·it· can be derfved47 that

SO • S MT (M MT).IM

(4.44).

(4.45)

From equation ·(4.45) it can be concluded that the mini.·· n�"" sub..

�Ptimal control vector is nothing but the optimal control vector where.

.

the ·t�nns· involving the undesirable �tates are deleted. Equation (4.39)

fndicates the· eXistence of �ik couDl1ng between u* and some of thestates. Th.1s implies· that: there are some states in the syStem which

·

offer little contribution in enha�C1"9· system damping. It is of int�rest

.

to decouple the fnsfqnfffcant states by setting the corresponding ele-.

.

ments in this vector to zero. The result is·· given by equati·on (4.46) •..

U*.. ;"(654.0 182.8. -142.6.

-261.0· O· -592.6.·

o· 0 0 0 0 0 0 0 OJ [Xl (4.46)" '.. "

.'. t"

. ..

..

It was of 'importance to find the stability of the closed· loop.

."

.

system with the truncated regulator included. The new characteristic, .

Page 96: Laha Asoke Kumar 1972 - University of Saskatchewan

83

matrix:c'A-BSO) was computed and its eigenvalues :were calculated. These

are qiven in Tables 4.9A and 4.98. It can be seen from Tables 4.88 and'.

. .

.

4.98 that the predominant roots do not differ significantly frem'the

optimal 'case by truncating the ,state regulator. The suboptimal system.

..

. . . ..

performance was expected to be very sim'liar to that of the optimal

system. The time domain results :of the. 'subopti'mal controller are

included with those of the optimal res'ults in the next section'. The

time d_in transients for the uncOlltpensated system are also included

for comparf son purposes.'

4.5 Time Domain Results

The 'eigenvalues which are essenti,al1y the po'es of the closed 'lOop

system' as giVen in Tables 4.2,' 4 ..3, 4.8 and 4�9do not' give'.'1:he,..

"

complet. picture of, the 5YSt., dynant1csbeca�se of th� lack Of:,,'knoWtedgeof the relatiVe importance 'of the different predominant \roots.: Calcu-,'

. ......

.

..

'lat1nq the zeros of the transfer function would give a direct indicae'

tion of their relative effects. The alternate WlY to qet the most

tangible evidence of the effects of thedifferent forms of 'the contro'­

lers is to display the transients of the compensated and the uncompen­

sated system in the time d�ain, using, the iterative solutions on the

state space equations. The res"lts a� shQWn fn.Figure 4.4� 4.5. 4.6 ,""

and 4.7..

.' .',... ': '.

The state space equations were solved numerically usinq ,the''

standard fourth order Runga-Kutta method. In the Case of the deta11ed

mathematical m,odel whiCh included transfOrmer action. the, ti. interval,.

,".

Page 97: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 4.9,

,

A.' EIGENVALUES OF THE COMPENSATED SYSTEM

COUPLED WITH THE 'TRUNCATED STATE REGULATOR

No�,

Eigenva"ues

,I ·.164.1 + ,j 0.0

2 - 17.42 ' + j 1�82'3 ' . 17.2' '

• j 1.824 • 9.18 + j 0.05 .', 0.91, + j 5.23

6 .. 0.91 - ' j 5.23

7 - 6.42 + j 0.0

8 • 2.99" + f 3.51'; 9' • 2.99 '. j 3.51

,

10 - 3.02 + j 0.65,11'

' '

3 02 j 0.65- ' -,.

12: ..

:'._ ,2.00' + j 0.0,,' ....

,,

"

13 -, 1.00 + j, 00.,

14 "- , 9.832 � j O�O

15 • 0.0024 + j 0.0

B. DOMINANT ROOTS oF THE :A80YE MENTIONED SYSTEM,

No. Eigenvalues,

1 - 0.91, + j 5.23 '

,

2 • 0.91 '

. j 5.233 • 2.99 + j 3.51-

'4 _ 2.99 - j 3.515 '_ 3.02 + j 0.65

'

6 -, 3.02 - j ,0.65

84'

Page 98: Laha Asoke Kumar 1972 - University of Saskatchewan

o.o

Time in seconds

Figure 4.4' Ca) .•.. Squaw' Rapids speed error vers�s tt_ fO"th,'uneGlllpensated system (including trans'.,.."Icti era)..

Figure 4.4 Cb) .Queen Elizabeth speed errcr versus tiMe fo" t.he .

uncompensated syst.. (includfng traftsfo".,,·..

. .

action).

'85

Page 99: Laha Asoke Kumar 1972 - University of Saskatchewan

', I

. ..

Figure 4.5 (a) ·Sq",w Rapids speed error verSus. time for the ..

uncCinpensated system (excluding transformer· .

.'.

.

action).8' .'

w

. � !lH�-·.o.�.. �!�:f! .

.I ....."1,'"1

ililillh . 1m!v:

. nHP:II!·· TinilY.: I,., •• l l l , ••

"1".'.: ·:'lilit:Qn,TI'IIi.!1!!�: 'I .. .Ip" . .: ....

1'.e: ! i!fI"j'dIlHIII!I!j.n,� g-j ihl'I' Inillllll:.!in�lll:l.o' .,'" I ru "litH "

� ... : i HiLiUt'ltt1I',:ni rll.

,.: .

:lpl:u:n hi ::qq-l.. � I' dIP!!I' !! j qill'lq�.! ...... •

"'I'll' 11 .. 1

'''' 1101� ",. ·I't· i" "'1' I" .,

i! 1:lli Ihhli!lid ilhl!!!t: 1111 umn Ijlll,lllljjl:11 1. ••

c: \,ndih:q:I'I'!IL11i!!iII'I'!i:·I· .1!h. 'lilt- : -.1:,n:lII:"I' 'Id '1::::":::' .n::: .T_

-111'1'... :

Plillt·j,l,iH·ln:ln,i'ILHPIPI'!lq·I'•• !inl::·1 ·IIPI- TIllh:o : T·,'.I II: n l'n ::P! i: : nUln • d' : 'I'll!i !i",:H!'1 I!I I ill:illillliiilfjl'IIIi!:jll!!!lflili ih. iiililli illll!I)I'\o:{ :'j '1Iiq":I:n:qlll·1d'I:·'I· (11:111:1:- T':'II �110I1 l' t'II'111!'.'0. o::!:I,II: dd!! unn .. J!:;:.!!: '11,1,1'1'" :,', II, TI!! -I !: !I' .. II! '1:111 II qt·t:"II I't .... 11, •• t '11'1 "t" 1 .: .... I ··· ..

'1·'.. .1 • .1 •••• -I' I , 1'111'• w·· . , .. 1·'·'I,·f 1 •• 1.1. " I •••••• 1 ••• "., I. Ii::, .e ········1····

. ,. I.

t',

# o:!l 'I II til:npl PIHIII!lt!!! liIUU1P'!I!Plj!1 Illlll Ii tll!'!I! !iil!l!I!'lqjl ,II'!!!'eII,,1 II,

IlI'l 1111' II II"·' 1-111111 "II' "PI''''t, !'II II

.... I' I",

1'1�ltli.lll!.ll .tt .l.ll.llt,.UU ... lil.l lttl.t J.ldl.lllillit. tll.l.l.l1[lll.ltd lHltlll i .llllUlld.. l.lllUll., 0-0 I'S 30 4·5 Hrolll. in "co.d.

.S·

F1�ure 4.5 (b) Queen El1zabeth speed error versus time for the.

uncGnpensated sys_ (excludfng transfomer

action) •

Page 100: Laha Asoke Kumar 1972 - University of Saskatchewan

,

used in the numerical 1nteqrat1on was e.hosen as 0.00375 sec. This,,

'

.. .

. .

, low ,value was required to �et rid of the numerical instability"'. .... .

.' ..

because of the presence of high frequency transients. In the case of.

, ..

the approximated Mod�fwhere transfomer action WI'S deleted. higher'.

..' .

, ,,

frequency terms were no longer present. Hence in the latter case a

larger time fnte"al of 0.01 sec. was used whiCh,' in tum. saved,

a considerable amount of camputer time. The time dONin results are

ShCMn in Figures 4.4 and 4.5 for the uncompensated sYSttm us1n., these

two, different mathematical models. The variables plotted are the

Squaw Rapids Sf)eed Error and t)ueen Elizabeth, Speed Ertor respectively.,

, ,

The disturbance to the sYstem to produee :the transients was a si"u-.

.'. '. .

.

.

.

..

l.ted 10% step chan� in the' electrical power d_Jid at Squaw Ra.,fds�The s1m1larftiesbetweerl Figure<4.4 and' Figure:4.S' justify the decision

. ..

. ..

. .

, to use, the· approximated'maiel'·instead· of. 'the "detailed' (JI'Ie•• "conclusion'reached earlier b.Y cOlQftaring the systeln"eigenvalUes. '

'

'

The' �ha"acterist1cs ,of the 'transients sho"" in Figure 4'.5 can be

directly related, to, the uncompe.,sated $�tem' ri)()ts q1v�n in T'able,4.2A. "

" ,

The predominant root w,th a damped' frequency of 6�:7 radians/second has,

a period of appreximately 1 second. th� transient,s art! fairly' ose11';'

latory for the uncompensated system. In addftf on ',the 23 second time.'.

. .

constant of ,'the envelope of the damped sinusoid.: as' pr.edictecf by:the, '

. '. . ..

system root locations. is certainly a�p'arent in the persisten,t 05cl1-

latims:of these transients. The transients for the optima" and sub- '

Page 101: Laha Asoke Kumar 1972 - University of Saskatchewan

.. 88

·0

:0 .

-,or

:51 it iii"!, '. .

,;0; iII"!,' II � .

�: lllh 1 i l l i .

;; j °I'!lI'!I"I'!,i!lji'J! i !I III l'ill'll'.

-. i l1111111i! 11!,i il,1 il '..

0, 'III" ! 11' I It��i IfI,lI'l' IIII!II I''Il IIII I! II '.

..

�O! II I·

"11"""......'. .

:! I uruuu ill". . :

!! I I n '11".

..

.

l i I

I I I' i. .

.

I !I

II

I i 1 Ii"" .... ". .'.

0.

I I II I II it '111"lmllW "

.

g1...l... . .. \ ..... \ ..... .t. ..... ; ... \ ...�., .. ll .. l, .. \.IHIlUlmmnminmth\mmmm��.t..0-_ 1·6. 3 . .0· ... . ....

.. T .... I...,....... '. . .

Figure 4.6 (a) Squaw �pids speed errGi'" versus. time when. the.:

system is coupled with the state regillator.

8 .

....

...

�� ��..

�o� 1 � ng i iii 11;; : .11: II

: 1. ! i j! 111. i i lillollls8!.· iil,i II'w: .. i 0 I

�� i i lilt .

.

Ii 111 III'· .11"1"1'11"11 .

! I!! '11'11II I" "II" Ih .

.

! 1"1 I I' I"I 111" . np .

. .

.

ti.. ,11111 . .I.t ..ll.t .....J I ..l.l.lt \IIIII IUIlhltlllltl'll'\!Itn;m It'l!'"''''""""'"... ·w0..fl...., Itt ...�......

:.

.'..

'. '..

..

.

Figure 4.6 (b) Queen Elizabeth sPeed error versus time when the .'system is coupled with the state. regulator.:

Page 102: Laha Asoke Kumar 1972 - University of Saskatchewan

89 '

'0o '

tt: n'�! nu .

��I ill' Iilil! L jll 11111! : i Ii I I'

.. !s!lr··· I..

;�:!::i I II I 1111 " " '" I " II" "

·0:'I :..... :

.

CIt !

I

Jl0.:.' •

00

'F1gure 4.7' fa) 'Squaw RaJ)ids ,speed e"to," versus time when the systeM,

: is coupled with the truncated state JreCJul.tor. "

'

��1 ...1, •

..... 0: ,It

f�i ' III15 i I· '

.

. � :

� i.. i .; .' .

Gill' ,

5g: 1 It."

;,j' ".I'j , .. ,

.....••....jt

i I I, .'

III

t I) Pit·111 Iii .

" ,'.', ,.' ••,:, ",', ',',

.

I lill 1111111,11 ijrllllllil1�11j!ill!' ' ....•.'. .

,., '..

" �)t 11 h. W.W..lll..l.\i.ll.!.w.tthUlW.uHltj ttUmlmt\t,,,,"''1'1'1\'''I. �.'00 I s o 4& 60

'

Tillie in '.'Qlld., ,

Figure 4�1 (.b) Queen' Elizabeth speed e.,.or ""US tiN \rfhen the systesnis coupled with the truncated state ",,'et.,...

Page 103: Laha Asoke Kumar 1972 - University of Saskatchewan

.

"," .... ., 90

optiinal 5yste", are shoWn fn 'F1'oures 4.6 and '4.7. As expected the.

.

.

tranSients using the truncated state' regulator compare 'qufte favor.ably

with those us1nq the c�lete state reoulator. The effect of adding.

. .

.....

either of these controllers to the system is' quite evident. A compar-

ison of F1�ures 4.5 and 4.6' clearly dem01strate that the introduction'.

of the.�tiN 1 cmtroller increases the, systel't damping to a qreat '

. .. .

extent. The close simUaritY'between Fi«'fures 4.6 and 4.7 $uqqests that. -

· by a proper. choice' of state variables it fs·. possible to build an

.

..

. .

.. ;.

�tiNl centroller based. m the measurable .states only. A better.

. '. .

"

.

, canparison can ,be' obtained by d'rawing Figures, 4�5t. ',4.6, and 4.71n :. .

. .

one plane. This is ·dme in F1qure,4.8.

,

"

·

system transients. have ,been ,ca1culated �sin� an IBM, 360150 df9itll.

·

computer and: the results are:. compa�d. 'The improveMent in systewn .

damp1nq'due to the addition of the state r.equlator' has :been ,·verified.

both' by cmparing root . locations as we,n. as fr� time ,d_in results.

In the next chapter an al�..,r1thM is developedby Which the optimal

state requlator ca� be. trans.fOTmed into a simple transfer funetfM ....form and nu.nerfcalexamples·are used' to illustrate the techn.fque.

Page 104: Laha Asoke Kumar 1972 - University of Saskatchewan

.. 01..

_j�...

gt> O!l

�101

u'..

� 03..

......a.<II

(>I

10 2-0. &0

·01

.

·()3

Ffg�re 4.8 Ca) Squaw Ra.pfds speed er..... venus tiM

'Ca) UncClnpensated systeM. Cb) Approxfllllte state .-.gul.tOt'

. (e) State "gulato".

� 07

,..�o

,;?

";;05

"

·Ev

t 03

..

.,

..

.."ov

01

\ r-

\ V �"\\�� \

ter :

10

Figure 4.8 (b).·Queen Elizabeth speed .....01' ""US tf.

Ca) Uncampeftsated s,stent .

(b) App..acf.te state regul.tcr(c) State .-.gulato...

91.

Page 105: Laha Asoke Kumar 1972 - University of Saskatchewan

·92

· 5. DESIGN OF· A S.INGLE TRANSFER· FUNCTI (If . DERIVED FROM.

THE . OPTIMAL STATE REGULATOR.

5.1 Introduction·

· The design· of an optimal state regulator requhoes access to all

the.states for measurement •. These are·seldom available in a.practical.

application.· Even if sn the states are measurable in man.v weakly·

.

.'

coup'ed;la�e scale sys.teros. this requires a very·laroe.number of

feedback loops. Considerable control system· simplifications ·w1thout

serious deqradation of the overall system performance can be often

. cbtained by having each control·variable dependent only on .some but.

. .. "

not all �ystem state variables. This giv" r1se to what ·1s· known as

the design of a 'sub-optimal' cmtroller. �e such way of desiqn1na ..

a �ub-�timal eantroller has been discussed in Chapter. 4. DavfsC)n

and· Rau39 have discussed alternative means of deS1Q�i·ng a Suh-of)timal. .

controller for a pOWer. system based on' Qltput feedback.·.

A great number of authors48.51.60 had dealt:with the problem of·feedbaCk control of linear dynamic systems with limited (lItput measure­

ments. and feedback dynamics. Some autnors49,50 have approached this.

class. of preble",s fran a .stochastfc viewPoint where the s,vstem 15

assumed to have input noise and a random initial state whose statistics.

are known and the feedback law is assumed to·cons.ist of fixed, or time-

. varyinQ gains, on the system output. Several oth�r authorsS1,50 have.

: ..

tried to construct a Lueflberqer mserve·r for the 'unmeasurable states

and then operate upon· these state esti..tes with feedback qains so as to

Page 106: Laha Asoke Kumar 1972 - University of Saskatchewan

93

compute .the cO'ltrol yariables� �e difficulty with a 'luenber�er (bserver

is that one can mathematicallv push:the.e1�nvalue of the observer,. . .

.

.

which are to be assumed, tQ>lartis' mi'nus irtfinity··yield1nq extremely'. '." .

rapid convergenc�. This tends however to make the"observer act like a.

.

differentiater and thereby become h1qhlY's'ensitive to noise. A few

papers55•59 have been published describfn� techniaues for desiqnin� a.

· suboptimal controller based'O'I the Kalman�8ucy' filter. 'e,"(1158 had. . .

investigated the problem .of desfanin� a linear compensator in such a

manner that the quadratic performance index 1$ minimized in the same. . '.

. .

·

manner as' whe" all states are available. Althou�h this 'methoci is nuite'

'attractive it was difficult to ·imr>lem.eflt for this system considered '1n

thh study, because of the raundfnq'errors ,nd n..wer1cal instabilities

arising ·when 'tackHn� Ii hi�her order syStem•. All of:these results ha�e.

�lat1ve advantaqes' and disadvantaoes in ee.-tafn .eeses, un'ortunate1�no organized attempt has been reported so far: to ;haye� a c�ar.tivestUdY'· of a 11 the�e technfttues, 'their properties, 'their ':uselulness 'for

· a li� order system, as well as their imel1cation from'a pract.fcal. .

. .' " '. . '.

pOint of vieW. '

.

.

." . ..... •.

.'. . ..'

