laboratory results of laundry wastewater treatment - …infohouse.p2ric.org/ref/12/11791.pdf ·...

Click here to load reader

Upload: tranthien

Post on 17-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • I

    (23

    c c3 E

    n L,

    FESA-RT-2917

    F-- b .# r7 LABORATORY RESilLTS OF I AUNDRi K i r S T E W k l E K TREATMENT <

    Moun i r Bctros Walter C. @est US Army Facilities Fngineering Support A q e n c . ~ Research and Technology Division Fort Yelvoir, V A 22060

    April 1977

    c 1 > Final R c , \ o r t CL

    Is ! I

    APPROVED FOR P U B L I C R E L E A S E : DISTRIBUTION UNLIMITED. , ! LJJ

    z d c

  • I

    REPORTDOCUMENTATION PAGE R E P O R T HUM- 2 GOVT ACCESSION NO

    Y' /+p ' - ; { 5/\i-ESA-RT-Z,Ol!

    _ - -

    READ MSTRUCTIONS BEFORE COHPLETKNG FORM

    3 R E C I P I E N T ' S C A T A L O G HUMBER

    R W Q U T NUMBER i Laboratory Resul ts of Laundry Wastewater Trea tnient t -. 1

    1 8 CO T R A C T O R G R h M T NUMBER(*) ' AUTI4OR(.)

    Mounir/Botros Mal t e r /Bes t

    A R E A d WORK U N I T N U M B E R S PERFORMING ORGANIZATION HLitE 4WD A D O R E S 5

    I Research and Technology Division USA F a c i l i t i e s Engineerinq Support Agency

    r

    Water, water recyc le , water reuse , laundry water recovery.

    ____ 20 AMTRACT m k u m ~ ~ ~ . w r y si& If nrmq rrd t d m l l h bY block n m b u )

    This r epor t r e l a t e s the r e s u l t s of the chemical t reatment of laundry wastewater i n the l ab , using d i f f e r e n t chaliical coagulat ion and f locc.ulat ion compounds i . e . , i r o n , aluminum and lime used sepa ra t e ly and toge ther . procedure using i ron was discussed i n d c t a i l . processes were t e s t e d . chemical t reatment i s by using jus t only one chemical coagulat ion compound ( A l u m i n u m S u l f a t e ) with po lye lec t ro ly t e s a s a f loccu la t ion a i d (WT-2700) t o lower the cos t and s impl i fy the design o f the t reatment p l a n t .

    U N C L A S S I F I E D

    The f loccu la t ion Also lime o r lime and aluminum

    F ina l ly the r e p o r t suggests t h a t the bes t way f o r

    The optimum - , :z"! 1413 mtnom or t wov c i t 15 O ~ ~ ~ L L T L

    c S L C K C - I C A T I O W OF TU15 P A C E I- 1J.t. In1.r.d)

  • 1. Continued. ! losage of aluminum sulfate was estimated, and t h ? bezt ccndTti3r: o f the b t ) f i c t i ? : - !specially for pt! and temperature of the soluticn were f i x e d A!:;.: ~ Z S ~ I I ( ! P S :r,e iltrdtion process, the ideal sand f i l t e r anu t h e desic;r!irlg o i t nc w d i a Led. :he using cf polymers as f i l t r a t ion a ids . :he i y p r c r f i : t .e . ~ ! . : . + , , t d ~ . ~ s w I liscussed. The g r a v i t y and pressure f i l t e r s were c ~ r i C ~ ~ ~ ~ 4 . ::n r .~;u t ; ~ j t :b,:: effort indicate t h a t the recycling of laundry wasteir2tcr .?t Lr-. , , j ? > ! , ? j ? t . 5 r i c i s nct cost effective a t the present t ine.

    \ ?

    \,

  • TABLE OF CONTENTS -- SECT1 ON

    PART 1 Chemical Coagulation and Flocculat ion

    I

    PAGE NO. -__

    1 .

    2

    3.

