lachancea thermotolerans in pure-culture...

22
Lachancea thermotolerans in pure-culture fermentations Jen House UC Davis

Upload: lycong

Post on 01-Apr-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

Lachancea thermotolerans in pure-culture fermentations

Jen House

UC Davis

Lachancea

• Saccharomycetaceae family

• Formerly Kluyveromyces (6,7)

– Reclassified by Kurtzman in 2003

– Named after Dr. Marc-André Lachance

• Unique in its ability to produce lactic acid (4,5)

– Souring potential in beer?

• Maltose fermentation capacity is strain-variable (7)

• Found naturally on insects and plants (10,11,13)

– Apian microbiota

Oenological use • Found in natural fermentations of Majorcan wines (9)

• Glycerol production for improved mouthfeel (1)

• Pitched pre-Saccharomyces to assist with pH drop in

low-acidity wines (1-3,8,9)

• Chr. Hansen Concerto strain

– Trials suggest not optimal for beer

– Highly phenolic

Experimental Design • Initially investigated two strains from UC Davis and one strain from

yeast culture from the Polytechnic University of Marche SAIFET (Ancona, Italy)

• Selected Italian strain (Strain 101) for organoleptic character, flocculation, and ability to produce higher levels of lactic acid

• Most studies performed in benchtop trials with 300 mL wort in 500 mL flasks

Performance in wine fermentation Previous study of Strain 101 (1)

• 8% alcohol by volume (ABV)

• Positive for β-glucosidase activity

• Negative for α-glycosidase, protease, and

esterase activity

• Resistant to up to 20 ppm SO2

• Negative for killer factor

Performance in beer fermentation (Strain 101)

• Sugar metabolism: maltose and maltotriose

• Lactic acid and glycerol production

• Pitching rate

• Re-pitching capacity

• Flocculation characteristics

• Oxygen requirements

• Foam stability

• Vicinal diketone (VDK) production

• Tolerance of hop iso-alpha-acids

Sugar metabolism

Maltotriose ■, maltose □ and ethanol ■ concentration after 21 days of fermentation

101 602 1020 Sac

• All three strains fermented 93-94% of maltose present in wort; unable to ferment maltotriose

Lactic acid and glycerol production

Glycerol ■ and lactic acid □, concentration after 10 and 21 days of fermentation

101 602 1020 Sac 101 602 1020 Sac

Pitching Rate

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Deg

rees

Pla

to

Days

Average Specific Gravity

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

pH

Days

Average pH

Cells/mL/°Plato

Lactic acid produced during exponential growth phase (4,5)

Pitching Rate Rate (Cells/mL/°P) pH °Plato % ABV % Viability

1 (2.5x105) 4.28±0.01 1.60±0.03 5.65±0.03 93.4

2 (5.0x105) 4.23±0.03 1.57±0.00 5.66±0.02 91.5

3 (1.0x106) 4.20±0.00 1.52±0.00 5.67±0.01 92.0

4 (2.0x106) 4.21±0.01 1.46±0.01 5.72±0.02 89.5

5 (3.0x106) 4.19±0.02 1.50±0.01 5.69±0.03 88.8

Re-pitching Capacity Generation pH °Plato % ABV % Viability

1 4.21±0.01 1.46±0.01 5.72±0.02 89.5

2 4.17±0.10 1.70±0.09 5.82±0.08 93.0±1.4

3 4.24±0.02 1.78±0.00 5.99±0.04 94.7±0.5

4 4.30±0.02 1.66±0.01 5.90±0.13 90.7±0.3

5 4.23±0.00 1.66±0.02 6.08±0.02 89.1±0.6

• Potential for improved alcohol production

• High viability after 5 generations

Flocculation • Helm assay (calcium sulfate) used

to evaluate flocculation capacity

– Classified “non-flocculent”

• Settles well 24 hours post-

fermentation in benchtop and

larger-scale fermentations

• Easy yeast maintenance

101 UCD

1020

Oxygen Requirements

0

2

4

6

8

10

12

0 5 10 15

Deg

rees

Pla

to

Days

Specific Gravity

Air

Oxygen

• Wort bubbled to saturation with air (~7.8 ppm) or pure oxygen (~37 ppm)

• No significant difference observed; both fermenting vigorously 24 hours post-pitch

• Paola suggests that higher O2 is better, although ~7.8 ppm

was sufficient for successful fermentation

• Too much O2 may increase VDK production

O2 Air

Foam Stability

• Strain 101 compared to

a common US ale strain

of Saccharomyces in the

same wort

• Rudin evaluation of

foam stability in

decarbonated beer 0

10

20

30

40

50

60

70

80

90

100

Seco

nds

Average Rudin Half Life

Saccharomyces

Lachancea

VDK • Beers from foam and oxygen

requirement studies analyzed by SPME-GC-MS

Diacetyl (ppb) 2,3-pentanedione (ppb)