The alqorithm which is developed in the follCl1in� oa�es is in'.

essence a modification of Pearson.',$ ,",�hod.; The technfque is modified,

so as to (Jet ·rid of the numerical di·fffc:u·lties encountered in his

method. ()) ihe, basis'. 01' this alq()r.�thin :the.:sinql. t.r.nsfer functionoptimal compensator was' desi.qned fer two dffferen·t·, cases, .:

.

. a). a. hypotheti ca15th' order "system .

b) the 15th order pewer system under study (the .-educed ;3 mach1ne

Page 107: Laha Asoke Kumar 1972 - University of Saskatchewan

94

system of Saskatchewan Power Corporation).

5.2 Modification of Pearson's Theory

The optimal cmtrol variable u* is the linear cOmbination of all

the states defining the dynamics of the system (let the number of.

states be e), Because ·of the non-availability of all the states, one

is interested in relating u* with the output variable Y·. It is obvious

that U* cannot be a linear cm:aination of.Y alone� In order to ensure

that th� behavior of U* should be. same, the effect of the other (q-l)

states can be �placed by couplinq· u* with,. throuah 8. transfer funct":

ion whos� order will be (q - 1) and this will qenerate additional

(q - l)state variables.· The follow1n� al�orithm �alculates the coeff­

icients· .of this transfer function.

let the dynami cs of the plant be �1 ven by•

·X • ·AX + BU AE. Rq x q

C E.Rl x q

(5.1)

(5.2).

Y • ex

where,

X is the vector descrfbina the states of the· system. .

.

.

.: .

Y is the output variable

U is· the sca ler control vari ab le •.

From optimal control theory (refer to equation (4.3».

U .';'R-1 sT K* X

or

U.· III HX (5.4)

Page 108: Laha Asoke Kumar 1972 - University of Saskatchewan

95·

where.

H • _R-1 aT K*

Substituting (5.5) 1nto (5.1) y1elds·

(5.5)

..

X • (A + BH)X (5.6)

or

X • A*X (5.7)

Where.

A* Ii A + B H (5.8)

A* is the new coeffic1ent matrix of· the System..

. . �.

Now dffferent1atinq (5.4) y1elds .

Su • HX ·(5.9)

where,

S 1s the Laplacian operator

Substftuting equat10n (5.7) into (5'.9) I)fte:can write

SU • HA",X

Differentiating (5.10) aq.1n, one·canwrite

S2U •. HA*X

(5.10)

(S.l1) .

or

.

.

:.

.

". .

By successive differentiation, the last te"" een be written as

sq-1u • HA*q�lx (5.13)

Fran the above equations the following I!1iltrix can be derived

Page 109: Laha Asoke Kumar 1972 - University of Saskatchewan

.or.

u. ..

H

SU HA*

S2U HA.2S3U' •

.

HA*3 X (5.14)

96

11 • PX (5.15)

where.

U • ,[U SU S2U S3U _. _ _ _ Sq-1U)T

and.

(5.16)

(5.17).

P is a q x q non-sfnqular square matrix and therefore its inverse

exists.

From equation (5.15) one can write

X • p-l U

HA*

P • HA.2HA*3

.

Substituting (5.18) into (5.2) :v1eJds·

Y. Cp:-l nor

or

"

:� .. ',

.

','

(5.18)

.

(5.19)

(5.20)'

(5.21)

Page 110: Laha Asoke Kumar 1972 - University of Saskatchewan

97"

>

• .'. ..:',',.". •

'. •

.''. •

,

Thus the t�ansfer funetion 'RCS) - U/' can be obtained 1rOl'1, eQuation,

,,(5.21). It is given b!l equation ,(5.22) •

."

.

"

,', R(S) :: __1__

q-1' 1t Q1s'1-0

(5.22)

The addition of the optimal transfer function to the'uncomoensated

power system increases the ,order of the system from q to, (2q..1).'

Equation, (5,.22) has been derived by al�ebraic manipulation without any

assumptions or approximations to equati()fts (5� 1). (5.2). ,and (5.3) which'" . . . .

are",the basic ,equations describinq 'the dynamics of, the' p1,ant wi th an"

,optimal state regulator. 'It can therefore. be concluded that the behav­

ior of, the :plan,� with optimal transfer furtction as des1Qned above'should

,be identical' to' that of the ',plant with th� 'oPtimal state regulator.,

The block diaQram of the plant with the 'optimal transfer function'.'

.

.

, is shown in Fi�ure 5.1.

In o��r to ascertain the perfOrmance of the plant with the op't1mal '

transfer function: i'nclu�ed. it is necessary 'to develop the sta,te'space

model of the total composite system. In addition to the exfst1nc.t state'"variables' of, the' uncompensated plant, the state space"",Odel of the:"

optimal tran'sfer function is required. '

'

.'

. . . ..' :'..

"

. .'

Let "the new state variables of the optima,l transfer' fUnction be,,

,

def,ned as follows:

,

"

. ,:,:,.....

; _-".

. '�

Page 111: Laha Asoke Kumar 1972 - University of Saskatchewan

FG

-

·'·X.

.. .... �

.

f

-.

98.

x

·s·· A.

y

R(S)

. .:,", ..

__---.OPTIMAL TRANSFER' FUNCTION ..

Figure 5.1. General block diaf!rallt of a plant cou.,led with the _till'al

transfer function.

u

Page 112: Laha Asoke Kumar 1972 - University of Saskatchewan

I .

I!.

99

(5.23)

. ." .....

.

The stlte space' model 'of equation (5.21) Cln therefore be Wr1'tten.

...... :

as follows: .

. Xq+l· '.

Xq+2..

'.

.Xq+3 .

0 1 0 0 0 Xq+l 0

0 0 1 :0 �, 0 Xq+2 0

0 o· 0'· 1: 0 Xq+3 0

..

+. (5.24)

',

0 0 0 0 1 X2q�2 0

_Qo - Q1 ··_Q2 .;..Q3 ., Qg-2- - - - X2q_1Qq-1 Qq-l. Qq-l

..

Qq-l Clq-l

--

X2q..2.:

X2q.ioi.

Xq+1· .......

-

Xq+!•

o

o .

'0

o

(5.25)

o

Page 113: Laha Asoke Kumar 1972 - University of Saskatchewan

·100...

where C1 is the i th element of the rOtl.matrix C.

Equation (5.25) can be .written in the campaet form.

...

'.' .' .

(t] .. or) [Xl (5.26)'

I f the dts turbanee vector F is ..nc 1 uded equati on (5.26) expands· to. .

. .

. .

..'

.

.

.

[I] � ['K] (X] +. ['ft"] [F) (5�27)

Thus .the new 'coefficientmatrix hasb�en chin<l.edio � 1m,!' A 'Of .

.

equation (5.1).

The'rest of 'this chapter is devoted to the ap"l1catfon of this

alqorithm'to l'IO<I1fyino. the state' requlator ee the o"timal transfer.

form. F1 rst t a hypothetical 5th order system is cOns1 dered and then.

the t�chniQue is applied to the plant considered previously Whieh was'

. the reduced 3 machine system ofSaskatehewan Powe� Corporation. 'In ·both.�ases if'l1)rovement in systeI'Y dampin(J was found to be sim1:1at to 'that

obtained w1:th the 'optimal' state reGulator•... .' ,,'

.

5.3" oesf�n Of an �timal Transfer Function· for a Low Order System

A sfmple low order system,.was used as an example to 1l1�strate

the application of the al(Jor1thm derived in the preceding $��.t1on. The'.plant' considered for this 'case was a. 5th order' system37 t the dltnamicsof which is �1ven by the equation ..

X • AX + BU + GF

y .. • ex

.

','"

(5.28)

.: ':,,' ,',.�: "

. �"'. .

: .....

Page 114: Laha Asoke Kumar 1972 - University of Saskatchewan

101

, The matrices A. B. r, and r. were chosen as follows:-

,-24 0 ,', -130 10325 ' 10325

0, -24 130 0 0

A • 56'82 ..5682' 0' 0 0 (5.29)

-0.18 0 0 0 0

0 0 0 0 -loon

B • [0 , 0 0 0 III (5.30)

100 0

0 100

r, • 0 0 (5.31)

0 ()

0 0

C • (0 0 I, 0, 0) , (5.32).

:. .' .

The variables X, U. F and r, were as defined'befof"e.

To beqfn, with, the eigenvalues of the matrix, A which are the

roots of the uncompensated system, were'computed usin(J,subrouttnes

HSBG' and'ATElr;. The roots are given in TaMe 5.1. It can be seen from,

"

,Table 5.1 that the predominant'troublesome roots are ..11.99 :I: .1 27.8S

'

with' a damp1nrr l"atto «() eaual to '0.396" The matn purp()Se of addinq'

an external controller would be to move these roots away from, the"

,

ima(Jinary axh thereby, increasing ,the damp1n!t r�tio.'

, (

.

"

....

.' .,;. i� .

:

� ,

Page 115: Laha Asoke Kumar 1972 - University of Saskatchewan

102

TABLE 5.1

Ei�envalues of the Uncompensated Syste�

.

No.Poles of th

Real

1 .- 1000.0 0

.2 - 11.99 - 27.88

. 3 . 11.99 +'27.88

4 - 11.99 -1215.0

5 - 11.99 +1215.0

.

The optimal state requ'lator was designed next us:fnQ the alqorithm

. described in Chapter 4. The quadratic cost functional was assumed and

the syrmtatr1c Q and R matrices were arbitrarfl.v selected. The.v are oiven

by the equations(5.J3).and (5.34).

Q'. OIA [20 20 10·20 20]

R • 1.0

(5.33)

(5.34)

The alqebraic matrix Riccati equation was then solved usinq the eitJen­

vector method des'cribed in section 4.2. The optimal state variable U·

of equation (5.6) was found to be

U • [-25.7 . 19.0 4.1 -238.0 -238.0] [XJ .

. (5.35)

The new coefficient matrix A* defined by equation (5.8) was next. .

... .. .

comO�ted ared the eiqenvalues of A* were calculated it. order to find

the ffl1Proveynent in system dam�fn9. they arE! qiven .1n Table 5.2.

Page 116: Laha Asoke Kumar 1972 - University of Saskatchewan

103

TABLE 5.2.

Eigenvaluesof �he Compensated SystemWith the Optimal State Regulator

No. Poles of the SYstem. Real Imaainary

1 -1012.4 O' .

2 - 27.9.

-10.49

3 .. 27.9 +10.49

4 � 108.7 -1225.4

5 .,; 108.7 +1225.4

A comparis(J'1' of the results aiven in Tables 5.1 and 5.2 'indicate.

..

that·the p�dom1tiantpair of troublesome r'Oots have been. shifted to .

-27.9 ±.:1 10.49 which corresponds to a dampinf} ratio of' 0�934.

The optimal transfer function was next desf oned, 'The matrix H of

• equation (5.4) was obtained from equation (5.35). It was found to be

. H • [ ..25.7 19.0 4.1 -238.0 -238.0] (5.36)

With the help of the dio.ital cOMputer proqra� written on the basis of'

the alQorithm described previo�slYt the couplinQ matrix Q was calcu- .

. lated. This is ('fiven. by equation (5.37).

Q ... [3.29 x 10-2 1.41 x 10-3 2.88 x 10-6 1.34 x 10-9 1.69 x 10-12] (5.37)

.. The new.coefffcfent matrix X of equation (5.26) 'was then calcu-

lated with the help of equation (5.25)� It was found to be .

Page 117: Laha Asoke Kumar 1972 - University of Saskatchewan

.

·104

�24 . 0 -130 10325 ··10325 0 0 0 0

0 -24 130 0 0 0 0 0 0

5682 -5682 0 0 0 0 01 0 ·0

- 0.18 0 0 0 O· 0 0 0 0

'A. 0 0 0 0 -1000 . 1.0 0 0 0 (5.38)

0 0 0 0 0 0 1.0 .f) 0

0 0 0 0 0 0 0 1.0 . 0

0 0 0 0 0 0 0 ··0 .• 1.0..

_5.9X1021 0 0.

10 . 8.

60 0 -1.9xlO �8.3xl0 .1.7xlO -7.9x10

..

..

The next 10qi·cal step was to calculate the characteristic roots of..

matrix X in o"der to compare them with the roots of the system coup··led

with the .0Dtimal state .requlatnr. The .ei�enval.ues were llftain c"""uted

and they are shown in Table 5�3.

TABLE 5.3.

..

Eiqenvalue of the COIIlPensated System CoupledWith the Ootimal Transfer Function

Poles �, the· SYl!O;-�".

No. Real ImaQi naY'Y .

1 •1012.4 0

2 - 27.9 ...10�49 ...

J - 27.9 +10.494 .

- 108.7 1225.05 - 108.7 ; 1225.06 - 34.8 1224.0·7 - 34.8 1224.08 ... 456.8 0

9 . - 28.·42 0

Page 118: Laha Asoke Kumar 1972 - University of Saskatchewan

105

.

.' .

.

The results of Table 5.3 are reassuriOft. By e.,arinq �he results of

Tables 5.2, and 5.3 it can be noted' that the first five roots are

relatively unchanqed. The increase in the order of the system due to

"

the optimal transfer 1unction has created four additional roots. Two

'of these addition'al roots (-34.8 ± j 1224.0) would ,prOduce exponentially'. ....

..

decayinq oscillations at 196 HZ while the other two have only expon-

,

,

entially decayin� effects. Therefore these four roots have a negligible

effect on the overall system dynamics':which was governed mainly by the.

. '. .

predominant pair �27.9 ± j 10.49. Thus the optimal transfer function

enhanced, the system damping in the' same manner, as ,the optimal state,,

,

requlator by shifting the predominant pair Of 'roots 'rom ..11.99:!: r

27.88 to -27.9 ± j 10.49.

The fourth order Run�e Kut:ta method wa$ used 'to �lcullte the.'

.

'

'. .'

time d(Jn,ain system response f�r this, hYPc'thetieal,system. the disturb..

, ance to the 5y'stem was selected as 8,1tli step incw-eAse of varlabl&, F2• ,

, State Xl was arbitrarily selected f�r comparison purposes." The time"

domain transients of the state Xr were plotted for all the three,

cases, viz�:,

a) uncompensated case,

b) coinpensated system coupled with optimal state reqUla�to",, ;

,

c) compensated system coupled with optimal transfer function.

They are shfMl in Fiqure 5.2. A marked improvement in system dampfnq.

.

. .'

'due, to the addf'tion of'either 'form of the optimal reGulator to the,

, plant can bf! easily seen by comparing th�se results.'

Page 119: Laha Asoke Kumar 1972 - University of Saskatchewan

,

1111.111111i 11111111111.1 II! IIIII II II! 1 i ii Iii II I I I!

'111.1,1.11 II', '"

'II!I ! I"

j lliii llii 1,1 I Iii,Llll!!:ii!PI !!id!I'! ,·"ilmmi!!tn ..

1:11!1111111111111111!1I i!! " ..... ,! !ll111111111111!1:lllillllllll00 CH 02 03

.�.

i

i?...

1IIi

... 0

al�,:>

...

..

� q.'"......

. ....N

c?

ali:,.,

.�0

o.o

i;

00. ". 01,

�o

I;;

Q iM.'.' 1w :... '

. : �. ir I

!

�...

i

g l!lllllllill!ill!ill!liii0'0' 01

SYSTEM

lilillilll[ill III! 11111l! i:i04 .0$

TIMlIseeoNoSl

COMPENSATED SYSTEM ICOIIPL.EO WITH STAll _.....TO'U

t

p,

!![I[Uu>L:,', .. ,�., ... ... , .

.02 ,U

COMPENSATED

............, , .

04".

osTI_IIICONOII

CCOII ....m·WITH OPTIMAL., TRANSFt" FIINC TIONI

SYSTEM

h

Illlli:liliil!i"'HiP[I!'!', ce, ", '" ., ... . ,

02.

.' 03. 0·4 . 05

T1M' C'SE COMOSI

Figure 5�2 T'f. d__in results for b".,othltfcal sys. f. anthe three cases.

106

Page 120: Laha Asoke Kumar 1972 - University of Saskatchewan

101

5.4 Design of the Optimal Transfer Function fo';' the Power System �odel

,

The techniQues for deriving the single transfer function fom of

the optima 1 requlator can be readf1y apT'11ed to, the power system ",ode 1

consisting", of. the three machine 'reduced model of a portion of the ';ask ..

atchewan Pm'ler Corporation considered previously. The control, variable. .

.

'. . .

.'

u, in this case is ,fed into the voltage reQulator of the !iqua., �apfds', . '

plant from the oPtimal transfer function with input siflnal S6. The

schematic is shown in Fiqure 5.3.

The rrjatrices A. C of ettuatinn (5.1) have ',been previously ce lcu- "

.. '.

." .

, ,

lated in �hapter 4. Si:nce S5' was selected as, the ,inpu't to the trans'fer

function. C is written as.

C = :[0: 0 1 0 0 0 0 0 0 0 0 0 0 0 0],

(5.39)

The optimal f�edback matrix Hof equation (5.4) is obtaine<f f'r�

Chapter 4 where the ortinal state re�ulat()r ,,;as dp.si�ned for this'

system., It is 'Jiven by equation (5,,40).

H =-[654.0 182�8 ;'142.6 '.261.0 1.11 ,-592.6' -Rl.2 �16�4'

2.6' -61.0 -54.4 -0.12 8.1 -8.7 -4.1] (5.40)

The next step was to compute the !'latrix P (fiven b.v enuatfon (5.14) and

calculate the couol1nq matrix Q given by (5.19). The evaluation of

matrix Q renutred the inversion of matrix P. Because of the tYDical,

.

nature of'

the matr1� P \-/hose nth row 1$ HA*n-l"( the martn1tude of each

eleP.lP.nt of a column increases as it is moving �ownwards. This created,

large roundin� �rrors and n�r1cal 1nstabfli�y when tryino to invert

the M(ltrix,p us1nq direct method. In order to, get rid of the nUf"lerical

Page 121: Laha Asoke Kumar 1972 - University of Saskatchewan

..1+1815

i·vfbl

. /. / .

R(S)

108

OPTIMAL . TRANSFER FUNCTION·

. VIal . KaI(r+T��1 S).

vexa1+ Tadl 5

Kafbl5I +TatblS

Kvfbl S

I +Tvfbl S

1

Vfbl·

the SQuaw Rop1ds plant co�pled with the optfNl

.. tra"sfer function.