    4 .

    5 .

    6 .

    -, 1 .

    8 .

    9 .

    10

    l ron Coagulation

    Tes ts in the Chemical Lab by Using FeC13

    Calcula t ion o f Solile Tests and Conclusion

    A i umi n u n Coagulation

    Tests i n the Chemical Lab by Using A12(S04)3

    1

    3

    9

    4

    a 23 Calcu la t ion of Some Tests a o J Conclusion

    Lime Cuagulation 2 7

    Tests in the Chemical Lab by Using Combination between Aluminwn S u l f a t e ar,d Lime CaO

    Calculat ion o f Some Tests and Conclusions

    Conc 1 us i on

    1 1 . Another t e s t by Using A l ~ ( 1 0 4 ) ~

    12. The Ef fec t of the Temperature on the Coagulation

    13. Final Conclusion

    PART 2 F i l t r a t i o n

    1 . P a r t i c l e s D i s t r ibu t ion

    2 . The Advantage of the Pressure F i l t e r

    3 . The Grs;i ty F i l t e r I . - 4 . The Pressure F i l t e r

    5 . The Head Loss

    27

    29

    30

    22

    34

    36

    36

    4 3

    -- --y 45 46

    d

    i 1 1

  • Page 1 'I I .I

    15

    7 l?

    26

    Betwccn the Concontt*ation 0; Al,(jG), addinii t o the WdstEhatcr and T u r b i d i t y ( d d s t c w a h r h igh F?:

    Setween the Concentration Cf fil;(SG4j-. ad(t;ng t o the Wsstwater and Turbidity (Lzrttwatei :obi oh!

    d

    31 i3etwee;i the Concen%r6tioc GI L i i w (CeC) 2CLy-i9 ;:c the i idstewa tc and the t'drGncSs

    Between the Concentraticn cf c\12(CC4), 2 ' i s : b - o q t:) the Wastewater and pH

    Between t

    32

    35 d i ty and d i f f e r e n t degree. C m t i g r ade

    , C r ' + ,

    i3ed Depth And Part ic le D i s t r i b u t i o n 39

    E f f e c t s o f Pplymers as F i l t r b t i u n Aids 42

    45

    46

    Cvavi t y F i 1 ter

    Pressure Filter

    4

    4

    4 7 5 A Typical !!ertical Pressure F i l tm- I ! 5 Herd Loss bistribution i n mixed media tiltor

    i i

  • TASLES

    T i t l e Page

    I ron Coagulat ion (Tes No. 1 - No. 7 ) 11 I r o n Coagulat ion ( T e s t No. 8 - No. 1 1 ) 1 2 Aluminum Coagulat ion (Test No. 1 - No. 3 ) 23

    Aluminum Coagulat ion (Test No. 6 No. 8 ) 25

    I l l u s t r a t i o n o f Varying Media Des Variotls Types o f Floc Removal

    iii

    gn f o r 40

  • I

    PART 1

    CHEMICAL COAGULATION AND FLOCCULATIOf i

    I r o n Compounds as Phosphorus P r e c i p i t a n t b o t h fer i -ot ts (Fez') and

    f e r r i c (Fe") i o n s can be used i n t h e p r e c i p i t a t i o n o f phosphorus w i t h

    Fe3+ a r e a c t i o n can be w r i t t e n s i m i l a r t o t h a t shown e a r l i e r f o r p r e c i p -

    i t a t i o n o f aluminum phosphate. A !:l mole r a t i o o f Fe:P04 r e s u l t s . S ince

    t h e m o l e c u l a r w e i g h t o f i r o n i s 55.85; t h e we igh t r a t i G of Fe:F i s 1 . 8 : l .

    J u s t as i n t h e cace o f aiuminum a l a r g e r amount o f i r o n i s r e q u i r e d i n

    a c t u a l s i t u a t i o n s t h a n t h e c h e m i s t r y o f t h e r e a c t i o n p r e d i c t s . Wi th

    Fez' t h e s i t u a t i o n i s more c o m p l i c a t e d and n o t f u l l y ucders tood .

    phosphate can be forrred. The mole r a t i o o f Fe:P04 Hou ld be 3:2 .