Foam Study:

Mid-fermentation

Saccharomyces 46.7 13.2

Mid-fermentation Lachancea 30.8 33.8

Final Saccharomyces 47.3 15.7

Final Lachancea 29.29 4.5

Oxygen Study: O2 Lachancea 31.3 7.5

Air Lachancea 22.8 6.0

Iso-alpha-acid tolerance

BU pH °Plato % ABV % Viability

30 4.18±0.03 1.72±0.01 5.88±0.10 94.9±0.8

40 4.22±0.03 1.78±0.02 5.92±0.03 96.2±0.2

50 4.22±0.01 1.73±0.01 5.93±0.00 95.4±0.5

60 4.22±0.02 1.78±0.01 5.97±0.02 94.5±0.3

• Study utilized isomerized kettle extract (Hopsteiner)

• Other studies utilizing various pellet additions to the kettle suggest likewise

UC Davis Strains Viticulture & Enology Wine Yeast and Bacteria Collection

UCD Strain Species Source

602 thermotolerans Wine or must

1020 thermotolerans Unknown, Madrid, Spain

2820 fermentati Zinfandel must, CA foothills

2989 thermotolerans Alder tree, Spenceville, CA

2996 thermotolerans Oak tree, Big Sur, CA

2997 thermotolerans Oak tree, Big Sur, CA

3826 thermotolerans Oak tree, Cedar Roughs Wilderness, CA

3829 thermotolerans California bay laurel, Cedar Roughs Wilderness, CA

3830 thermotolerans Oak tree, Cedar Roughs Wilderness, CA

3834 thermotolerans California poppy flower, Cedar Roughs Wilderness, CA

UC Davis Strains UCD Strain Days pH °Plato % ABV

602 12 4.24 3.71 4.25

1020 12 4.20 3.76 4.15

2820 12 4.03 3.69 4.15

2989 6 4.49 11.22 0.24

2996 12 4.10 3.85 4.11

2997 12 3.84 3.98 4.17

3826 8 3.52 4.42 2.66

3829 8 3.69 5.82 1.94

3830 8 3.57 4.16 2.64

3834 8 3.58 4.10 2.82

Summary

• Most strains of Lachancea are capable of wort

fermentation

• Strain of interest was robust and viable after

several generations and demonstrated no major

flaws

• Practicality of Lachancea will depend on purpose

– Flavor, enzyme activity, lactic acid production

Acknowledgements

Charlie Bamforth

Paola Domizio

Linda Bisson

Lucy Joseph

Joe Williams

Cary Doyle

Double Mountain

References

1. Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I., et al. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. (online). 10.1016/j.fm.2010.12.001, 2011.

2. Cordero-Bueso, G., Esteve-Zarzoso, B., Cabellos, J. M., Gil-Díaz, M., and Arroyo, T. Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). Eur. Food Res. Technol. (online). 10.1007/s00217-012-1874-9, 2012.

3. Gobbi, M., Comitini, F., Domizio, P., Romani, C., Lencioni, L., Mannazzu, I., et al. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. (online). 10.1016/j.fm.2012.10.004, 2013.

4. Kapsopoulou, K., Kapaklis, A., and Spyropoulos, H. Growth and fermentation characteristics of a strain of the wine yeast Kluyveromyces thermotolerans isolated in Greece. World J. Microbiol. Biotechnol. (online). 10.1007/s11274-005-8220-3, 2005.

5. Kapsopoulou, K., Mourtzini, A., Anthoulas, M., and Nerantzis, E. Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. (online). 10.1007/s11274-006-9283-5, 2007.

6. Kurtzman, C. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma, and Zygotorulaspora. FEMS Yeast Res. (online). 10.1016/S1567-1356(03)00175-2, 2003.

7. Kurtzman, C., and Fell, J. W. The Yeasts - A Taxonomic Study. Elsevier. 1998.

8. Mora, J., Barbas, J. I., and Mulet, A. Growth of yeast species during the fermentation of musts inoculated with Kluyveromyces thermotolerans and Saccharomyces cerevisiae. 41 (2) :156–159 1990.

9. Mora, J., Barbas, J. I., Ramis, B., and Mulet, A. Yeast microflora associated with some Majorcan musts and wines. 39 (4) :344–346 1988.

10. Naumova, E. S., Serpova, E. V., and Naumov, G. I. Molecular systematics of Lachancea yeasts. Biochem. Mosc. (online). 10.1134/S0006297907120097, 2007.

11. Nguyen, N. H., Suh, S.-O., and Blackwell, M. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia (online). 10.3852/mycologia.99.6.842, 2007.

12. Rudin, A. D. Measurement of the foam stability of beers. 63 :506–509 1957.

13. Sláviková, E., Vadkertiová, R., and Vránová, D. Yeasts colonizing the leaf surfaces. J. Basic Microbiol. (online). 10.1002/jobm.200710310, 2007.