Figure 5.3. Block diaqram of the aut�t1c volta�e requlator at. .

Page 122: Laha Asoke Kumar 1972 - University of Saskatchewan

109

error,. Q of equation (5�20) was redefined as follows:­

Q .; Cp-l '(5.41)

or-1 .

Q • (C p-lpT )pT. T

.

\'1here P is the transpose of p. .'

let "T" .• ps

(5.42)

(5.43)

. Thus (5.42) yields

Q • CP5.-1pT (5.44)'

or.

Q:.•: C PINV' .: .

where PiNV.'ps... lpT

.

..' (5.45)

. (5·•.46)

.The·necessity of generatinq Ps stemmed from the fact that apart

from its ,symMetricity, all of its elements were more or less of the

same order as compared to matrix P and hence were less orone to

rounding.e�rors.·

PINy'was thenmult1plied ,",yP to check the accuracy of the

inversion process • .The produ�t indicated a s.1inht rounding error and

a further standard iteration method6! .wa$ used to br1t1q the results

within acceptable limits.

A brief summary of the steps re�u1red.to solve for the matrix �

is in order.'

a) Scale the matrix P

6) ·Multiply P by its transpose "T to generate Psc) F1r'1d the inverse of p

sand later PINV.

Page 123: Laha Asoke Kumar 1972 - University of Saskatchewan

,.

·110

" .... ;

d) CCllllpute Q with the help of equatf'On (5.20)�

The Q .trix· for thts Clse was calculated· to' be:

.. Q • -, 11.47 x 10.2, 1.44 x 10-1 .

1�18:x 10-1 '

5�59 x 10-1 1.12 x 10..1 .

.

3.66 )( 10.2 5.4� x·lO·3 5.55 x 10.4.

3.35 x 10.5 . 1.16 'x 10.1 .

.1�43 x -19-' . 9.•01 x 10.9 . 1��. x 10..10 4.44 x 10-13 ·.2.12 x 10·15J (5.41)

. . .' .

. . "'.

..

.' The new charactert.stlc .trix X' g1ven by equations . (5'�25l and

(5.26) was calculated aitd ·1ts efgenvalues were' then cOMPuted fOr. . .

..

.

conpaMson purpose$� The predamtnant roots alOftiJ. with the roots of ·the·.'

uncGllpensated syStem are shown .1n Table 6.4•.. ".

Table 5.4'

...

. ". . .

.

.'

: '. ..

. CGMpar1son :01 DOMinint'S1S,. �Oots ..-, .. ", ..

:,' .

. _

.....

DOIII1nant·· .Roots.. .

..

ContrOl. System..

.1"1«71 t,.

«72:;* j-z «73 t .1-3'.

-.

. �.

. ,'.

,

IMccmpensated._'

System ';'0.044 t . .1 6.68' ·.,..0.:63'.* .1 1.34' " ·-0.20 t j 0.29.. .

' .

....-.

CampensatedSystem· coupled' ;

.. ., ,"J: ...� .

.with· Optimal··.· -1.28 tj 6.99' 2"73 t 3.42 .3�89 t." 0.10......

Tranifer'..

':.

Function "

". ..... ." '.

It can be eaS11y $,.n that Wftt.·.:titt·'·addftton. of .n:·OptiNl.

transfer f:unet1an' cartsfderabl.· fMprOve.nt 1n system ."'."9 was obtained

over the uncanpensated system and 1n additfon the Nsv;t. are 'sftllflai' .- .

. :..

Wtth those 'obtained for the' optlIn11'regul.tor. This ... observation ''.'

,

can.' be deduced by plottf.ng the t1. �.. in results. :The '11�late� di$t�· _:;'.·urbance to � system was a 10� 'step.' f.ncrease "n loact<Cientan.d at Squaw

....

... :..

Page 124: Laha Asoke Kumar 1972 - University of Saskatchewan

...'.

111

R�pfdS plant. The Squaw. Rapid. speed error and the Queen El1zabet�

speed error are shown in Figures '5.4 (a) and' (b). The tranSient·'.responses for these � variables for the uncompensated systm are

....

..

plotted again in Ffgures 5.5 (a) and (b). for c.-rison. It can be

noted that the fairly 'oscillatory nature of' these two variables for.

.

'the uncompensated s"tem·.re notiCeably suppressed'whenthe, optimal..

.

.

. transfer function fs. added.

An �lgorfthm for the design of an optimil transfer function for

the single input case has been developed in this chapter. It was

then applied to two different plants and the results obtained were .'

found to be canparable with those obtained using the' optimal .state

regulator..

.. .

. ..: . .... .

.

So far the phl1osoptly behind improyf·ng system damping. of multi-.' .

• .chine power systeM is to feedback the speed deviation through i

controller. 'In the next chapter to further uti1fze the 'duellevel'

power system model the effect of :'cons1dering the gove",�r input as

an additional feedback on sys� d�1ng is fnvestfgated.

Page 125: Laha Asoke Kumar 1972 - University of Saskatchewan

112

''0...,e,VI'

i

1lII1lllllili � . .

[llttl ll l1.llllll(lll t l \ t \ \ � \ \ \ � \"" \ .... "·r'.

.

4'� 6 O'

.

Time .in ,,,orid,

3'.0

Figure 5.4 (a) Squaw Rapids speed error versus time when the syst_is coupled with the optimal transfer function.

8'i.lon'0'.

�� I

I I'3 0;'': 0 i� � �

. U tn:

.s � i6

I:::...

; 11:llltl1il,l �! ,lillill i llllll! llllllllllllllll.l tilItu\\iiIII!111111U l \\, ...\u1HHi \H\th.....�,,,\\\\\It"'1'

00 I� 30. 4'�.

60

Tim. III IIC:OIId·,

Figure 5.4. (b) Queen Elizabeth speed eM'Or venus time When the systemis coupled with

..the·.opt1mal tr.nsfer function.

Page 126: Laha Asoke Kumar 1972 - University of Saskatchewan

·0o

..

Figure 5.5. (a) Squaw Rapids speed errOr versus time for

. the uncCJIIpeftsated system"

o.0

III

f.::,.:

. I:::.

6�. �:!!n

:,'!,!, i, ii,:,'l.· iliijl!!: !ilh

:d!:P!i, 1ddlfv· ; P:qd!i:f .'I!!HP:: .'!!!·'I"I1t:l nl'li� .

: Iln:II'III:I'1 ".1"tC• 1'1"11, I 1'1 1'1111,• I II I. I I

11'1'·0: u '11,1:'1' III': lid....-: '

.. I.ln '1111 1'1'11::.GO: rlll uuuum :.111111-.. w: :l:nid,nlpn :IIi III... : uuuuru ,: nl uu

-: 2; llillll!'lll! Hlllll!i!PIIJi'; 0: : ill': ! u I! P! ll u I'j P!.. '. .1 I" l'II'j' I I',I.

=: n. 111'1'11 : III '11'Plii·-: 1111 1,1 ,II , ,I 'II .

� tlflilffllffnnfff:fl:flff:i. ,h. tTl,c:. '0' "1'11'1'111111"1'11"11' ."'1' • .1 .. ,

. 111, .. I I "f'l II I 't I' I"" 1"'1'.� . • "'1'1"I I'll' 1111 U'I' ·"11' tt-· ttl ,

: Inn 'I ::.11::1 : tn. '11"1,:t :'1'11':.1 'I'j t:lj'lj'l� : �lil'llljjliPli:li'lli:l1l11 :'lil!l!h!II:iIiI' .•. .1:1 i� .. I11II Ii.

:: l���llill iil'lllil'illlIllll:lliiiiilliil i.

ill llill'l i,l ,il h: giP!ill'II'!I'lliIHl.il'I!lllllliillllli!lI!II'lIiliilll'h �llI!lii 1!11I1,ll1li �'III!PII','II!i,i�'11• ::111 I III 1"'1111 1111 'I'Pl"I"'1 II· .:::t·· �II':I:: li·�1 "II' 111'1 ,

i �I.lll.ll.lIJ.llllll.lllllll.l tllllli.J l t l tl.l.l.t I. tl.l.l.lll t1....tlll.ll.lllllhdlll.llll.llllllllll t lUlllltltm0·0 1-11 10 4·5 '"'

TIIII. In ..coll4a

Figure 5.5. (b) Queen Elizabeth speed error versus time

for the uncompensated system.

·.113

Page 127: Laha Asoke Kumar 1972 - University of Saskatchewan

114

6. ADDITIONAL STUDIES •

6.1 Feedback of Two Control Variables

Any researcher wOrkin� with the dynamic stability aspects of power

,systems would be confronted with the question - is it desirable to

control both the exciter and qovernor inputs or exciter only� As Out-.

.

. '.

.

'.' '..

H,ned in Chapter I, most of the papers published so far had accep,ted '

the philosophy of adding a stabilizing signal to the exciter as a means

of ,'enhancinq system dam"inq. Much of the literature'describes the

theoretical studies for designing an auxiliary controller for this

purpose. But'some of the earlier papers2•35 had reported the effects, "

of the governor settines on the' dynami c s tabl1i ty. rwo recent papers

37,39 ap'plyinq optimal control theory to the power system had also, ,

considered governor input as a, control variable in addition to the

excitatiOn, ,1nDtJt. Yet no attempt had been reported so far re'larding,

the relative importance and hence justification of consideration of

the governor input as a, control variable on the dynamic stability"problem. T�e $ubse'luent material stems mainly from the above consider-'

etion. The optimal state regulator is designed for a suhportion of the

SPC syste," consider1nq its exciter and gOvernor inputs as two control

variables. The 1mnrovetnent in system damPing is then compared with the

res�lt$ of'the ,optimal state'requlator having the exciter input as the

only control variable.·

The system,considered fQr this study was the sa� three-mach1n�

sys�e� c�s1stinq of a reduced model of a·part of Saskatch�an.Power

Page 128: Laha Asoke Kumar 1972 - University of Saskatchewan

115

. ..

.

Corporation, as described in s�et1on 4.3 •. ·The dynamics. of the system is..

governed by the following state space equation•

X·.' AX + 8U + GF «.»

where.

vector X defines the states of the system. The approximate model. ..

.

.

of the. system excludinq transforme.r act10ri was developed in Chapter 3, .

subsequently used in Chapters 4 and 5, and is used here. The nUltlber of.

. .. .

."

state 'variables describing the system given by equation (6.1) leads to.

• 15th order characterist1ctnatrix A and a 15 x 7 coupl1nQ matrix G.

The contw:-01 vector U in this case consists of two scalar variables

Ul and U2' i.e.. (6 ..2) ..

The va�iables U1 and U2 are fed back to the exciter and govern�r Of •

the Squaw' Rapids ':plant of th-e" • study' . system. The schematic'diagram :,

comprising these' cont.rol variabl,.s ts shown in Figure 6.t.·.' ".' ..

. Because'of the presence of two control variables in the coupling.

.. .

.'.'

..

.

_trix B of equatfan (6.1) "s different fron the one used in the �re-'.

'. '..

. ..

ceding chapterS. The B matrix for this case is give" by equiticn (6.3).

0 00 00 o·0 00 00 ()

B •• 0 0 (6.l)1 .

0 -.

Tel0 00 00 00 0

Kel 0-

Tel ' .

0 00 0

Page 129: Laha Asoke Kumar 1972 - University of Saskatchewan

116 .

K••. '

KaI(1 +Tan,8). Vtal'.

'1... , . I vfl..

.----

I. T•• 8 1 :.- lode 8. V,.,I

iVfbl

;Kofbl S .. ·

....-------

1 .. Tofl)18.:

Kyfbl S......---.....-----\

1 �Tvfl)l S .

( ..

... �.

I + TCI $

.

I ... T31 S··1 +,TSI S

9t '.

1 + T41 $ .'

..'+ T5,I S..

'.

I .

"'R ....

I .

.

1....---.-.��----t. '-

Wb

Figure 6.1. Schematic diagraM' or the excft.tian and' gp"mor;': ...pri. move.. ftiodel With':. e)C�.ma.l. feedback. var1abl.s. · i

,'" .

,.

Page 130: Laha Asoke Kumar 1972 - University of Saskatchewan

117

Substituting the .numerical valuesof the parameters of the Squaw Rapids.

plant as .(Jiven in section 4.3. the B matrix can be derived as aiven

by equation (6.4) •

. 0ooo·oo

B· 0ooO·oo4.2563o'0

oo.oo·0oo6.2o'0ooo·0

.

0.

(6.4)

The characteristic matrix A of (6.1) is unchanged from Chapter 4 where

it· is defined by Tabl� 4.1.

The rest of this chapter is devoted to the desi�n of the optimal.

. .

.. .

state regulator and the qualitative analysis of the results.

6.2 �sign of Double Feedback �timal State Regulator

The design of the double feedbaek optimal.state requlitor involved

the selection of a cost functional or perfonnance index which was'

assumed to be quadratic in nature and the' solution.of al�ebraic matrix­

Riccat1 equation. 'This was outlined ·1n· Chapter 4 •.

The. cost functional J is !liven by

(6.5)

Page 131: Laha Asoke Kumar 1972 - University of Saskatchewan

118

, ,'

as stated previously in equation (4.2). The matrix Q given by equation,

'(6.6) for ·the double feedback' system was selected to impose heavy

penalties on the an9le and speed deviations of the Squaw Rapids and

Quee� El1tabeth plants •.

Q .• DIA [l.0 10000.0' 10000.0 10000.0 10000.0, 1 .1 1. 1,

1 :,1 1 1 1 1]. (6.6).

.

The R matrix was assumed.,to be un1'ty; or in .other words..

. ..'

.

[1.0 OJ '

R •.

"

0'1.0"

The optimal control vector u* .ts related to the state vector X by

means of. ,the 11nea .. feedblck "'lations�fp, ..

(.6.8).'

where K* is. the solution.of .the .1qebra1c ",atr1x-Riccati equation'.

0 • K*A+ ATK*�*8R-IBTK*.+ Q.

.' (6.9)

The .tr1x-R1cca�1equati4)n is fOl"nlUlated fran equation (6.9) by

substituting "for the A. B. Q and R matrices a� defined aboVe. The.

. ..

equatfOll was then solved using the alqorithm described in section 4.2•.. .

The solution matrix K* was calculated and .·1s gfven in Table 6.1.

Sylve$ter's c:r1ter1qn52 waS agai,. applied to check 11 the Riccat1

matrix,,,,,,s positive definite or not. The detenninant of, K* and the

principal minors ,of the determinant were calculated and were found.

to be .,os1 t1ve indicatfng the correct solut1on.

The control inputs U1* and u2* obtained from equation (6.8). are

!liven by eqUlt10n (6.10>-

Page 132: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 6.1

. K* HJ1T�rX

(All the e lerents of the rratrix are expressed in th� �om mEn Ml1ch is equa 1 t� m x IOn)

0.86OOE 04 0.2754£ 04 -O.I64SE 04 -6.3619£ 04 0.6078£ 03 -O.535� 04 -0.5671£ 04 -0.3555£ 02 C.576lE 03 0.7003£ 03 0.5561£ 02 0.6460£ 01 0.2982E 02 -0.1'708E 112 _O.I!347f 1)1

O.l769£ 04 0.5914£ 05 0.5261£ 04 -0.4565£ 05 0.5681£ 04 0.4587£ 04 0.4342£ 03 0.3370£ 02 0.7187£ 04 0.2266£ 05 0.1054£!l5 0.3807£ 01 0.2627£ 01 -O.933!1£ 01 -0.2511£ 01.

-0.1644£ 04 0.526lE 04 0.1984£ 04 -0.3879£ 04 0.2877£ 03 0.2257£ 04 0.2577£ "3 0.2195£ 02. 0.5194£ 03 .0.2346£ 04 0.1240£.04 -0.5466£ 00 -0.�73£ I'll 0.4126£ 00 0.1788£ 1)0

-0.3627£ 04 -0.4SESE .05 -0.3880£ 04 0.5511£ 05 -0.3259£ 04 -0.3304£ f\4 �.5!1i;2f. !l� -0.2034£.02 -0.5383£ (,4 -0.2034£ 05 -0.1003£ 05 -0.4148£ 01 -0.6751£.01

O.6083E 03. 0.5682£ 04 0.287� 03 -0.3260£ 04 . 0,3387£ 04 0.1224£ 113 -0.3391£ 112 0.5838£ 00 0.2699£ 04 0.3853£ 04 0.9516£ 03 0.2C152[ 00 0.2807£ 01

-0.5353£ 04 O.es94£ 04. ·0.2257£ 1)4 -O.3308E 04 0.1227£ 03 0.4655£ 04 0,2999£ 04 .0·.4093E 02 O.3872E 03 0�2399£ 04 0.1388£ 04 -0.3469£ 01 -0.2093£ 02

-0.5669£ 04 0.4493£ 03 0.2585t 03 -O.604OE 03 -0.3365£ 02 0.2999f 04 0.5973£ 1)4 -O.2286f; 00 1).2297£ 02 0.4221£· 03 ".29311£ 03 _0.4832£ 01 -0.1741£ 02

-0.3556£ 02 0.3370£ 02 ·0.2195£ 1'2 -0.2034£ 02 0.5859£· 00 0.4094£ 02 -0.2213£ no 0.7233£ 00 0.2739£ 01 0.2007£ 02 0.1206£ 02 -0.1818£-01 -0.1588£ no 0.2221£-01 0.3!l35F.;'02

0.577* 03 n.719OE 04 0.5196£ 03 .(1.5385£ 04 0.2699E 04 0.3865£ 03 1).2153£ 02 0.2737£ 01· 0.2451£ 04. 0.4392£ 04 0.1398£ 04 0.4120£ 00. ·0.2129£ 01 -0.2679£ 00 0.1371£ 0')

0�7038E 03 0.2267£ 05 0.2347£ 04 -0.2035£ 05 .0.3852£ 04 0.2399£ 04 ·0.41117£ 03 0.2006£ 02 0.4391£ 04 0�U99E 05 0.5139£ 04 O.l138E 01 ..0.5946.£-01 -0.2007£ 01 -0.3620£-01

O,5385E 02 0.1054£ es 0.12.t(JE 05 -0.1003£ ()5 1).9511£ 03 ".131111E"4 1'1.24151£ 113 0.1205£ fJ2 O.I396E 04 0.5136£ 04 6.2512£ 04 .0.4552E 00 -".1541lf 01 -0.11175£ 01 -O.665Rf-Ol

0.6459£ 01 0.379A[ 01 -O.5471E 00 -0.4140£ 01 0.2946E 00 -O.3471E 01 -0.4834£ 01 -O.1817E-01 0,4102£ 00 0.1134£ 01 0.4567E 00 0.2841£-01 -0.118U: 00 1).27651:-01 1).•5943£-02.