    Exper imen ta l r e s u l t s i n d i c a t e , however, t h a t when Fe2+ i s used; t h e

    mole r a t i o o f Fe:P w i l l be e s s e n t i a l l y t h e same as when Fe3+ i s used.

    Fe r rous

    A number o f i r o n s a l t s a r e a v a i l a b l e f o r use i n phosphorus p r e c i p -

    i t a t i o n . These i n c l u d e f e r r o u s s u l f a t e , f e r r i c s u l f a t e , f e r r i c c h l o r i d e ,

    and p i c k l e l i q u o r . A l l w i l l l o w e r t h e pH o f wastewater becau5e of

    n e u t r a l i z a t i o n o f a : k a l i n i t y . P i c k l e l i q u o r c o n t a i n s s u b s t a n t i a l amounts

    of f r e e s u l f u r i c a c i d o r h y d r o c h l q r i c a c i d .

    I r o n s a l t s a r e most e f f e c t i v e f o r phosphorus removal d t c e r t a i r ! pH

    T h i s i s a r u n r e a l - va lues .

    i s t i c a l l y l o w pH, n o t a t t a i n e d i n most wastewaters. S i g n i f i c a n t removal

    o f phosphorus can be a t t a i n e d a t h i g h e r pH.

    abcu t 8 and good phosphorus removal can be o b t a i n e d between 7 and 8 .

    For Fe3+ t h e optimum pY range i s 4.5 t o 5.0.

    f o r Fez+ t h e optimum pH i s

    The a c i d i t y of f e r r o s s a l t s , and e s p e c i a l l y p i c k l e l i q u o r , n e c e s s i t a t e s

    a d d i t i o n o f l i m e o r sodium h y d r o x i d e f o r good r e s u l t s .

    i s a e r a t e d f o l l o w i n g Fez+ a d d i t i o n , t h e use o f a base may n o t be necessa ry .

    Where t h e wa te r

    1

  • I

    forn. C. cryst

    crystal l i n e fo rm b e i

    s 35-9ri lb!ft*3. The t y ~ i

    ic chloride and weighs 11

    stcwater- cmgu;i!tirJn, a srriail

    red t o necltral

    .-

    b r rls? i i i advdncec! w + s t

    , a s i i l t p r .:i

    .a:? inc

    9h5

    c.11

    7 .L -

    ;lrm un t

    i z c the

    .ewa ter

    d s , 3r

    o r c!L.!igE con en t o f cei-%in wa;tcwater;, l i r e or

    duce a f ine o r l i g h t f l o c w h i c h

    roSably i s z [,olyrner which, w h e ?

    :]sed ;i an a i d t locculztion, w i l l ;)roduse d rapidly

    f polymer a + :lie r i q l r t p o i n t in

    ?.rea trllent. c3 Is o f bo tq CJrbidity and p h o ; p h o r u s .

    fin!nary screening, b t i t pldnt :;cdle

    .L(

    l f i c instructions m y be ob td

    the following steps are necessd

    wder by means o f a funnel type

    5 f u r

    i fled

    :ry.

    asp i r a to r ,

    ow

  • s t i r r i n g until a l l o f the polymer i s in solution.

    Test i n the Chemical Lab by Using FeC13

    NOTE: Every t e s t I n the lab was repeated several times and the fiaures

    in the t e s t a r e the average figures.

    Reagent

    1 . Ferric Chloride

    FeC13 6H20

    20 gm in one l i t e r water

    The concentration 20,000 ppm/l

    every 1 m l o f the solution = 20 P M

    2. Sodium hydrox,de

    NaOH

    20 gm i n one l i t e r water

    the concentration 20,000 ppm/l

    every 1 ml o f the solution = 20 ppm

    polelectrolyte o r polymer ( W 2700)

    0.1 gm i n one l i t e r water

    the concentration 100 ppm/l

    every 1 ml o f the solution

    Apparatus

    1. Turbidimeter

    2. ph meter

    3.

    TEST NO. 1

    sample o f the laundry wastewater 125 ml

    pH o f the sample 10.75

    3

  • I

    1 L . 5 171 Fer! ~ ?onc 20,000 ppm

    ptJ o f the water 3.75

    c 2 .5 ml Nagti conc 20,000 pprn

    oH o f the water 7.1

    i n m l k't 2700 conc.10G ppm l i g h t f l c r .

    TEST No. 2

    Sanple o f %he laundry wastewater i i 5 nl

    DH o f the sample 13.5 PH

    18.5 ml FeCl m n c 22,000 3

    p s f t h t . k23ter- 3.75

    a d d i n g - -___ 3.25 ml NaOH conc 20,000 P P I I ,

    pH o f the water 7 . 3 5

    by adding ---. - -

    10 WT 2700 conc 100 ppni very gGod f l o c .

    J u l y 18, 1975

    T E S T No. 3_

    sample o f the laundry wastewater I25 ml pH o f the sample 15.25

    by a d d i n g ---

    14 ml FeC13 conc 20,000 ppm

    pH o f the water 4.5

    1.5 m l NaOH conc 20,000 ppm

    pH o f the water 7.25

    4

  • by a d d i n g

    10 m l WT-2700 colic 100 ppm l i g h t f l o c .

    TEST No. 4

    Sample o f the laundry Nastewater 125 ml --

    pH o f the sample 13.05

    by a d d i n g ~-

    1 5 ml FeCl conc. 20,000 ppm

    pH o f the water 3.75

    by adding

    2 .5 ml NaOH conc 20,000 ppm

    pH o f t h e water 7.50

    by a d d i n g

    10 ml WT 2700 conc 100 ppm l i g h t f l o c

    TEST No. 5

    Sample of the laundry wastewater 125 ml

    pH o f the sample 13.15

    by a d d i n g

    13 ml FeCI3 conc 20,000 ppm

    pH of the water 6

    by adding - ~ -

    0.85 m l NaOH conc 20,000 ppm

    pti o f the water 7.5

    by adding

    10 ml WT 2700 100 ppm

    bad f l o c .

    5

  • ', ?

    I ,

    . .

    D r l c f the s a m p l e 13.15

    by a t j d i n g

    19 ml FeCl? c t n c 20,COO ppm

    ptl o f thc . water 3.59

    .--

    by ciddinq --d.

    4.25 ml NaOli conc 20,300 ppr;

    pt i of the water 7 . 5

    10 rr.i WT 2'00 c o n c 13G pprn

    excel l e n t f i s c .

    TEST No. 7

    Sainple o f the l a u n d r y w a s t e w a t e v ? 2 5 l~ll

    DK 13.2

    by rbdding

    16 ml FeCI3 conc 20,000

    ~ t ' o f the vater 4 ' by adding -__

    3.25 m l NaOH conc 20,000 ppn

    PH of the water 7.8 !)) E d d i n g

    10 ml WT 2700 c o n c 100 ppm

    good f l o c

    -----

    6

  • I

    TEST No. 8

    I

    Sample o f t h e laundry wastewater 125 ml

    p! o f t h e sample 13.35

    by adding

    14.3 ml FeC13 conc 20,000 ppm

    pH o f t h e water 6

    by adding

    1.15 ml NdOH conc 20,000 ppm

    pH o f the water 7.50

    by a d d i n g

    1 2 ml WT 2700 conc 100 ppm

    TEST No. ,9

    Sample of the laundry wastewater 125 ml

    pH of t h e sample 13.35

    by adding

    14,,6 m l FeC13 conc 20,000 ppm

    IJH o f the water 4.9

    by adding

    1.65 m l NaOH conc 20,000 ppm

    pH of t h e water 7.5

    by a d d i n g

    1 2 m l WT 2700 conc 100 ppm

    TE5T No. 10

    Sample o f t h e laundry wastewater 125 ml I

    pH o f the sample 13.3

    7

  • 1 5 . 4 5 ml FcC13 conc 20,000 ppm

    PI? o f the water 3.9;