0.2982E 1)2 0.2588£ 01 .,0.8476£ !II ';'.6732E 01 1).2l1l)I;£ IIi -0.201)3£ n2 -0.1741£ 02 "O.I588E 00 0.21241' 01 -0.6829E-Ol -0.1534£ (11 .(I.I18lE 00 0.1181E 01 -0.8711E 00 _O.4293r 00

.-O�1708£ 02 -0.929U 01 ,0.4143£ 00 0.9874£ 01 0.1878£ 00 0.8576£ (11 0.1545E 02 6.2219£-01 -0.2620£ 00 -0.1994£ 01 -0.1079£ 61 0.2765£-01 -o.s7il£ 00 0.2303£ III l),l366£!)l

-0.8355£ 01 -0.2486£ 01 0.1809£:lO 0.2625£ 01 0,2732£ 00 0.4277£ 01 .t).8401E 01 :I.393!1£-02 0.1383£ 00 -0.2945E-Ol -0.6747£-01 0.5936E-02 ..0.4293£ 00 0.1366£ 01 0,1242£ 01

0.990.1E 01 0,2649£ 01

0.1861F 00 0.275OF. Of)

0.8574£ 01 0.4270£·010.1545£ 02 "',8391£ 01

....

...

...'"

Page 133: Laha Asoke Kumar 1972 - University of Saskatchewan

120

x-

_-

126.9 11.01 -36.06 -28.'64 11.94 -89.09 -74.10

-0.67 9.03 -0.29 -6.53 .0.50 5.02 -3.7 -1.82

"U2* -222.2 210.6 137.2 -127.12 3.66 255.87 '�1.38

4.5 17.11 125.4 75.35 -.113 -0.99 0.139 0.024

(6.10),

The state ,space equation of the system equipped �th an optimal

state regulator is given by.

'

x'. A*X + GF (6,.11)

where

'A* • [A - BR-1aTK*] (6.12)

S�bstituting the values of B, R, A and K* fram eouat'f(ms (6.6), (6.7)

and Tables (4.1) and (6.1) i�to (6.12) yields the tra"sf'orm.ed character-.

.

. .

.

-

1st1c matrix A*. This is given in Table 6.2. '

,

Equation (6.11) with A* defined by Table 6.2 was used 'or stab ..,

.

il1ty analysis in the complex S-plane and for the time domain,solilt1,on. '

, ,

'F�r stability analysis in the S-plane the eiqenvalues of the character-

istic equation I A* - Ail • 0 were 'calculated. These are given' by'Table 6.34!

,,

The relative improvements in system damp1nq is apparent' by eompir.;.

fng the dominant eigenvalues of the system with the d�l. feedback,

optimal state regulator with those obtained 'when the' 5ys-,1s coupled·with a ,single feedback optimal state regulator, and with those Obtained

from the uncompensated system ccnsidered previously. These comparative

results are shown in Table 6.4.

Page 134: Laha Asoke Kumar 1972 - University of Saskatchewan

TABLE 6.2

THE CHARACTERISTIC MATRIX A* OF THE' COMPENSATED SYSTEM· .

. ,

-0.17310.0. O�O 0.0 0.0 0.0 . 0.0. '.0.0 0.0 O�O 0.0.

'. 0.0258' 1.29' 0.0 0.00.00.0 1.0 0 ..0 0.0 0.0 0.0 . 0.0 .0.0 O�O 0.0 0.0 '0.0 0.0 0.0-19.7-18•.0 '.0.1-49 ·.17.8 0.0 18.1 0.0 : :0.0

.

'0.0. . 0.0 0.0 0.0 0 •.0 '0.0 .'.0.00.00.0

.

0.0 ·0.0 .: 1.0 0.0. 0.0.

0.0 0.0 .0.0· 0.0 0.0 0.0 0.0 0.03.0319.8 0.0136-22.2 -0.102.0.0 O�O 0.0 18.2 0.0" 0.0 0.0 0.0

.

0.0 0.00.00.0 0.0537 0.0 0.0 -0.909 0.91.5 .' 0.352'. 0.0 0.0 , 0.0 O.Q 0.0 0.0 0.00.00.0: -0.0268 0.0 0.0 0.0 ',-0.0029 ·-0.176 0.0 0.0

·

0.0 0.0· . 0.0 0.0 00..'

..

"!'1388.7'1316.2 856 •.6 -794.5' 22.87 1'599,.1 .' . -8.62 21.87 106.9 . 783.7 '470.9 -0.70 -6.i9 0.87 0.150.0O�O 0.0 0.0 .·0.0 . 0.0 . 0.0

.

. .. 0.0 -20.0 20.0 .

·

0.0 . 0.0 0.0 0.0 00....·0.00.0 0.0 0.0 0.0 0.0

.

0.0 0.0 0.0 . -6.67 · 6.67.

0.0.

0.0 0.0 0.0'·0.00.0 0.0 . 0.0 -1.38 . 0.0 .. 0.0 0.0 0.0 0.0 .-12.5' 0.0 0.0 0.0 ·0.0.0.0.0.0 0.0 0.0 0.0' 0.0 0.0 0.0 0.0 0.0 0.0' .30.3 -1015.1 0.0 0.0

.

..536.747.01-.153.49 -122.04 SO.82"!'379.2 ';'315.4.'· -2.85.'

38.43 -1.23 -27.79 -2.13 21.36-15.·75· ",,7,.75'·'0.0..0.0. 0.0 0.0 0.0 0.0 0.0 ., 0.0 ·.0.0 0.0 0.0 -0.689 -34.4 -4.54 00..-0.3130.0129-0.00141-0.0125 0.0· 0.0

.

0.0 .. <>, O�O .:.. 0.0 ·0.0 0.0 0.0 0.0 0.0' -2.0

...N...

"

Page 135: Laha Asoke Kumar 1972 - University of Saskatchewan

Tlble6.3. ...

.

.

EIGENVALUE· OF nt£ COMPENSATED SYSTEM EQUIPPED WITH.

. . : TWO FEEDBACK OPTIMAL COOROL VARIABLES. , ..

.

Mo. EigenvllUes.'

1 -l72.10 + j 0.0'2 - 26.42 + j 0.03 .- 0.21 .+ j 0.04 - 0.46 +. j 0.0'S - 1.0 + j 0.0

"

6 - 2.0 + j 0.0

1" .

1.81 j 5.85• -

8 :.- . 1.81 + j 5.85

9 • .4.33 - j.

0.03310 - 4.33 + j 0.033

.: 11 • 17 44 .- j 1 81... ..

12 .. 17.44 + j 1.81

13� '!' 16.45· + j 0.014. '.

_: 8.06 - j 13.31

15 .,- 8.06 + j .13.31..

. " ,"..

122

Page 136: Laha Asoke Kumar 1972 - University of Saskatchewan

, ,,:

123

Table 6.4,

' .,

. C_aRI$(IC. OF :�NANT . SYSTEM. RQ9TS .

. . .' . . .

. ,*,nant . Roots

'Cant"' .$,.",., . 411 :t.�� .. C12::t.j� ... «13 :t jfal3

.

..

..

Clse' .1: ..unc......ted-

�.044.

sys•• ·, :t j 6.68 -0.63 .:1: j 1.34 .•0.20, :I: j 0.29

Case 2t o,t1.1. sQte. , ,...,.tor with

..

on. 'eedback '. ...1.1' :t j 6.69 �2.63 t j. 3�35 -3.est j 0.10"

"

'.

Case 3: opt'..l state.regulator wfth

�1.81 5.85 . -11.44 t,j 1.81. ·two�Cks. :t j -4.33 t .10.033,

',

':', ',' " ,

'

,

'" ' , , '

.

It· is "_fltelY obvious frem Table 6.4 that a' greater ''''Pro_ntin ·syst.ee: _tn�tby.: ratt0 of 41 WIS, obtained' over the' uftCOIIPtnsated

, ,',,

'

"

, ,

'

, ,,

'. systeM by cons.fdeHng:·.th... ·exe1ter .nd goyem.or-prl_ lIIOver fnp-..ts as

the cont..ol""'ibles. �t Cln be further "otteed for. Cise 3 that the

control· of bOth .C1tet- and 9oYtmo;.pri.IltCMtr inputs had bitter

effect•. 1",oft, as the enhanC8lWlent in system ."'ng was Coftcemed as

CCJlIWPINd to: c.•• 2 ",,..... 'y the control of .cite" input was consider­

ed. T,hf. can be further -.onstNted by the time domafn' results. The"

"

' '

,

",

'ou"" Order Rung. Kut-e. .thOd was used to ca leulate the t1. respon-, ',. '

ses fOr the double '"db_cit ,yst_. Th.• dtsterbance to the s,Y$teIn was

a ·st.lated 101' step fncNase 1n the load delltand at the Squaw Rapids

plant•.:'.

'The transients 'of �,i Rfpfds speed error and the Q.,.en ElfZa-.

.

beth speed effC)r are shown 1n F1gUre 6.2. The transients' for the

Page 137: Laha Asoke Kumar 1972 - University of Saskatchewan

124

81&1

&L.... : ..

'

- � :

.: i::�:::; IiI... i.::..

;.::.. �.!.o,· .1

" lHh1 11l! Hi!!!,ti.....

0'0 j·5

'0:.

"••

� 1111 l!lllmllUill!h!!"'<tbH"" .. , ,

.3(1 .

.

45 6·0

Time jll IfCOftCls

Figure 6.2 (a) Squaw Rapfds speed e�or Yersus tiMe when the.

systelt is coupled wtth optfl.l state regula_with two ·feedbacks

oo

i r r.

::::.II � � :!!::: :

:tIJii!

...

i;;'=:.:.,'

lll.llU.lltlll (\lll� � \ lHi \ll. \� ;.lhlm·I�\;���'�:.o.,," i .

•0 .5' 60

Time.III ... "oneil

FigUre 6.2 (b) Queen Elizabeth speed error versus ti_ Mten the

sys. is coupled wt� opt1.1 state N9ulatoPwi th two feedbacks.

Page 138: Laha Asoke Kumar 1972 - University of Saskatchewan

Figure 6.3 (I) Squaw Rapids speed error versus tt_ for the·. uncClllPenslted systeM

I

..,

r: lie

..,:. �:::co·.

• I lIe

6•.: ::n:

nun.1'11'11

. !H!i1! �i!� !i!nnn !iPl

;,: llllllllll t:::::t.: PP':PIJ, .-n:p::.. :

.111I1"l!m:lq!:1!1l lillI', '111ii!11I:!!!"ll• I" I 'III "I"'" t.! 0: '1'11'1 n .p: nn.:::,. 0: .L: :,npi.l::I'II:::n.� w! 1",l:tq.",'II': '11\lnq.... : 'l'I!f!',i:qi.! il! 1"IIf,"I .,: : I' IIt: I " tit .. , : "

Co) � : , !'!iiPHiHI!!!t::nt- .... : .,11 •• 1"'1" ... , 1'11'1":.. V

'1,""" ,.ltl' 1II1 "I;: fP uuu 1':1'1 II":: qf 1 IIi "Iililili ill illlll!h: i1lfl!!L!!P!',!fI!:!fl fqln .'. -,c: :: .. , .... " lli''''I'I'' p. .I:. tl ••. - : .: Ilq !!I!!!!!:'!!!! :.iP,11 -lllll .r. _nil.: ::::,1:1:: l'I::::III::::lI::! itt nl,h·

.::, .::. :.. : _,'U, 'I:::' ,1'1'1' 111111"'111'•• ""'11 I.,.

"111,15 �·,'l1l!linlq'lliillliillllllllll;,'ll.lllljlllHlilii iii TlnLil'TI ill I,',liT.

ru II ,

11"1"1"1'11':""1' ,'":' .1111:'1 I • '1, '.It.

"11 I,"1 8iP!,,!!I','If!!tlll"I'1 i,I,,!f!',I,l iI,fiIHiHii!,'rnl ·"fll'II'I't 1111Ii!.it .1111 if '1:111.".1.,', 1'1 "I" I 1"'" un ',',It "' I... " ... 1, dl'· ·1' 'I" "'II"i iiili! iilil'liii'I'III,l'liiiiii'llllilllllililliilj il!l!"I'jj TIi!i!! ilWillllllllllt'iidlll'�t.olt�lli.l.i .lli.t�t[li d�llll.i 1!�l�li�!I.l.l.ll!U!l!ik. illtl.l.ll Jlhiit tWIt!. I. .l[l[uHlt!ll lHlll ..,-. 1'5 3() 4·11 .

. &0TI",. ill ..cond.

Figure 6.3 (b) Queen El1zabeth speed error versUS· tf_ fflrthe unCOIIIP8ftSlted system

125

Page 139: Laha Asoke Kumar 1972 - University of Saskatchewan

o

�. ;.:.... .0:

:�� n .i!li

tl illl:.:dlllllI . .

.

� j Ii! lil!iHljiip: 1 tl, IIIII!I !,'II,-' rlll"1'111' 'jj

<>! ,i' i Ij. 1 'il. 10: II! ,I I II I :}'II�l 11111'111111 ill

I

11 '

:1111 1,111 II, ',lli]"- I" ,'III! 111111111111111111 iit.: II II ,:

II

Ijlll I:'

I'

..

r I IIIII 1IIII11WWrl i" , ,

gl l .. ; l.l.u ll .. � . .llll.ll !.l .. dll.lthlllHn:lmlmlthmlmmm�mm•.{I.O. HI 3·0 .. &Tutt. .. ·,ec...d,

Figure 6.4 (a) Squaw Rapids speed error versus time when the

system fs coupled with optf.l state regulator.

wi.th one feedback

Figure 6.4 (b) queen Elfzabeth speed errol' versus t1. whenthe systell is coupled with o,t1l.1 state

.

regulator with one feedback.

126

Page 140: Laha Asoke Kumar 1972 - University of Saskatchewan

127 '

same state ,var'ables ftll" Case 1 and. 2 wre calculated in Cha1)ter 4.

They are, reproduced in Figures 6.3 and 6.4 for comparison purposes.'.

. ...

.

The ,improvement in system damping weI' the 'uncompensated system

.can be observed by c,omparing Figure 6.2 with Figure 6.3. The'

oscillations present in the uncompensated system were virtually'. :

absent in this study.' A c.,anson of Figure 6.2 with 6.4 reveals

that a better improvement in system damping was obtained in Case

3 or Case 2. This agrees with earlier conclusions drawn on the basis

of comparing the root placements as shown in Table 6.4. This impro­

vement would not appear to be in proportion to the c.'exfty:,

involved 1,n' designing the, controller for Case 3, as the number:,of '

.''.

feedback paths would be double for Case 3 as coq>ared to Case :.2.,

,,'

A system analyst might be satisfied with a ftasonable atnOUnt of.'

improvement in damping by controlling enly,the exciter input, alone'.' .

.

,,'as the' additional control of governo....pr". IIIOYer,inl)ut does'not'

enhance ,the system damping to a considerable extent in this Cise.

This cOlllpletes the appl1catian of the ....lti4chine litod,l1fng,

procedure to optfmel regulator design using various forms of optimal

regulators. In the next section the conventionallea�lag speed

stabilizer presently being u�ed,'n,' marty articles i� used as the aux­

fliary controller ,nd its parameters 'are, being optimfzed by the so­

called 'eigenvalue search'. A caaPlrison ,is then made be�en,the

,

, previous results and those obtained with this campensator in' the system� ,

Page 141: Laha Asoke Kumar 1972 - University of Saskatchewan

then compared with those obtained usinq optimal state requlators.,

7.2 'General Form of a lead-La� Feedback.

,'129 "

Three cascaded lead-lag transfer functions were considered as

the eeneral fonn of the auxiliary controller to enhance the plantdynaJlti cs, The block di at'fram of the compensator is shown in F1 (lure 7.1.

Figure 7.1. Block Diagram of the Auxiliary Control'

K2j+T12j S Vyj, Kaj (1+Tllj S) Vzj,1'+ T,3jS 1+ 114jS

"

AVR

1 + TI6jS

I,

,

I-

Page 142: Laha Asoke Kumar 1972 - University of Saskatchewan

130

.

.

.

.. .

.

.'. .

.

.

The· eM'or s1gnal1rcm.the frequency de�iit1on·transduc:et (Sc!j). was· use� .

as the ·'n""t to the stabilizer. The stabilizer feeding to the exe1ter

pt'CJl1ded a 'phase lead to overcome the phase ·'a� that·· is inherent in

the .automat1c voltage �·'ator. ·1he lag time constants were necessary.

.. '..

.. .

..' .

.

fran f}r.ct1al holse considerations •.Each lead cOlftpensatfon element

provides ga1n which fnereases at the rate· of 20 db· per decade of· frequ­.

e.ncy fnCre.st·.• 'Noise in a control· system at 'requenc1es above th�e

..

us� for con:t�l can be amplified greatly by lead elements and 'may

overload thi ampliffers. laq· el�nts are: used to limft the qa1n of

these freq�nef�s'� the corner freauency of the lag circuits 1� in

gene",� 1.n the ·order of 10": times the corner frequency of the ,'ead. .

..

.

..

.

cfrcu1:t. 'The sfgnal reset tltadul. 1ncor'porates an additional long time

constant which 1s',n�rmal'1y set at 10 sec:mds or ',MOre2�.tt prevents the.

.... ",

stabU�zfng· sfgrtal, frem biasing tem1na1 voltage for' (I'Iger frequency

.. excurstons.· eeCluse Of its .1on�rtfme cd)stant, f,t ha$ little effect·.

.'' .