    t y a d d i n g

    I

    ptl o f t h t . water 7.5

    !:y a d d i n g c-__

    12 rlil WT 2700 cotic 100 ppm T. ( - 1t.j I tio. -. 1-l ---

    S(iniple of the laundry wastewater 125 m l

    pH of t h e sample 13.3

    16 r;l FeC13 ccnc 20,000 ppm

    pH Jf the water 3 . 8

    by a d d i n g -. -

    2 . 6 ml NaO3 conc 20,OOG ppm

    p l i o f t h e water 7.8

    !>/ addir7c; --_

    1 2 m i NT 2700 100 ppm

    8

  • I

    Calculation

    TEST No. 8 -- 14.3 x 20 = 286 ppm

    286 x 8 = 2288 ppm/liter FcC13

    1.15 x 20 = 23

    23 x 8 = 184 ppm/liter NaOH

    TEST No. 9

    14.6 x 20 = 292 ppm

    292 x 8 = 2336 ppm/liter FeC13

    1.65 x 20 = 33 ppm

    33 x 8 = 264 ppm/liter NaOH

    TEST No. 10

    15.45 x 20 = 309 ppm

    309 x 8 = 2472 ppm/liter FeC13

    2.55 x 20 = 51 ppm

    51 x 8 = 408 ppm/liter NaOH

    TEST No. 11

    16 x 20 = 320 ppm

    320 x 8 = 2560 ppm/liter FeC13

    9

    1 ' - --

    t

  • I

  • 0

    N

    0

    0

    cr In 0

    u3 In

    N

    0

    0

    Q

    N

    0

    2

    -

    cl-

    0

    b-

    +.' c

    W

    W u x

    W

    - v' 0

    Y-

    V 0 0

    cn

    7

    7

    7

    I--

    2 a, >

    co a

    0

    CD u3

    0

    N

    LD

    0

    d 0

    m

    0

    u3 Q

    , N

    0

    7

    0

    I--

    I

  • I

    N

    w

    --I

    Q

    I- m

    In

    h

    0

    N

    e

    cn c

    3

    m

    P

    In

    h

    Q,

    d

    N

    - d Io N Io m m N % m c m

    In

    h

    m

    h

    N

    h

    d

    N

    m

    c1

    P

    0

    #--

    a

    h

    h

    cu

    w e

    P

    0

    u3 In

    1-U

    m

    m

    -

    12

  • I

    ---+---

    C

    UI

    m

  • I

    v12;:,?:3 above 6 .3 , the ph3sphj.te fc r ,?~ . i l ? . : ( . . I ; . I I ~ ~ S I . i . ; e i iher by i nco rpora t ion

    i n d complex wi th aluminum o r by at!sry-;:ior; c11 ? , I ~ J I : I ; ~ I , J I T I hydroxide f l o c .

    I:' tlir: hydro l yz ing react lon d i d riot c c r ~ y ~ e t c w: t h the p h o s p h a t e p r e c i p i t a t i o n

    r.i?E,:tjon, the removal o f phosphorous woul? h: s :oichiornetr ic , w i t h 0.87 ? b

    CJ' al i t r+inum r e q u i r e d f o r each pound c! r:hosrt::>t I n p r i ~ c t i c e , the

    ~ i l u f i , i ~ i u m t o phosphorus r a t i o i s on t k ot.;lCr 2 - i . depending on the f i n a l

    phosphorus c o r c e n t r n t i o n desir2d and * n o ~ . h j

    tIli' a a r t i c u l a r was tewater invol vcd.

    ; ' I j+-ac te r i s t ics o f

  • ?,

    \o

    In

    o\

    CO h

    I

    I

    I I

    1 I

    I --------I

    . Ci

    SV 1

    /31i SIlX

    OH

    dSOIId

    15

    8

  • I

    A1 uminum Compounds a s Phosphorus Precipi tants

    Alurjnum ions can combine w i t h phosphate ions t o form aluminum 3-

    phosphate as follows: A13+ + PO4 * A1P04. - The above equation indicates t h a t the mole r a t i o for A1=P04 i s

    1 = 1 . Inasmuch a s the mol'e r a t i o of P = PO4 i s a lso 1 = 1 , the

    mole r a t i o fo r A1 = P I s 1 = 1 o r A1 = 7 when both aluminum and

    phosphorus a re expressed i n terms of gram-moles o r lb-moles. On

    a weight , rather than a mole basis, this means t h a t 27 l b s of A 1 will

    react w i t h 95 l b of PO4 t o form 122 lb of A1 PO4.

    ( 1 1b-mole) of PO4 contains 31 lbs ( 1 15 mole) of P the weight re1at:onship

    T

    Since each 95 lbs

    . between A1 and P i s 27 l b of A 1 t o 31 l b lbs of P cr 0.87 f o r t n i s reaction.

    The principal source of aluninum fo r use i n phosphorus precipitation

    i s "alum" a hydrated aluminum s u l f a t e , having the approximate formula

    A I 2 (S04)3 14 H20 (molecular weight of 594).

    The chemical which is a l s o known as a " f i l t e r alum" o r "paper maker's

    alum" average about 17% soluble aluminum expressed as A1203 or about

    9.1% expressed a s A l .

    A I 2 (S04)3 14 H20 + 2P043- - 2ALP04 + 3 S04'- + 14 H20. Its reaction w i t h PO4 may be written as follows: The su l fa te remains i n solution as S04*'. T h e above reaction

    indicates t h a t 1 lb-mole of alum (594 l b ) will react w i t h 2 lb-mole

    (190 lb ) of PW3' containing 62 l b phosphorus to form 2 l b moles (244

    l b ) of AlP04.

    9.6:7,

    der ived from the A l = P mole r a t i o a s follows:

    The weight r a t i o of alum t o Ghosphorus i s , therefore

    The alum requirement per pound o f phosphorus may a l s o be

    Mole r a t i o AI :P=l : l

    A l u m contains 9.1% A l .

    9.6 lb .

    therefore weight r a t i o A 1 : P = 27:31=0.87=1

    Therefore, alum required per l b of P = 0.87 = K-0771

    16

  • 3

    stumn and Morgan ( 3 ) s t a t e t h a t the so lub

    dependent and v a r i e s as fo l l ows :

    PH Approxi l~la t e

    5

    6

    7

    l i t y of A l P 0 4 i s pti

    s o l u b i l i t y (mg/ l )

    0.03

    0.01 (minimum s o l u b i l i t y )

    0.30

    The optimum pH f o r removal o f phosphorus probably l i e s i n the range

    . of 5.5 t c j 6.5, a l though some removal occurs above pH 6.5. , Add i t i on o f alum w i l l lwer t h e pH o f wastewater because of n e u t r a l i z a t i o n o f a l k a l i n i t y

    and re lease o f carbon d iox ide .

    p r i n c i p a l l y on the a l k a l i n i t y o f t h e wastewater.

    the l e s s i s t h e reduc t i on i n pH f o r a g iven alum dosage.

    The e x t e n t o f pH reduc t i on w i l l depend

    The h igher the a l k a l i n i t y ,

    Most wastewaters

    con ta in s u f f i c i e n t a l k a l i n i t y so t h a t even l a r g e alum dosages w i l l n o t

    lower t h e pH below about 6.0 t o 6.5. I n except iona l cases o f low

    wastewater a l k a l i n i t y , pH reduc t i on may be so grea t t h a t a d d i t i o n o f

    an a l k a l i n e substance, such as sodium hydroxide, soda ash, o r l ime w i l l

    be requ i red .

    a d d i t i o n o f s u l f u r i c a c i d b u t t h i s complicates the t rea tment process

    and i t may be p r e f e r a b l e s imp ly t o use a h ighe r alum dosage.