. on the ·phase ,.. ga1n Of· the stabilizing s1gnal oyer the frequency range

.of interest.

The pertinent equations describing the dynamics of the auxiliary. .

.

.. cOnt�'1e... connected to the jth node of the system are:-.. ..

,

.

t,

J16iH(t • T153s

:3 _ 'zj·b

.. : T14j S Vyj • KtjVzj + S Ktj T11., Vzj .. Vyj

fli.t .�v;,d .�.�tj v.yj'+""i"t'�' V.yj � V�,i

(7.1)

..•. (7.2)

Page 143: Laha Asoke Kumar 1972 - University of Saskatchewan

1.31.

Let the pertinent state varfables be defined as follow$:-

(7.4)

(7.5)

(7.6)

Equations (7�4) and (7.6) yield

(7.7)

.KlJ. Tll�+ Vz.1 ..T14.1

or

(7.8)

v =.�'+ T12Jx.i. T·· T Vyj

'13.1 ···13j

or

(7.10) .

Page 144: Laha Asoke Kumar 1972 - University of Saskatchewan

: ., ..

·132.

The state space model of t� auxiliary controller can now be obtained .'

by substituting equations (7.7). (7.8) and (7.9) into the ,equations'o.n, '(7.2) and (7.3). The final form is given by equation (7.U).

where

(7.11 )

.

.

T_Zj iI [Z1.1 Z2j Z3.1] .

Wj ill S6.1

where

. (7.12)

(7.13)

.(7.14)

.

The coeffictent rnatri x Tjis 9i ven by

1--

Tj • T16j

KlJ. _ �WbTlij T14j

o· .. 0

1-- o

T14j- 1---.

T13j

.

The cropl1nQ m�1:rix Sj is �,.'ve" by equat1pn (7.16).

_ T15J.·T16.1 ..

KIJ �)Tl5,1 { ...

HpTIf\j. . T14j

s •. j .:

(7.tS)

(7.16)

Page 145: Laha Asoke Kumar 1972 - University of Saskatchewan

133

. ..

.. .

The state space model of the aux111 arv cmtroller can �ow· be.

.... -;

coupled with that of the plant. The pertinent alqcr.1thm is der�ved .

in Af'lp.endix E,with the pertinent equations brouqht forward.

1;he dynamics of·the cOl'tDensated·plant as described in· equation. ..

. ..,. � . .

(E.21) are given by

(7.17)

where· r - . the vector de$cribinq the state variables of the compen-.

sated plant ....

'

r .. the vector descr1binq the first der1vati¥lS of t� state.

.

·variahles' ofthe'cnn1pensateit·plant·F ... the di sturbance vector·· of the· cnnpensated ,,1ant .

1; .. the (Ci' + 3m1) x (0 + 3"'1)· 'coeffici�nt matrix.,

..� .:. «f + 3t1ii) x«2n .. in) coonl1na.:·matrix..

The parameters of the controller are calculated in the next sect1C1'_l.

.

.

'. ..

7.3·. Selec;tion of the:'Optimum Parameters of the Cnntrol1ers usin�

'Ei�envalue' Search.

As an l1lustrati·ve example the mathefl1atical model of 'the reduced(

.

.

Saskatchewan Power Cnrporati m . system was used to '"nvestiQate the

effects of the parameter,adJ�stn'teht$ of the 'lead-lag' compensator•.

The compensatinrr network used Was of the fom .shown in Ff�ure 7.1 .with

.

a tr_nsfer function containing three poles and ·three zeroes. Start1.nq

from eauation (3.1). the state s�ace form of·the uncompensated.system,

equation. (7.17) can be easily derived with the help of alqorithm

Page 146: Laha Asoke Kumar 1972 - University of Saskatchewan

134

p.xplained in AJ'Dendix E. The J matrix was, ftu(1mented to include the

stab1lizin� scheme. The elements of the J matrix were com�uted and

its eiqenvalues were calculated on the digital computer using the

IB'·1 Scientific Subroutine HSBG and ATEIA. A measure of system stah.,

1lfty can be assessed by observinq the relative magnitudes of the

real pa'ns of the system roots. In order, to establ1sh the 'best

values' of the constants of the transfer function, ft,WlS necessary

to make several runs on the diqital computer varyinq each of the

controller parall1eters in turn. Fran Table 4.2B which is reDroduced

here, it can be observed that there are three pair 01 dominant com-, ' ,

, ,

, ,

plex roots which dIctate the fnnn of the system transients. The,,

,

TABLE 4.28 '

Ominant R('Iots of the Uncomoensated'System,

No. E1qenvalues

1 -0.044, + .1 6.682 -0.044 - j 6.68,3 ...0.63 + .1 1.344 -0.63 - .11.345 ..0.20 + J 0.29

, ,

6 .0.20, - j O�29

significant point to note about the data in Table 4.28 is that the

system dynamics are detenn1ned prf�rl1y by the roots located at:

,'

,

-.044 ± j 6.�8 for the uncompensated, system. Any improvement in the

system perfomance would only cane about if this troublesome complex

, i ..

Page 147: Laha Asoke Kumar 1972 - University of Saskatchewan

...... ,..'.'

, .

....'.

.... 135

.

.

roOt· cOuld,:b.i moved to 'the le1t whl1e' 'st111 retafning a 1a1"ly' stable'catd1t1cr. fof the prtdan1nant �_.-. frequency root. listed 1n the

·

fibl. � .:A' ,tr1illnd I'rot' process· was uSld 'to detamine the most.

effect1� �.in�ti.on Of ccmtro11er sItt1ngs that would prov1'de the'gtea.,t tnhlnCetnet,t Of I1$tllll d,,'ng.· The S1gnff1�nt roots 10r

.

'.. ..... .

.

different· cOrt6f"at1_s of the parameters are shown· in·Tab'e 7.1..

.'..

.

t�1:tfan.Y the derivative ·ci,.cuit WIS. excluded (i .1. switch 51,was' closed) wM'ch �ant that thl compensating sche.. consisted of

·.

. .' .

anlY .tw1i'1 ::"ad.'lg· networks. The 'best' values of the time constants

·

Till' T t�i.' Tl�l' T141 were f�nd for this' ease. Us1n�, these tfme

· constants th.·,swi.tch $1 was opened and the. 'best value' 01 the other'· per.ters. _": found.•. 1he • optimUM' comb1natton in each set of runs

is n(')ted,by _j.arr.<.ws in Table '.1. As expected the· additfon of the.

..

.

..

.

the p....dom1.�ant roots as can be seen from this table. An improvement.

.. .....

in system lta�ntty by a factor of 22 was obtafned over the uncompen-

sated .ys:tenr� .the proper chOice. of the parameters for the auxiliary.

(:ont.-o11.r•. 'The : time danain results were then. calculated for SQuaw

Rapids spe�d.· E�.or M.td Oueen El1zabeth Speed Error. They are shown in

Fiqur.es· 7.2(.).. :."_U'.) 1he'marked.

improvement in system damping over.. : '.:.. . . . '.

the ·unc�.nsated system'can be 'readily observed from. these time

domain resw1ts. AS. �red1cted.1n the best case the one cycle per second

oscill.t1� ha. v,rt.. lly d1sappeared in approximately 1 s.econd •

...

, .: .....

.

.., .:.�.::.. :._.:

Page 148: Laha Asoke Kumar 1972 - University of Saskatchewan

136

oo

.

III: �h

�I JllllnllIIlh..•

e· : :Hi:::::in:::n.!:.id •.

.

.: i HllllllI1illll!flHi!!: . . .

.

� I! Ill! llllil ! !! Ii III !l! III:.. .. Tlrli ijHiijPlii1',:PIillllillHp,lliijj �1.I.I.I.I.!.l t 1.1.1.l.l.ll.1.[1.1. ttll!.!.!.tI11.11llJ.lnh:.�::.:.l:.l1.:;,ll.ll.lllll.lll.ll.l.ll.lltl.l.tll[ttl.ll.1.tll..ll.u .ttl.. l.I.!.\ ...

0·0 '·5 3-0 4·5 .0TI... ill ••co"d.

Figure 7.2. (a) Squaw Rapids speed error �ersus time for the systemcoupled with lead.lag feedback auxi1,ary controller.

Figure 7.2. (b) Queen Elizabeth speed error versus time for the systemcoupled with lead-lag feedback auxiliary controller.

Page 149: Laha Asoke Kumar 1972 - University of Saskatchewan

Figure 7.3 General auxflta1'Y cantroller connected .to the

Squaw Rapids plant�

AVR

137

"--

Page 150: Laha Asoke Kumar 1972 - University of Saskatchewan

,

"

138

I Dcitfftlftt Root, (-0. :t J"'). I

Tm T121,

1131 T141 ' 1151 1161 �1 �l "I � °2 -z "3 "3 toMettts

.. .'

. - - .. ,- - .044 6�68 .628 1.34 .205 .287 IIIIcoNptns. ted 115 tllll

'1.5 0.0 : .002 '�03 .. - 10 i.e .048 6.69 .. .625 1.38 .2U .2" swttcll 511S, closed1.5 0.0

'

.001 .03 .. - 100 1.0 .089 6.75 .624 '1.65 ' .261 .1211.5 0.0 .001 .03 .. - 1000 1.0 .728 7.28 .953 3.09 .. -

1.0 0.0 .001 .03 - - 10 1.0 .046 6.69 ' '.619 1.36 .218 .?a2 V.l'y1nCl '1,.TI31 'lild Tl4l '

1�0 0.0 ,.001 �"3 ,- - 100 1.0 .011 6.73 ' .5n 1.5$ ,.304'

.09A1.0

'

0.0 .001 .03 .. ., 1000 1.0'

�4t4 7.12 .722 2.73 ' .855 ' .109 ,

1.0 0.0 .0001'

.06 - .. , 10 1�0 .043 6.69 �613 1.38 .219 .-1.0 0.0 .0001 .06 - .. 100 1.0 .1)59 6.73 : �51 1.56 .29IIi .0321.0 0.0 .0001 .06 - .. 1000 1.1) .284 7.01 .867 3.02 .8. .0951.0 0.0 .0001 .06 , .. - 1200 1.0 .423 7.3i .647 2.97 .866, .0981.0 0.0 .0001 .06 ' - ..

, 1400 1.0 .364 ' 7.32 .912 3.16 .906 .1291.0 0.0 .0001 .06 - - 1600 1.0 .559 7.54 .763 3.25 .884 .1061.0 0.0 .0001 .06 .. .. l80Q .1.0, .735 7.56 ' .792, 3�58 .894, .1021.0 0.0 .0001 .06 ,- .. 2000 1.0 �61Z,' 8.14 .491 3·Ot ' �902 '.092

-,

1.0 0.0 .0001 .01 '�.

'' .. 1000 1.0 .555 i.,i7 .689 2,.71' '.852 .085 , '

:

1.0 ' 0.0 .0001' .01 - - 1500 1.0 .822 7.18 .936 3.07 .1IB4 .U91.0 1.0 .06 .06 .. - 1000 1.0 , .809 5.49 2.96 1.15' .758 '".Q47...Mttt 1_OYtIIIIn,t -over IlfiCfll'l.1.0 1.0 .06 .0& - .. 1500 1.0 .653, 5.35 3.44 1.02 .788 .076 ___ted ease (f.ctor af m1.0 0.0 .0001 ,.06 - .. 2500

'

1.0 1.58, 9.59 ,'.451,3.47' .. .', .

1.0 0.0 .0001 ,.06 - 3000 1.0 1.5&,' 8.41"

.727 4.48, .9,15 It.079..

1.0 20.0 20�O .06 .; - 1000 0.0 .317 7.16' .681 2.75

'

.861 .1071.0 20.0 20.0 .06 - .. 1500 0.0 .524 7.45 ' .758 3.18 .- .0981.0 29.0 20.0 .06 .. - 2000 0.0 .764 7.78 .794 3.53 .�: .087

'."

1.0 ' 1.0 .06 �06 10 10 1000 1.0 .196 5.50 3�05 1�15 , .018 .-1.0 1'.0 .06 .� 10 10 1500 1.0 .644, 5.35 3•• 1.04 .019 .062 , SWt teh Sl 0IItII, ,

1.0:

1.0 1.0 .06 .06 10 ' 10 1800 .587 5.31 3.61 0.951 .012 .045, Va"..noCU ..TI51 ,and TIU1.0 1.0 .06, .06 10 10 2000 ,1.0 .556 5.30' 3.68 0.909 .012 .0451.0 1�0 .06 .06 20 ' 20 1000 1.0 ' .8()4 5.�9 3.00 1.15 .02i .0411.0 1.0 .06 .06' 20 20 1500

" 1.0 .649 ,5.� 3.41 1.04 .014, .0'34 '

1.0 1.0 .06 .06 20 20' 1800 1.0 .S88 !!.31 ' 3.&1 .:973 .0'12 �0301.0 1.0 .06 .06 20 20 2000 ' i�o, .557. S�29 3�67 •.917 .011 .0291.0 1.0

'

.06 .06 30 ,30 100 1,.0 .3' 6.68 ,.90 ' 1.51 .25 .12 ,,'1.0 1.0 .06 06' :30 30 ZOO 'l�O: .60 6.58 1.11 1.66,. ,

..

.. -

1.0 1�0 .06 .0'6 30 30 " 400 1.0 .92 ' 6.20 1.67 1.59 .04 ' .031.0 1.0' .06 .06 30 30 500 1.0 •• 6�01 1.92 J.53 �O3. ••031'-'t l�t over COlllDen. ,

,

"

,.ted S1l"", (i.ct.. of 2�)1.0 1.0 .06 .06 30 30 '600 1.0' .116

'

5.... 2.17 1.43 ' .030 ,.031'

"

, ' '

1.0 1.0 .04 ,�06 30 30 700 1.0 .93'

,5.71 2.40 1.32 .025 ' .0301.0 1.0 .06 .06 30, '30 800 1.0 .89 ' 5.62 ,2.63 1,23 , .022 .0301.0 1.0 �06 .06 ,30 30 1000 1.0 •• 5.49 ',3.00 1.15 .017 .0291.0, 1.0 .06 ' .06 " 30 30 1500 1.0 .650 5 ..35 3.47 1.03 ,OU .02'41.0

'

1.0 .06'

,

�06 30 30 1800 1.0 ' .Sto 5,31 3.60 ._1 .010, " ,.0231.0 1.0' .06 .06 30 30 2000 1.0 .55' 5.2t 3,66 .- .010 .022

roo... ,

,'

TAB,Lt,7.t

Syst.. Roots, 'Of' ,.rytnQ Awentl" c.ntroll ... P.......,.

,'

,

.

.

.

..

"

.

..

..'

..

.

.. The geMr.l root 10C1tfG,� is desfQII.ted b'y ""'1 + �. The lIIICIIIitude of 01"

is iild1cat1ve of the _...t

of Ita..,fn!, assoct.teet with elClt dec:a.v1l1fJ s1!'11lsoid of. ,..dian f�,".

Page 151: Laha Asoke Kumar 1972 - University of Saskatchewan

139

.. 7.4 ComparisM of Results.

..

. .

Since the optimal state retlulators as described in Chapter,4 and..

.

.

...

'..

.the lead-lag stabilizer described in Chapter) are two alternate means.

for synthesizing it controller to pr(Wide an· auxiliary signal to the

voltage regulator, it is of interest to compare their relative con- .

tribtition to system :dampinn and stabil1ty. This can be. done by comp­

aring the. root locations of all the compensated system with the un-.·compensated as well as noting the correspMdin� time domain perfor­

mances of the systems for each case for an identical disturbance. The

dominant system rcots for III cases are listed in Table 7.2 for

comparison purposes..'

. .

.

The time danain ·transients for the Squaw Rapids Speed ErrOr and·

the Queen EliJ.!lbeth Speed Error ··for all these cases are compared in .

..

.

Figures 7.4(1) & (bh tn.all these eases the simulated disturbance was

a step ··change of 10% load demand at Squaw Rlpids�;·.

. It is ·obvious from Table 7.2 and fiqures··7.4(.r and (b), that the. .

controller designed on the basis f'f imp\i'oved rtlOt'locatl'on ClaVe ",'. . .....

comparable results to the opti",al regulator· cases and�the system

analyst miqht he justified in this case in selecting: the 1 eaci.lag,. . ." '. : .

controller as the system performance is comparable ·to the 'optimal'

regulator case.

In this section· a lead-laq �etwork having a transfer fUnction.

.

.

.�:

".

.

.

containing three zeroes and three poles has been ','cMsidered as the.·. .

..

..'

general fonn of the auxiliary. controller. Thf$ was coupled to the

Page 152: Laha Asoke Kumar 1972 - University of Saskatchewan

140:

....- ....

r

o 6·0

.-0'1Time (seconds)

Figure 7�4. (a) Squaw Rapids speed etror v&rsus time

(a) Unc�ensated system" (b) Approximate state regulator. (c) State regulator Cd) Lead�lag feedback.

I)

..

:=

-e..

/. II

1'0 '\ 40. ,I

.' .\5·0':.\ : \._ ..

I

'. I .,

\ .I Time '(seconds)\_/

0:

F1gure 7••·• (b) Queen Elizabeth speed error. versus time

(a) Uncompensated syst.. (b) Appt_1mate state regulator.�

(c) State regulator (d) Leed-lag feedback.

Page 153: Laha Asoke Kumar 1972 - University of Saskatchewan

141.

.

TABLE' 7.2 .'

Comparison' of Dominant System Roots

Control Dominant.RootsSystel'1

'a1 :t .1� �2 :t j"2 a3 :t..l'3

a -0.044 ± j.6.68 ",,0.63 :t j 1.34 ...0.20 :tj 0.29

b �0.91 .+ j 5.23.

-3.0' :t j 3.51 -3.02 :t j 0.65

.c -1.1 .:t :f 6�69 .2.63 :t. j 3.35 . ';'3.8 :t j 0.10

d' -0.96 .:t .1 5.01 ;'1.92 :t j 1.53 �0.03 ± .1 0.03

(a) UncOfl'IPensated System.