    Adjustment o f t h e pH downward can be accomplished by the

    Bench, p i l o t , and f u l l sca le s tud ies have shown t h a t cons iderab ly

    h igher than s t o k h i o m e t r i c quan t i t i e s of alum u s u a l l y a re necessary t o

    meet optimum phosphorus removal ob jec t i ves . A competing reac t i on ,

    respons ib le f o r the pH reduc t i on mentloned above, a t l e a s t p a r t i a l l y

    accounts f o r t h e excess alum requirement. It occurs as f o l l ows :

    A 1 2 (s04)3 14H20 + 6HC03 - 2AL(OH)3 + 6C02 + I4H2O + 3S042. The f o l l o w i n g r a t i o s of alum (9.1% A l ) t o phosphorus a r e be l i eved

  • I

    wdsonably representative fo r alum treatment or nlunic i p a l wastewater ( 4 )

    P Reduction --- A 1 : ? A 1 um: P

    Requi re3 rlole Ratio We i g h t Ra t i o Wei gh t Ratio

    13:l

    16: l

    2 2 : 1

    To achieve 85? P removal frorv a washwater c n n t a i n l n r : 11 mg/l 06 P the>

    alutr dosage needed would be (16 ) ( 1 1 ) = 176 mg/l o r 1470 l b / 1 0 6 g a l .

    A l u m i s avai lable in e i the r dry o r liquid fcrm. I t i s available i n

    dry form as e i the r ground powder, o r lump form i n bags. barre l s , o r

    carloads.

    l b s / f t 2 a n d i s only s l i gh t ly by groscopic.

    cer t a l u m s o l u t i o n a n d i s usually delivered i n minimum loads of 4000

    g a l . !t must bc

    s t o r e d a n d conveyed i n corrosion r e s i s t an t materials such as rubher

    lined s t e e l , f iberglass or s ta in less s t e e l .

    75': 1.38: 1 1.2: 1

    as:. 1 . 7 2 : l 1 . 5 - 1 9 54 2 . 3 : 1 2 .G: l

    . The ground form i s used for dry feeding. I t weighs GO - 75

    The liquid form i s a 50 per

    The l i q u i d form may be delivergd by r a i l or truck.

    18

  • I

    Test i n the Chertiical Lab

    Reagents

    1 . A l u m i n u m Sulfate Solution

    A 1 2 (SO413 * 18 H20

    20 gm i n one l i t e r water

    the concentration 20,000 ppm/l

    every 1 m l of the solution = 20 ppm

    2 . Polyelectrolyte or polymer

    We used WT-2700 as flocculation aids

    0.1 gm in one l i t e r water

    The concentration 100 ppm/l

    Every 1 nl ~f the s o l u t i o n 0.1 ppm

    Apparatus

    1 . Turbidimeter

    2 . pti meter

    NOTE:

    TEST No. 1

    Sample of the laundry wastewater 100 ml

    pH o f the sample 13 .3

    Tui*bidity o f the sample 400 FTU

    Adding

    The figures i n the t e s t are the average figures for several t e s t s .

    -

    16.5 ml A12 (S04)3 conc 20,GOO ppm

    I 2 ml WT-2700 conc 1OU ppm

    pH a f t e r treatment 7.5

    Turbidity a f t e r treatmerat 7 . 3 l i g h t f locculation.

  • 4

    TEST - No, 2

    Sample of the laundry waste water 100 ml

    ,

    pH of the sample 1 3 . 3

    Turbidity of the sample 400 FTU

    adding

    1 7 . 2 ml A 1 (504) conc 20,000 ppm

    1 2 m l 1JT 2700 conc 100 ppm 2 3

    pH a f t e r treatment 7 .2

    Turbidity a f t e r treatment 3.8 good flocculation.