. (b) Truncated State Regulator·

(c) Optimal State Re�ulator

(d) Lead-lag Feedb.acic

.

mathematical model of the multi-ltl8chine system and the gatn and time

co.nstants were optil'tized usinq an 'eigenvalue search' method. The time

domain results were then c'anpared .with those obtained using a state.'

regulator as explained in Chapter 4. It was found that a similar

system improvement in dan1nant .root locations was achieved for these·

two. different types of controllers.

Page 154: Laha Asoke Kumar 1972 - University of Saskatchewan

142

.. .

.

'. .

• 8,· CmClUSIONS AND RECM1ENDATIONS FOR FUTURE· RESEARCH

8.1 Conclusions

In this thesis the dyriam1e· stabl1i·ty c�"iter10n of a power: system

.'" ".

.

.'

...

has been consid,red' on an overall system basis. rather 'than ,from the'.

.,... '.

conventional mathematical lI!odel of a sinq,Je machine. - 'infinite. bus'.s,Vs tem used "i� - inos.� 0;· the ·"i te�ature pub11 shed Sf) �f�; � '. The .

di ffe,re.�ti a 1

- "equations describing the dYf\am1cs"oi-the power systeRJ ha�e' been der1vel '

.

'. . .�. .... '.

.

.

,here 'in a f.orii Wh�ch �an be' e�sfly 'incorporat�� into the ·state 's�ace"

...

. .

,,'...

..

moclel •.

In this thesis'the mathematical model ·of a power system has been .... .

.

. .

,

.

deve loped 'in two degrees of detaf 1:

a) 1nclud1ng ·transformer action. and. .

b) .c1udtn, transfonner ict10n in the stator wfnd1·ngs and the

tie line.

The M!sults confinned the.

intuitive observation that the. tran-sfo""er

voltages have 'no significant· influen.ce on the dynamic stability

criterion. other than generating rapidly decaying high frequency oscil­

·lations in the system. As a matter of fnterest. it has· been observed

that these.hi gh frequency roots are important when constdering th.e time

fnterval for,numer1cal integration in order tf) avoid numerical 1nstab-�.'

flit.y. A lll"ger time interval een be u$ed wtaen transformer. aetion i� .

neglected.

Later studies (not "ported 1n this thesis) have thmm addf,tionallight on the effects of neglecting transformer actio",. The technique

Page 155: Laha Asoke Kumar 1972 - University of Saskatchewan

143

derived in . this thesis was applied to ft larqer five machine system.

where two machines belaiq to 'study' system. two Jft8chines belono to

'external' system and the other one is considered as an eauivalent

infinite. bus • .Inclusion of transformer action both in the stator

windfnas and· tieline qave expected results. A"t.ifieial instability

occurred when transformer action in the stator co11s was nealected. .

and tie-line inductance effects were retained for convenience sake •

. These unstable conditions resultinq from the modelling procedure can'.' .

be avoided by 'cmsistently includinq or excluding all transfomer tems

in the'O and"Q axis of stator circuits •. Further research would be"

required in order to draw any further conclusions on ·this mservatfon.

The optimal cUitrol the:�ry and its ,"odifications were used in.

.

.

.

thiS thesis' '1n designing optimal' requlatorS. "The transient behavior.

.' .

.

.

.

of the system wi th the addi ti on of these controllers was found to be

sfnrilar. The comparable results obtained by using the truncated state.

.

.

.

.

.

.

regulator shows the presence of some states which have little influence

on· system damptnq.·· .

.

The effect of ccnsiderfnq the qoYernor-prime mewer input as a.

controL variable in addition to excitation cmtrol was 1nvest1q�ted.The optimal state regulator for this case was designed and the time

domain results and eiqenvalues were fCllnd· to be similar to those when

only exc1.tation inputs ,were controlled. It was therefore felt'that

considerinq the 'relatively little impr'Ovement in system. damping. the

canplexity in the design of the ccntrol1er due to the feedback of two

Page 156: Laha Asoke Kumar 1972 - University of Saskatchewan

144

control variables is not warranted.

The conventimal 'eiqenva lue search' was used to select the best

values of the parameters of a transfer'function considered as a general,

fo� of controllers. It was found that the transients obtained from

this case were similar to those obtained from the optimal state regu­

lator. The 10�1cal cCllclusion is that, it is possible to desiqn a. .' .

controlle,r" CJl the bash of trial and error method, that gives results

c�arable to the Opt'ima1 state regulator based on the mathematical

logic.

The favorable results obtained fran the study suggested several'. ..... .

areas for ,future research as outlined in the next section'.

8.2 Reconwnendations For Future,'Research .

'

Several 1nwnediate area,s of research a� sug�sted frG't theresults of this endeavOr.

a) 'Because of the nCII-Hnear 'structure of the power system.'

the

operat1n� point has considerable importance on the deqree of stibility.It would be a worthwhile project to investiqate the effects of operatinq

points CJl

I)' the controller parameters. and

2) the degree of stability ,if the controller desiqned on the

basis of one operating point is kept unchanqed�

b) It 'WOUld be interesting to compare the performal)ces of the',

controllers de,veloped in this thesis with those published so far. There

Page 157: Laha Asoke Kumar 1972 - University of Saskatchewan

145

are quite a few methods reported in the control literature to design ,

a controller on the basis of Gpti., cantrol theory andlOl' other

techniques. It will be an important project'to cOlllPare all these methods, , ,

in light of its sUitabi1t,ty and :l1nrltatf. to enhance the sySteII dlllPfng.,

c) the method described in Chapter 5 describes the sfmple input-.

..

.

simple ouq,ut opti., ...,ulatOl'. Further .,"" can be done to extend it

fOl' .'tiple input-output systeMs. Also it would be worthwhile to

de�emne if the _thed applies in all cases and to, issess the effeet

of 'the additional poles on the systeM,stability for the general case.,

d) All of the existing literature and also the work reported 1ft

thi,s thesis,ha.' neglected the effects, of htuNtf.. It . .,.r,d be, ,

interesting to tnclude the effects of saturation of the machine tn' the

state space modelling' of the IllUltt ....chine system. The'saturation cum '

: ". ..... '.

can be cons'tdered as a combtnation of stNfght lines of different""

, ,

slopes., The effect of saturation on the eigenvalues and systeat transients" '

,

should be investigated.

e) The relative effect of a non-l1ne�r controller'on the daMpingof the nultf-machfne system using the ._..tical ntod,l deVe10ped in

this thesis can be a good topic of research.

Page 158: Laha Asoke Kumar 1972 - University of Saskatchewan

146

9 •. 1IST OF REFEREHCES..

.

I. F.R. Schleif, H.D. Hunldns, G.E. Martin··and E.E. Hatton, "Exci·tation

control to ·improve power system stability-. IEEE Traps. on PAS, "01.

98, pp :1426-34, llune, 1968.

2. P.N.• Hanson. C.,l. �oodwin and P ..L, Datiden�, l'Influence of excitationa�d speed' cmtrol paraMete�s tn st�bniZinq tntersvstem osci 11 ati"ons II

•..

IEEE Tra�s •. on '!'AS, Vol. 97,. pp 1306";14. ��ay, lQ63.', ••

t

J. A •. kfopfenste1n, ItExnerience with system stabi1izinfl excitation'control� M 1he aeneration of the Southern Cal1foni1a E�ison COl'lpanv".

.

.' .

IEEE Trans, on PP$., Vol. 90, pp 698-706 ••�arch/l\pMl,.1971.

4� K�E.� Rollinqer. "P��lt!r systP-m tiamoinit usfnQ sDeed·�ianais", ·"·.Sc•...

Thesb ·in Eiectrfcal F.nti1neerinrr, University of Saskatchew�n, it'l6S.·..

5. C. Concordia; "Ste�d.v s�te stahi1it.y of synchronttls r'lachinp.s as

aff�cted .h.y voltane reQulat(\r charectertstfcs," .I'.l!:E ·E1ec .. F.nflfl.Trans. Vol. 63, pp 215-220. �a.v, 1944. . .

6. C� Concord1a. "Effects·of buck-boost voltaqe reQulator on steadystate stability liMit," AlEE El�.· Enqq. Trans •. Vol. 69, pp.38fl-385. 1�50.

7. Y.H. Yu and K. von�$uriya, "Steady state stab111t.v limits of (\

regulatei synchr(JloUs r'l8ch1ne connected to an ipfinite s,Yste",",IEEE Trans. on PAS •• Vol. 85-, Df' 759 ...767, July. i�66 •.

.

B. q.,�. r,ove, ""e()l!1etric .copstructfnn:of the stability li",its of

synchronous· machines,'1 Proc, lEE.Vol. 112. pp, 977-985, Ma.v, lQ65.

Page 159: Laha Asoke Kumar 1972 - University of Saskatchewan

147

. ....

9. H.,K., Messerle an,d R.W. Bl"Uck, "Steady' state stability of synchronousgenerators as aff�cted ,by regulators and 9ovemors." Proc. tEE.,Part C, vol. 112, pp 24-34:, 1955.

'

10. L.J. Jacovides and B., Adkins, "Effect of eXc1 tat1 on regullt1� on.: ..

.

synchronous machine·stllb111ty." Proe. lEE" Vol. 113, P1). 1021';1034"June, 1966.

. ..

.

,'. • ':,' • •. �. • ',,:.• •• '.

•• " •••• ,

,'4, ,,"" .:., 11. A.S. Aldred �nd G. Shackshaff, "A frequency response met�od for the

predeteminat1on, of synchronous maeh1:ne stabi,l1ty," Proc. tEE"

Vol. ,107C. 'pp. 2-10, 1960.'", .: ,

'

12. 'D.N. Ewart arid F.P.' De�l1�', "A digital 'computer prooram for the'"

,

automatic dete�nat1on of dynamiC stability limits," IEEE

Trans. On PAS•• Vor.' 86�, pp.' 867-875, July, '1967�

13. H.K. Messerle, 'Relative 'dynamic stabl1ity of la�� synchronous" '

generators," Proc. tEE, Vol. t03C, pP. 234-242,,1956.

14. W.G. Heffron and R.A. Ph" lips , ,"Effects of a modern ,a"",l1dynevoltage regulator on 'under ,excited operation of large"turbi"e ,

"

generators,"' AI,EE Trans�.Vol. 71, pp 692"!'697, AU�h 1952.,

'

,

,,

15. C.A. Stapleton� "Root locus study of synchronous,'machine regulation,".

. ." .

.

Proc. lEE" Vol. Itt, pp 761.768.,Aprfl, 1964.'

,

,

16'. S. Surana and M.V. Har1haran. "Transie.nt respon$e and' ,t,,,ns1entr' "

"

,

stabi11ty of a p�r Syste". Pmc. lEE, Vo1.-:115, pp. 114-120,'. . .

. .... .

January, 1968,

17., V.A. Yeo1kov and V.A. Stroev. "P�r system stabHity' as affected,

by aut_tic con,trq,l"oi generatorS ',-,5- method' of analy.s1s andsynth�$is." Paper No� 71-TP�21-PWR, presented at IEEE W1�ter 'Power',�_t1ng. 197,�.

Page 160: Laha Asoke Kumar 1972 - University of Saskatchewan

148

18. J. Nanda', "OntiJTIization of vo'ltane re(1ulator !lain by the D�decOlT1f)o­sition technique for steady state stability 11�1t," Paner No. 71-

TP;'105.P\'IR, presented at IEEE Winter Power Meetin�, 'January, ,1971.

19••J. r{anda, "Analysis of steady state stability of two machine systemby D-decomposit1on technique," IEEE Trans. at PAS., "01. 90, nn

1848-55, July /Auq•• 1971.

20. �1 .. A. Lauohton, "t�at�ix analysis of dynamic stability'1n synchronousmulti-machine , system," Prec, tEE, Vol. 113, pr) 325-336, Feb., 1966.

21. J.M. lfndri1l, "Dynamic stability .calculations for an Ilrb1trary number

of interconnected s.ynchrm.(lfs machines," IEEE Trans� on ·f)AS., V01.

87, PD 835-844; �arch, 1968.,

22. F.R. Schleif and J.H. l�hite, "Dampinq for the northwest-southwest

t1el1ne oscillati00 - an analo!, study," IEEE····Trans. on PAS., "01. 85,pp 1239-43, 1966.

23. F.R. Schleif, t,.E. Martin and R.R. Anqell, ,"[)aminQ of systel'l oscil­

lations ·with a hydro-Qeneratinq unit," IEEE Trans. on' P'AS�, :Vol. 86,pp , 438-442, April, 1967.

,

24. F.R. Schleif, 11.0. Hunk1n, E.R. Hutton and H.B� G1sh, "Control Of'

. .. ..

rotatin!-T exciters for poWer' system damping -"pilot application and

exper1ence."IEEE Trans. on PAS., "01. 88, pp·1259-66. AUQust, 1969.

25. E.J. Uarchol, F.R. Schleif, \�.D. t;ish and J�R. Church,' "Al1llflmentand mode111 nq of Hanford exci ta t1 on .contra 1 for system dampine, "

IEEE Trans. on PAS •• Vol. 90'; po 714�724. March/April, 1971.

26. F.P. DeMello and C. Concordia, "Concept of �ynchronrus machine

stabil1ty as affected,by excitation control," IEEE Trans. on PAS,Vol. 88. po 316-329·, April, 1969.

Page 161: Laha Asoke Kumar 1972 - University of Saskatchewan

149

.27. Gerhart, Hil1esland Jr., J.F. Luini, Rockfield, Jr., "POWer systemstabilizer - field test and di9ital simulation," Paper rfo. 71-TP-

77-PWR, presented at IEEE Winter Power Meetinq, January, 1971.

28. F.W. Keay and \�.H. South, "Design of a power s.ystE!fl'l stabilizer

senstne freouency deviation, II IEEE· Trans. on PA!\ •• Vol. 90,· pp 705-

713, f�arch/Apr1l, 1971.

29. K.E. Bollinqer and. P..J. Flel'l11nQ,. "Oesiqn of speed stabl1itint'J traM';'·

fer function for a synchronous. qenerator, II IEEE Winter P�r �1eetinq

January, 1969.

30. J.E. Van Ness and William F. Goodard, "Formation of the· c(M!fflcient

matrix of a larqe dynamic system," IEEE Trans. a't PI\S. t Vol� 87,pp 80-83, January, 1968.

31 -. R.H. Shier and A.L. Blyth·, '�Field tests. of dynamic stability usfn"

a stabilizing sianal and computer Drooram verifications,lt IEEE

Trans. un PAS., Vol. 87, pp 315-322, February, 1968.

32. M.A. Lauqhton; "Sensitivity in dynamic system analysis," Journal·

of Electronics and Control. Vol. 17, D,r 577-591. Nnvel'l1ber, 1965.

33. R. Kasturi and P. Oorara.1u, "Sensitivity of power syst�," ·IEEE

Trans. on PAS., Vol. 88. en 1521-1529, Octobe". 19.69.:

34. J.J. Grainqer and R. Abmeri." The effect of non-dynamic parametersof excitation system on stability perfomance," Paper No. 71-CP-

.

185-PWR. presented at IEEE Winter �ower �etfnt'J. 1971.

35. J.M. lIndri 11. "PCMer systE!fl'l stability studies by the method of

Liapunov I and II,". IEEE Trans. on PAS •• Vol. 86, July. 1967.

Page 162: Laha Asoke Kumar 1972 - University of Saskatchewan

150

,

36. p.e; Kr�use and J.N� Towle, "Synchronous machine dampinn byexcitation control wi�h direct and nuadrature a�is field' '�indinq. ti

'

rEEE Trans. on PAS •• \fol. 88, PJ> 1266-1274, AUQust, 1969.

'37. V.N.,Yu"K. Vonqsur1ya andl. Hedmanff, "Applfcation of ,an,optimalcOfltrol theory to a pm;,er svsten," IE£E Trans. on DAS •• Vol. gg,pp 55-62, January, 1970.

38. Y.N. Yu and C. S1Qgers, "Stabil1zation 'and' ,optimal' control stenals'

for a power system," IEEE Trans. on PAS.,'Vol. 90, pp 1469-1481�,.Jul.v/Auc;1ust, '1971.'

39� 'E.J� Davison ,and M.S.' Rau. "The optimal output feedback control' of'.

. ".

.

a synchronous machine," IEEE Tr,ans. on P,4S."Vol. 90, nn 2123-

2134, Sept/Oct. 1971.

40. H.S. levine and'M. Athens, "On the' detem1nat10ri of �he ootif'lal,

consta,nt output, feedback gains for linear mult1variahle system:IEEE Trans. on'Autornatic Control, Vol. 15, DO 44-48, Febru�ry. 1970."

,

.

'" .' .'"

,

.

.

.' ..'.

.

.

.

.

. '.

41: n�H. Kelly' and A.,A. Rahim, �Closed loop OPti�l exc1tatfon c'ontrolfor power system stability, I� IEEE TraOs. on PAS •• Vol. 90. nn 2135-

2141, Sept/"ct. 1971.

4�. �.�1. Yousif, "Ovnam'fc of)timizatiofl of, pm�r s,yste!'l," IEEE Winter.'

Po\"er r'1eetinQ, 1972.

43. ,G.A. Jones. "Irenstent s�bi11ty of. a svnehronous Q�n�ratt)r underconditi ons of ban", bano �xcitat10n schedul fnn, II IEEE Trans. on PI\S ..

: vet, a4, pp 114.121, February,1965.'

, ,

46. O.J,.�. Smith. "Optil!uiftran$ient removal in a pwer system," IEEE

Trans, on PI\S •• Vol. 84, PO 361,.374. M�y, 1965.

Page 163: Laha Asoke Kumar 1972 - University of Saskatchewan

151

45. E.W. K1f1lbark, "Power systernstabil1ty, Vol. nr,· John Wiley and

Sons, New York.� 1967.

46. IEEE, Committee Report, "Computer representation of excitation system, n

,

IEEE Trans. on PAS., Vol. 87. PI' 1460-1463, June, 1968. '

47.' R.l. Kosut. "Suboptimal control of lineflr time-invariant syste",sub.ject to control structure constraints,· Proceedinos of JACC,pp 820-828, June, 1970.,

48. M. Athens, "The role and use of the stochastic linear-ouadratic- ,

gaussian Droblem in control system design,· IEEE Trans. on Automatic

Control, Vol. 16, pp 529-551; December, 1971.

49. P.,). Maclane, "linear optimal stochastic control usfn9 instantaneousoutput feedback," Int. J. Contr. Vol.' 13, Feb, 1967.

',' 50.,M. Athens, "The role anduse of .the stocha'stic-Hnear-nuadratic­

gaussian problem in control system desf<Y,t't"" IEEE Trans. on AutOMatic

Control. Vol. 16, pp 529-552, December, 1971.

52. K. ·:Ogata, "State space analysis of control systeMS,· Prentice-Hall,Englewood Cliffs, N.J., 1967.

53. A.F. Fath, ·Computational aspects 0" the linear oDt'1mal 'ref}ulatorproblems," presented at the JACC, 1969.

54. J.E. 'Van Ne,ss, "Inverse 1terat1on method for ffndfn� e1'�envalue$, It ,

IEEE Trans. on Autanatfc Control, pp 63-69, February, 1969.

Page 164: Laha Asoke Kumar 1972 - University of Saskatchewan

152

55. R.E. Kalman and ,R.S. Bucy, "He", results in linear fl1terin� and

prediction theory," Trans. ASHE., J. Basic Enq•• Vol. 83, pp 95-

107, Oec. 1961.

56. J. Lemay and T.H. Barton, "Small perturbation l1'1earization of the

saturated synchronous machine equatiens," Pa�er No. 71-TP-515 P�IR

presented at IEEE Summer Power Meet1n�. 1971.

57. J. Chand" "Stability analYSiS, of a H.V.O.C. tranSMission link.", 'M.Sc. Thesis .tn Electrical Enqineerin!,!. University 'Of Saskatchewan.NoveMber, 1971.

58. J.B. Pearson, "Compensator desiQf1 for dynamic optfmitation," Int�J'. Control, Vol., 9. pp 473-482. I'pri1 • .1969*

59. K.H .. Simon and A.R. Stuhberud. "Reduced order Kalman filter." Int. '

J .. Co.,trol, Vol. 10. pp 501-509. NoveJ11ber. 1969.''

60. H.M., NewMann. "OptiMal and sub.,optiMal cnntrol usinq an observer

when S9"'@ of the state variables are not measurable.1t Int. J.

C()ntrol" Vol. 9. pp 281-290, March, 1969.'

61. J.Ii. \4ilk1nson. "Poundinq errors in algebraic ereeesses," Prentice­

Hall, Enqlewood Cliffs. N.J., 1964 •

.

.

,.

Page 165: Laha Asoke Kumar 1972 - University of Saskatchewan

153

.

10. APPENDICES ..

10.1 Appendix A

L1st of SYf!!bo1 s

Tie Line:.

Lkj.

W.

.

b

y.j .

dj.

Y .

.j

y qj,1

1.1

I;/jI ojj

IfjW .

mj

angle between Q axis of the kth node and 0 axis of the .1thnode (steady-state) .

.

.

..

..

tie line inductance connect1ncr kth node and Jth node.

base electrical frequency (radians per second)

tennftial voltaae of jth node

direct. axis component of Vjquadrature axis component of Vi .

1...

equivalent stator current of jth l'1achine.

.. .

. '.. .

direct axis component of Ij .

quadrature axis· COffloonent 01.Ijfield current ·0' jth machitie

mechantal anqu)ar speed!: (rdI'ens '�r se�) 0" ,1th machine

Generator Constants:

Raj eouivalent stator resistance of Jth machine

Ld.i

Loj

ladj

Rfj

.

.. th···equivalent n-axts stator inductance of.i fltachine·

.

.

.

.'

..

equivalent O..axis stator inductance of .1 th machine

•................... �..

direct axis magnetiZing inductance of.1 Machine

. field resistance of jth machine

Page 166: Laha Asoke Kumar 1972 - University of Saskatchewan

154

'-ffj "field self-inductance of jth machine

Governor Constants of the jth maChine' of the "study" and "external"SystemS:

, T5j,

T4j

T3j

TejRj

Hj

OJ

Tsj

water s,tartinq time/2.0, "

-2.0 X'T5jreset time constant

servo-motor time constant'

equivalent steady-state speed droop,

equivalent i'n.rt1a constant•• "

,

'

,

equ1v�lent damping constant'" Rj + 6

'

(R

) Tcj where 6 is the temporar.y speed drop

j

Constants of AVR ofjth machine:

K' ' ati'lpl1dyne gain

, aj

Kej main exciter gain

,Kafbj , matn excite", feedback qa1n "

Kvfbj, voltage feedback gain

, Vfbj Xad field voltage base

Tanj, ampHdyne lead t,1me constant.> •• >;<. ,

Tadj amplfdyne lag time constant

Tafbj main,exc1ter feedback time 'constant

Page 167: Laha Asoke Kumar 1972 - University of Saskatchewan

Tvfbj· voltarye feedback time constant

Te.1 .

Main exciter time constant·

.

Constants of Auxiliary Controller of jth machine:

TUjT12'3

T13j

T14j

T15j. . .

.

T16j ...• feedback controller time constant

K1•1

K2.1

feedback controller time constant

feedback controller time constant

feedback controller time constant

feedback controller time constant

feedback controller ti,", constant

feedback controller qa1n

feedback controller gain

Variables:

i dj o-ax1s stator current of jth machinej

f qj n-exts stator current of Jth machine.1 .

1fj

6.1

tmj

9jh ..

j

.. f1 e 1 d current of ,1th

.

Machi ne

rotor an�le (radians) of jth machine

mechanical torque stmpl1es to .1th·mac:hine

wicket �ate pos1ti.on of jth machine'.

'.: ..

convenience variables for qovemors of jth machine

th .

field voltage of j machine

·155.

Page 168: Laha Asoke Kumar 1972 - University of Saskatchewan

. Vtajiafbj

fVfbj. VXj

Vyj.VZj .•..Y· dj'v qjj • j

Tdj

trj

Vrj· '.

ab·vb

156

'. .

. .

..

. ..

ampl1d,yne termfnal voltage of jthmachine

amp11dyne feedback. output of· jth .

machine'.

main exciter feedback output of jth mach.ine

. output sfgnal fran auxiliary controller to AVR of jthmachine

.

'.

'.

.

intermediate signal of the luxf11ar,y controller

D-axfs and O-axis tenninal voltage of jth _chine respecfvely .

mechinfcal torque disturbance of jth ...chine

. sPeed reference to j th machine"'.'

terminal· voltage reference to jth .chine

. infinite bus angle and voltage-dfsturbance.,input.

General':

E. be1OfIgs to

aeRn .

.

a is a vector of·lenqth n

baRmxn b is a matrix of dimensian III x n

t&(to.t,J to �t �tf (closed set)'

tE(to.tfl.

to < t � tf (semi-open set) .

tfii[to.tf) to � t < tf (s�-open set)

t4i.(to.tf) to'< t< tf (.en set).:

< .

. >'" inner product

Page 169: Laha Asoke Kumar 1972 - University of Saskatchewan

157

10.2 .. ApPEn,d1 x 8

Technique to Derive the Sub-matr1ce.s of Eguations (3.64) and

.(3.65)

The state space form of the mUlti-machine system is given by

equations (3.58) and' (3.59) and are reproduced here•...

.OX - QX'" EZ ... RU ... SF (3.58)

Z: - ·JX ... PX (3·.59)

The coefficient matrices O,Q,E,R,S,J and P can be written in.

partitioned form as per equations. (3.64) and ·(3.65). With the help of

equations describing thedynamfcs of the multi-machfne system as

derived in Chapter 3 the· different matrices are. derived as given tn

the folloWing· ·pages.Matrix D.·

o �tr1x ·is a dtagonal matrix, or in other words ..

0f"l .- Null matrixoJ. 1�j ..

The submatr1x 0Il is given by..

0Il - OIA (OU1 0112 .. - - 0Uj - - - DUm] 0uE::·:..xSmwhere 011j is defined by equation (8.3)

.

1 '1·· �ffj -!!10l1j - OIA [- - . 1· ] 011jERS x 5.

.

Wb Wb Wb . Wb

The subnlatr1x 022 is given by

-2Hm+1 ... 2Hm+2.

-2H· .

022 \II OIA (1.

1 ----�-... 1.'!!tB )022.€ R2px2p (a��)

Wb.

Wb· .

Wb

(8.1) .

(8.2) .

.(P.3)

Page 170: Laha Asoke Kumar 1972 - University of Saskatchewan

158

.' :.I,

The submatrices 033' 044 and 055 associate� with state vectors X3•, X4 and Xs are also diagonal andare given by eq�.ti�s (8.5). (8.6) •

and (8.7).

033 • OIA [lS1 !Sl Tel TS2 TSZ Ta - � � �- T5111 T5m Tem)

(B.5),

"

044 ,. DIA[T5m+1 TSInfol TCnt+i T5m+2 TSm+2 TCm+Z '_ - '_ • - T511+p TSIt+p Tcin+p], °44€ R3px3p ,,(8.6)

055 • DIA (1 Tell 1 � Te2 1 1 - - - - 1 Tem III 055 €'R4nlX4nI (8.7),

Matrix g. .

....

:.

. ". ..

. .

,

The subtnatrix Qll can be written in ',anft1oned form IS, pe,. .•aifon'

,

.'

(8.7) .,',

, (8.7)

Wi ttl the. help of equltions (3.26). (3.21). (3.36,). (3.38) and·'

"

(3.41) the submatrices JQU (1 .j) are, written as follows:

QI','I(i ,j) • Ijqj,'"0, ',' 1 '0 '

ajj1� \

t dj,

-I, 0 0 bjj -�,WI)o

(B.8)

0 ,0, 0 0 1

cj d ej 0 �j"b

, ,

"

Page 171: Laha Asoke Kumar 1972 - University of Saskatchewan

'. 159

. QU(1.j)· • 0 0 0 a1j 0

it/j.

o· 0 0. b1j o· (B.9).'

0 0 0 0 0

0 0 0 0 0

0 0 o .

0 0

(8.10)

(8.1.1)

(8-.-12)

. ·(8.14).

.

....

The subntatrix Q12 can be written in ,artftt.ned fo"" as .per eQuatfon

(B.15).

Page 172: Laha Asoke Kumar 1972 - University of Saskatchewan

160·

Q12· - [Q .. ) .. Q12E RSmX2p (8.15). 12(1.,j). 1-1.m

j.l.p

where

... Q12<1.j) - Vm+� cosa�� 11 • 0

L(m+j).1 ••.

Vm+� S1nam+�11.

0 (8.16)L(m+j).10 0

0 0

0 0

In a similar manner Q13 is (liven by equation (8.17).

Q13·· - . (f)13(1.j)1 ·1-1.m:.

Q13E: Rsmx3m. j-l.",·

where

. Q13(1,j) :; 0 0 01-j

0 0 0

o· 0 0

0 0 0

.-1 0 0

and Q13(t.j)lt�j •. Null _trtxThe submatrfx Q14 - Null matrix

(8.1.7)

.. (8.18)

(8.19) .

Page 173: Laha Asoke Kumar 1972 - University of Saskatchewan

. .

The submatr1x qls in pa�titfoned form is given by

•. QIS • [QIS(1 ,j)] i-I,m QlSCRSmx4m

.

..

.

j-I,m

where

• o

o

o

o

o o

I KajTanjVfbjTadj VfbjTadj

• >.'

Q15 (f ,j) • Nun matrix

'"j

With ·the help of equation (3.50) the submatrfces 021'Q22 etc"..

associated wfth state vector X2 can be calculated as follows �'

. let. K Ii m + ,.

The submat",x Q21·'s given by··

Q21 • rQ21 (1,j)J. 1 • l,p. L .. j • I,m

where

o

o

o

o .. o

o

o

-. 0

o

o

o

o

o

o

161

.. (8.22)

. Q21(i,j) • [0 0 0 0 :l. 0 0 0 'fj . (8.23)

and. W.Vk qj

.

dj kj)aU • - (.Vj COS�kj - Vj Sin4

ljk .

.

Page 174: Laha Asoke Kumar 1972 - University of Saskatchewan

The submatr.1 x Q22 1 s 91 ven by

QZ2 • [Q22(1.j)] 1 • 1.p Q22 E: �px2pj • lIP

where

. Q22( 1 ,j)..

-

[0f#3 .

aU·.

+ � Vj tose5kj 1.. j .......l Ljkj�

. Wmk kDk - Vb Vk tkq

c1 -_-----Wb

There is no cOUpling betweer;- vector X2 and either of X3 or XS.Thus Q23 - Q2S • Null :matrixThe submatrix Q24 is given by

Q24 - (Q24(i j)1 Q24 E::.... �px3p,.. i-l,p. ..

.j.l.p·

162.

(Q.24).

.

.(8.25)

(B.26)

(B.27)

Page 175: Laha Asoke Kumar 1972 - University of Saskatchewan

163

. ... ..

The submatMces Q31' Q32 etc.' associated wfth state vector X3 can

be found out 'reM equations (3.51). (3.52) and (3.53). Since there is.

no coupltng between X3 and e'ther of � or X4 or X5• f.t can be concluded

that

The subtnatMx Q31 is g1 ven by

Q31 - [Q31(i • .1)11�1.11 Q31, E: R3mkSmj-l.p

where

Q ( ) I- Null mit",1x

. . 31 1 • .1 1';.1and '.

.

Q31(f ,3) If''3• o _

14jT3jTSjTc.1"a,Rj

.

_ T33. TCjWbR.1 .

.

1 .

--

o o o

.0 o. o· o

o 0 0 o

(8.29)

(8.30)

(8.31)

Page 176: Laha Asoke Kumar 1972 - University of Saskatchewan

..

The subtnatrix Q33 15 defined as ...

o -1 ... 1 _

T33

Tej ..

-11 o

16.4

(8.32)

(8.33"·

There is n� couplfng between X4 andefther of Xl or X3 or XS. Thisleads to

Q41- Q43 - 045 .� NuH lnatrfx ..

.

The $ubmatr1x Q42 is deffned as.

Q -t<) (. )142Sl 42 f .j f-l.. .p

.

j·l.p. where

.

Q • Null II'IItrfx. 42(1.j) f"j·

and· .

o ..

o

. 1stTckWbRt

T3k- _...,._

, TCk.Wb\.1-.-o

.

(8.35)

(8.36)

Page 177: Laha Asoke Kumar 1972 - University of Saskatchewan

The submatrfx Q44 is given by equation (8.37) •

Q44(3). •

-1

-1.

-1

o o

165 .

(8.38)

The submatrices Q51' Q52' etc. assocf�ted with state vector Xs can ..

be obtained from. "uatfons (3.54). (3.55). (3.56) and (3.57). The

absence of couplfng between Xs and either of Xt. or X2. or X3 or X4leads to

Q55 is given by.

Q55 • OiA [Q55(.f)1 Q55 E. RsmxSrnIJ j-l,II.where

QSS(j) •1

aj 0 0-

. T.djb .

cj - Ke� • Ke�j Tafbj !vfbjd

.

ej1

.

0-.

j .

Tafbjo. 0 0 . 1

-

Tvfbj

(8-.39)

(8.40)

(8.41)

Page 178: Laha Asoke Kumar 1972 - University of Saskatchewan

·166

(8.42)

MAtrix E.

The submatr1x·Ef is ·derived from equations (3.24)., (3.27). (3.38)..

a�d (3.41). It is: defined by equation (8.43).

El • [E1(1.j)l'�ltm El E Rsmx2mj.l.m

where

[l(f ,.1) If •.1• L:.1o

o

1-

Lpj..•

C 0 ..

o

o

(8.43)

(B.44) .

Page 179: Laha Asoke Kumar 1972 - University of Saskatchewan

� Sin�jf•. L,no·

o

o

The submatrix E2 is defined as.

.

_ COS�3i.. Lji

o

o

E2 • [E2(1,j)] i-l,p £2 e: �px2mj·l,m

where

E2(1,j) •

and e

.k •

There is no CQupling between land efther of X3 and X4•Thf.s leads to

.

E3 • E4 .. Null matrfx

The submatrfx E5· is given by

E • [E] E E R·· .

5 ...

5(1,j) .

i.l,m 5 4mx2m.

j·l,m

.

167.

(8.46)

(8.47) .

·(8.48) .

Page 180: Laha Asoke Kumar 1972 - University of Saskatchewan

where

E • Null matrix5(i .j) ifj·

E5(foJ)I'f.J s

__KVfbjTvfbj .:

0 0

a V dj ajvjoJj j .

0 0

dj qjbjVj . bjVj

168

(8.49)

Matrix R.

Since there is no coupling between vector U and either Of Xl' X2•

X3 and X4• one can write

(8.50). : .

The subtnatrix..Rs· can be derived front equations (3.54). (3.55). (3.56).

and (3�57). It is given by

Rs - [R5(f.j>] i-l.mj.l.m1

where RS(1.j)· Null matrix except

RS(f.j) i!!"l• 0

1-j Kejo

o

. (8.51).

Page 181: Laha Asoke Kumar 1972 - University of Saskatchewan

. ·169

Mat...i" S.

The submatrices SU' 512• S13 associated with state Vector Xl can· be .

. ..... ..: ..

derived with the help of equations (3.26). (3.27), (3.38) and (3.41).

5ince there is no coupling �tween Xl and F3, one can write that.. ..

· 513 • Null matrix (8.52"

The submitrfx 511 is given by

.

511 •. [ 511(1 ,1)Ji•1,m S11 e: Rsmx2 (8.53)

where·

· .511(1,1>. •

.Vb Cos\i 5.1n\1. Lib lib

Vb Sin\f . Cos\. . 1...

/ ··.Lib Lib0 0

0 0

0 0

,/.

The subMltrtx 512 1$ given by

512 .• [512(1,J)] i.l,m· 512 e: R5mx3mj-1,'"

where·

(8.55) ..

· SI2(1,J)1 f�j• Null matrix

512(1,3)11-"- 0 ·0 0

0 .0 0

0 0 0

0 0 0

·1 0 .0

Page 182: Laha Asoke Kumar 1972 - University of Saskatchewan

. 170.

'. 'The cOlq)lfng _trices S21- S22 and ,s23·:assocfated with vector' .� ..

. can be obtained from equation (3.50). Because of the fact that X2 is.

not coupled with F2"leads to ..

. S22 • Null matrix. .

.. .

The submatrix $21' can be'.wr1tten as·.

S21 •. [S21(1 ,1)} i.l,p 521 € R2px2

where

(B.56)

o

Wmk VkVbCOS4kb '.- -

. Wb' Lkb

·0

.

v: WmtVt .' S1n'kb.................. . ... (8.57)Wb .... Lfcb,;and.

. .

The sublnatrix �23' is defined by equation (B.58)�st3· [�3(I.j)11.1.p· 523 E: R2pxlp

'.

j·l • .,

(B.58)

Where: .

5 ( ) I • Null matrix23 f ,j 1"j.o

o

(B.59)

The 'subtnatriees S31 and S33 Unking X3 with Fl a�d "2 will be. iero.because of the absence of any coupling between th�.· This can be expressed

mathematically as,

S31 • 533 • Null enatrix (B.60) .

Page 183: Laha Asoke Kumar 1972 - University of Saskatchewan

The other sublllatrix 532 is given by

532 '- DIA [ , 532(j)] "

532, � R3mx,ln" ,

j-l,m,

where

532(j) -

o

o

o

T4jT3jTSjT�j

'21TCj ,

1

o

o

o.

. ...

In a similar manner, the submatMx S43 is given by,

S • f' S ' ] 5 e:. R43 L 43(1.j) i-l,p 43" 3px2p

"

;

j-l,p,

where

543(1,j),

1t'f- Nun matrix'

S ()-

43 i,j ,

1-j ,

o T4kT3k"

T5kTck

Tlk-,

171

(B.61),

(B.62)

(B.63)

(B.6�)o

The other submatrices assOciated with X4 are zero, or in other words,"

S41 - S42 - Nun matrix'

(B.65)

As the vector Xs 1 s not coup led with 81 ther of F1 or F3 as can be

, seen fran eqUations (3.54) • (3�57), one can write

551 - S53 - Null matrix (B.66)

Page 184: Laha Asoke Kumar 1972 - University of Saskatchewan

172

Following the same procedure as applied before, the submatt1x..

S52 can be written as

SS2 - [S52(1,j)] 1-1,111· S52 e R4Inxlmj-l,m

where.

S I- Null matrix52(1,j) 1"j.

S.52(i,j) I 1-j.- 0 0 0

0 0 Kej0 0 0

0 0 0. Matrices J and P ..

. :".

(8.67).

.(8.68) .

As can be seen from equations (3.39) .and (3�40) the ·dependent .. ., ..

vector Z is ·onlY related to sta.te Yettor Xr Thus one can write

J2 - J3 - "4 - "S - P2 - P3·-· Ps - Ps - Null matrix (8.69)

The subniatr1x "1 is given by

J - [J ..] ..

:1- . 1(1.�) i-I,m

. .

jwl,m

where

J I· - Null .t"X1(1.,j).• '"j

. and

. 0 .: r . 0

(8.71)

Page 185: Laha Asoke Kumar 1972 - University of Saskatchewan

173

In a s1m11ar manne.. the submat..1x ,Pi is given by',

PI - [P1(f,j)] i-l.in PI E:_' R2mxSm',,' " ,

"

'j-l m,

' ' , .

(8.72)

:

where'

Pl(,·j}I'f'j "

- Null matrix

ind, '2

P I.' ldj + (.ladj)

,

0 ladJ,1(1"j) 1-j "t, lffjWb lffjWb

,�0 ,_ 0'W

, b

o o

(B�73)

o 0

TMs completes the derivation of all submatrfees of equations.. . ..

.

.'

(3.64) and (3.65)., 'Thus the equations (3.58) and (3.59) are' well-deffnedand usfnq the tl'lnsfonnat1on, defined by equati on (3.:62) the' final state

space fortli 'X - AX + BU + GF of equatfon (2.1) can be readily obtained. '

... �

Page 186: Laha Asoke Kumar 1972 - University of Saskatchewan

174"

..

10.3 APpendix C. .

Algorithm to Derive: Reduced'Stitt' SHe. Model'f.' the Detal1ed

one.-.

..

.. . -,

As.outlined 'fn SectiCII 3.6. it fs'pC)Ssfble tod...ive the state .

space equatfon of the reduced system m�el dfreetly from the detailed

one. This method was used fn the digital computer program to allow for

the aption of excluding the transfonner action in the tie lfne and·

stator windings.

The'state space equation of the d�tafled system (including trans·

foner action) a.re given by equations (3.58) and (a.59) «:•

. DX • QX + EZ + RU + SF•

.Z • JX + PX

(3.$8).

(3.59).

.. .

The' state.

$.,a�e .

equatfon.

of.the reduced system (e�e1uding

.

tr.n��.

fOmer action)' are gfven by tquatfons (3.84) and (3.85)..

.

.

....

15'1·· 1ft+I!+tu +rF

'R' r • '1- r + RlU + G1F (3.86)

It is therefore reQu1.red to .dertve the coefffc1_nt ..trices of

equatfons (3.84) and (3.85) fran eqUations. (3.58) and (3.59). The

.

technique to calculate them are developed in the follqwfng p.ges,

Matrix O.

With the de'f"itfon of new state v.rfables r as gtven by equation

(3.78) tr win be $trfctly diagon.'.

Let for 1 <.. 3m,"

...

1· 3 (1(-1) + i1j .. (K.l).5 + "1." 2. k • 1,,,,

'0.1'1>3111 j.,+211

Page 187: Laha Asoke Kumar 1972 - University of Saskatchewan

...•. 'If can be found. fram, the following equation •...o (1,1) • 0 o.n .U'E� _.

'. ." q x qwhere

q • 10m + 5p

'175

· (c.l).'

Matrices q and r.

Let f ,l, ,1,j1' 12,32, be defined as follows:-

It 1 � 3m f • (k.1).3 + '3 '3 • 1;2,3

.

1f 1 > 3m

'f 3 < 3m-

.

'1.' +2m'.J .• (�1-1).3 + 3331 • (kl-,l)�5 + 2 + 33 '.

.

'f j !I' 3m ' jl • 3 + 2m

3 Ii (kl-2) + 34,32 • (k1-1).5 ... j4'

.

, 1f j <. 2m..- ..

� IIItrix can therefore be written ·as '

,

'if (1,l) • Q (11'31) If E. Rq xi'le.t the matrices El and' £2 be defined a� follCM:- '

El (f,j). Q. (1l'j2)E2 (1,j5) • E (11,35) for all j5€[ '1,2m )

.

Thus r tin be written as

. r c: b· .

.' .... q x m

'. ., ...

j3 • 1.2,3

kl• I,m

34 • 1.2

kl • I,m

j'

(C.2)

·

(C.3)· (C.4)

(C.5)

Page 188: Laha Asoke Kumar 1972 - University of Saskatchewan

,

Matrices l' and If ,

,Let i, and f I be defined such that,

'

"fo�' f'!.. 3In' t • (k-I).3 +:1'2 :'

"1 • (k-I).5 + 2 + "2, "

"2 • 1.,2.3

k • l�m

,and for.. • 3m

The ,matrices 'It and I' are given by equations' (C;.6) and (C�7) •

176

'It (1,j)'. R (1,j) far all j E [1,m] (C.6)

tr (1,j) • G(il'j) for all j E [1,. (3m .. 2p + 2») (C.7)

"

The dimensions of i and I are (q. x m) ·and q x (3m + 2p + 2)

respectively.

.

.

. ..

Let the ptrt1nent viriables be defined as follows:-

For 1 < 2m-,

'

k • l.m

"2 • 1,2"

For j > 2m.

,i • (k-l).2 + "2"1 · (k-l).5 + "2"1 • 1 .. 2m'-

j • (kl-I).2 + j2'

jl • (kl�1).5 + j2 ' ''

'

jl • j - 2m

j2. 1,2

:kl • I,m

For 1 >'2m

For j � 2",

Thus the matrix r can be written as follows:-'

For. 1,j � 2111"

,r (1,j) • -Q (11Jl),

For i � 2m and j .2m r (1,j) • -E,Ul'jl)For .. > 2m. and 3!. 2m K (1,3) .' -J ,,(fIji)For 1.j > '2m K (1,j)· Un1tymatrix I

(C.8)

Page 189: Laha Asoke Kumar 1972 - University of Saskatchewan

Rl (i,k·2) • R(1l'�)Gl(i,k3) • G(fpk3)

R1(1,k2) • Null matrix

G1(1.k3) • Null matrixThe dimensions of r, Rl and G1 are 4m x 4m. 4m x m and 4m x

(3m .. 2p + 2) respectively.

For' 1 < 2m-

For 1 > 2m

Matrix J'

Let 1,j, 11.Jl be defined as follows:-

For 1 !. 2m 1 • (k;'l) 2 + "2 '.tt � (k-l).5 • "2,j • (kl-1).3 + j2jl • (k1-U.5 + 32 + 2

For j < 3m.

-

177

for all � E. (I,m].

for all K3 E U,3m+2p+1]

(e.9)

. "2 • 1,2

k • l.m

j2 • 1,2,3.

. kl .. l,m

The required matrix J" is derived as follows:-

For 1 !. 2m and. j !.. 3m,

J (1,j) it Q (1pj!).:

'

For 'I !. 2m and j > 3m J" (1,j) • Q (11'3+2m)For 1 > 2m and j � 3m J" (1,j) • . J(1-2m,jl)For 1 > 2m and j > 3m J" (i,j)· J(1-2m. j+2m).

Thus using the above algorithm the state spaCe equations (3.84)

and (3.85) describing the dynamics.of the reduced system can be

calculated. In order to transfonn these equations 'into the standard

(C.tO)

state space fonn 1'. X Y + 'f u + t F, the pertinent steps are

described below.

Page 190: Laha Asoke Kumar 1972 - University of Saskatchewan

178

Equation (3.85l1eads to.

.

! = r1 '3' Y + r1 R1U + rl G1F·.

tc.m

Substituting (C. II) into (3.84) yields

wi'. (if + r r1 J) t + (l + rr1Rt) U+ Jr + rrl Gt'·F (C.12)or

.. y •.Xl' + 'If u + t F (C.13).

where·

x •• 1j1ro- + . r rl J')

'If • 11"'1 (If + £r1 R1) (C.t4)- 0-1.(1 + rrl G )G •

I .

:.:.

Page 191: Laha Asoke Kumar 1972 - University of Saskatchewan

179

10.4 Appendix 0

System Specifications of Reduced Three-Machine'Model of'

Saskatchewan Power Corporation.

Subscripts 1,,2, 3 stand for Souaw Rapids nlant, nueen Elizabeth.

:.

..

.

olant and infinite bu� respectively. All values are in P.U. unless

otherwise stated.

(a) Study System

Plant: Squaw Raoids ( � 1 to i 6 machines)

�enerat�r Specifications:"

,

33.5 MW; , 37"5, MVA; 14.4 KV; 120 RPM; 60 HZ"

Base Values usino Xad base per Unit System:,

MVA KV - Amps ,Z (ohms) L (henrv)

Stator 100 11.7 5670 2.07 5.5 x 10-3Rotor 100 113 880 129 ' 3.42 x lO�l'

-Basic constants of the single machine eo..,1valent,

, G£NE�ATOR AUTOMATIC VOLTAGE REGULATOR

Ldl 0.25 Kal ',500.0

Lql 0.16 Ket 2.0 '

Ladl 0.70 Kafbl ' 0.005

Rfi 0.OOl8 Kvfb1 0.3

Lff1 3.92 Vfb1 113000

HI 10.4, Tanl 0.10

Page 192: Laha Asoke Kumar 1972 - University of Saskatchewan

180

PRIME MOVE R AND GOVERNOR . AUTOMATIC VOLTAGE REGULATOR

TS1 1.1

T41 -2.2

TSI 349.0

. T31 10.0

Tel 0.16 .

R' 0.01771

Dl 5.0

(b) External System

Tadl 0.033

Tafbl .0.22

Tvfb1 0.50

Tel 0.47

.

Plant: Queen E11 zabeth (tf I and tf 2 machines)

66 MW; 82.5 MVA; 14.4 KV; 3600 RPM; .60 HZ·

Basic Constants of the Single Machine Equivalent

PRIME MOVER AND GOVERNOR

T52 . 0.5

T42 .0.0· .

.

T52 0.15

Tc2 0.08

R 0.0242

H2 10.34

. °2 2.12.

..

Page 193: Laha Asoke Kumar 1972 - University of Saskatchewan

(c) Operating Point

VI 1.0 ..

. ql .0.96V2V2 1.0

. dl 0�36V3Y 1.0 ql .

o 93.3 V3 .

.

. i.

dl 0.27.dl

. ! .

0.87VI . I 1 ., .

V ql I ql:

0.96 1.691 . 1

V dl 0.28 Ifl 1.692. .

The Delta (4) matri" (values are in degrees)

(413 • 41 - 4jl· (steady.state)

0 '16.26 20.9. ,

..

-16.26 0 4.63

...20.9 - ·4.63 0

The tie line reactan�e matrix L:.

,

L1j • transfer -impedance betWeen 1 th and jth node.

LU • Lpi • Self impedance of i th node.

0.86 0.88.

.. 51.3.

7.40.88 .

. 0.79

7.4 ·6.4751.3

!

181

Page 194: Laha Asoke Kumar 1972 - University of Saskatchewan

182

10.5 Appendix E

,

State Space Equations of the Multi-Machine System Coupled, "

Wit.., Lead-lag AuXiliarY Controller

The dynamics of the uncompens'ated system as described by

equation (2.1) are qiven by,•

X • 'AX + BU -+ GF (E.l)

where

x -' (i" x:l vector describing the state variables of the

uncompensated syste� ,

X - '0 x 1 vector describing the first derivatives of the

state variables

V -, m1'xl' vector descri'b1 nq the' �utPut of the. contro11ers

to ,be 'fed back to the pla"t''

F - (2n + IIJ) x,l dist�rbance vector

,

A '- (i" x a coefficient matrix ".,

',",

"I '

'B' - q x 'ml con�rol'matrix',

:.

. ". . � .

.

G - a x (2n + m) matrix coupling the states with the

disturbance vector.

,

The algorithm to calculate the I'tatrice$ A, a a"d, G are

descr-ibed in Olapter 3,.

Suppose that pu,t of the m �study system" generators'rol plantshave lead-lag auxiliary cpntrollers connected to ,them (m1 � m). For

convenience sake without any'mathematical :sacrifice the nodes can be

renumbered so that the first ""1 nodes ;are those se,lected generators

where the control1er� are connected.

Page 195: Laha Asoke Kumar 1972 - University of Saskatchewan

183

.

Because of the addftion of these controllers the numbers of

.

states are f�creased. Let t be the new vector representinq the state .

variables of the compensated system�·Thus Y is defined as

.. (E.2)

(E.3)

and Zj as defined by eQuation (7.12) represents the sta,te var.iab.les of

the auxiliary controller connected to the jth node of.'the system •.

The· length of· the vector tis (a·.+ 3ml)where. q • 10m + 5"

From Figure 7.1, f.t can be written as..

Uj • VXj (F..4)

Substituting vJlue of Vxj from equation (7.9) .vields to

(E.5)

.

or:1 < f < "'1- -

(E.6)

where Kj is a row matrix of dimension 1 x (q + 3m)�From equation (7.21) .

Page 196: Laha Asoke Kumar 1972 - University of Saskatchewan

184'

it can be concluded that

Kj '.' Null matrix except

aJ 112j T153T13j T14j

'(E.7),

,, Ij 112j

,

,Kj(1, q+ 3j,- 2) it

T13,1 T14jT'12j

,"

Kj (1, q + 3j - 1,) • T13.1 T 14.1

Kj(1, q ... 3j) • 1/113i. ". '

.' ,'.'.

" ..

.

The control vectorUfs theNfOl'e !Ii"" by

U • [KJ [1')

where Kj is the jth,row of th� matrix K. Kj can be calculated with,'the help of equation' (E.7).,

'

Substituting equation (E�8) into (E.l) yields,•

x,. [A 0] (t] ... [8] (K] [Ii + [G) [FJ'

Defining

(E.9) ,

A • [A 0 J + [8} [KJc

(E.I0),

equati9fl ',,(E.9) is chang� to,",

X'. A I + GF, c

(E.11) ,

.,

Page 197: Laha Asoke Kumar 1972 - University of Saskatchewan

,

, 185 '

Equation (7.11) can be rewritten as

(7.11)

Fran equation (7.13). W.f. Sc5,1or

(E.12),

where OJ is the row matrix of length ('q + 3ml) and 15 defined as,

'

'

0,1 • Null matrix except,

'Dj(l. Sf) -1.0 J (E.13)

The vector ZJ is related to the state vector I by the followinflrelation, '

EiE:: R3 x (q + 3ml) (E.14)" '

The transformation matrix Ej can'be found oOt as

E.1 • Null matrix except

• 1.0,i • 1.2,3 ,

(E. 15)

.

. .". .

Substitut1riq equations (E.14) 'and (E.12) into (7.11) yields

[ij] • [T.,HEJ][I] + [5 j][D.1][t] " {E.16,

. : .,

£ljl • [PjH� ],

where

P.1 • [Tj1[Ej] + [5,1][O.1J,',,

(E.18)

Page 198: Laha Asoke Kumar 1972 - University of Saskatchewan

�<186 "

From equations (E.17) and (E.3) it can be written as

.

".. .'. .' .

Z • p y ,

, p� R' �

,

� )' (E.i9), � x ,q + ""'1 ,

"

Where Pj as defined b,Y eauatim (E.18) is the .1hsubmatrix of the

,

matrix P.

CormininQ the equat,ions (£nl.),� (E.11) and (E.19) yields,• A

,+ [�] ,[F)r • [..£] ['X'],

, por

y • Xl + �r

(E.20

(E.21),

A 1: E. R(Q' + 3m1) x ((f + 3ml)where 7( • If],_ G

' (E.22),

G • ltf] , ,'If €. R(ci + 3m1) x (2n + m).

.

.'.

.'

Thus the addition of the controller chanCles the coefficient matrix

of the system fran A of equation (E.1) to 1: of equatien (£.21).

,'