    TEST No. 3

    Sample of the laundry

    pH of the sample 1 3 . 3

    Turbidity of the samp

    hddi ng

    wastewater 100 ml

    e 400 FTU

    18 ml A 1 2 (S04)3 conc 20,000 ppm

    1 2 ml WT-2700 conc 100 ppm

    pH a f t e r treatment 6.6

    Turbidity a f t e r treatment 3.1 very Sood flocculation.

    TEST No. 4 - Sample of the laundry wastewater 100 ml

    pH of the sample 13

    T u r b j di t y o f the sample 420 FTU

    Adding

    18 ml A 1 2 (S04)3 conc 20,000 ppm

    10 ml WT 2700 conc 100 ppm

    pH a f t e r t r e a t w n t 7.3 l i g h t f locculation,

    20

  • I

    I

    ,! I

    TEST 140. 5

    Sample o f the laundry wastewater 100 m l -__.

    pH o f the sample 13.1

    T u r b i d i ty o f the sample 420' FTU

    Adding

    20 m l A12 (S04)3 conc 20,000 ppm

    10 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6 e x c e l l e n t f l o c c u l a t i o n

    TEST No. 6

    Sample o f t h e laundry wastewater 100 m l

    pH o f t he sample 9.5

    T u r b i d i t y o f t h e sample 250 FTU

    Adding: 1 m l A12 (S04)3 conc 20,000 ppm

    5 m l WT 2700 100 ppm

    pH a f t e r t rea tment 7

    T u r b i d i t y a f t e r t rea tment 1.5 FTU

    JEST No. 7

    Sample of t h e laundry wastewater 100 m l

    pH o f t h e sample 9.5

    T u r b i d i t y o f the sample 250 FTU

    Adding: 1.5 m l A12 (S04)3 conc 20,000 ppn

    5 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6.5

    Turb fd i ty 2.5 FTU

    21

  • TEST No. 8 -

    .. - . .

    Sample o f the l aundry wastewater 100 m l

    pH o f the sample 9.5

    Turb id i ty o f t he sample 250 F N

    Adding: 2.0 ml A12 (S04)3 conc 20,000 ppm

    5 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6.0

    T u r b i d i t y 3 . 5 FTU

    22

    '9' ' !

    , , .

    ' , ' ',

  • m

    N

    fi

    N

    c

    N

    7

    ln

    m

    m

    c

    V 0

    u- U 0 0

    LI)

    c

    co m

    0

    h

    N

    c

    0

    Q

    .;f m

    N

    7

    N

    h

    c

    m

    m

    - N

    7

    m

    u3

    10

    N

    e

    N

    e

    ~

    43 c

    m

    m

    -. m

    m

    0

    z

    W

    [Y

    3

    LI)

    LL

    W

    W

    m

    - 23

  • a

    0

    N

    sz

    . --

    r(

    B U m 8

    I

    U4

    cP

    I W

    E

    rlrl

    dlu

    E Ll w 0 X a < . Y

    al

    i -3

    0

    xo

    a-

    h

    c rl w

    I I I I h

    U

    rl .E

    l rl .n Ll 1 U

    YJ E

    PI

    - -yc

    P

    0

    24

  • I

    U

    0

    * c, C aJ aJ U X w

    e

    7

    e

    c

    0

    Ill

    v- a e

    U

    C

    0

    V

    V

    0

    - TI 0 0 a e-- m m h -0

    \O

    E

    %

    nN

    ni

    s ln

    U

    0

    z

    W

    CT 3

    LL

    W

    LIJ

    E

    U

    W

    --I m

    2

    0

    0

    m

    0

    0

    N

    0

    0

    e

    --

    ln

    ln

    In

    li

    e--

    In 7

    lA7

    m

    ln

    Q)

    m

    m

    h

    i

  • 4

    03

    0

    z U m PI

    l-4

    " A

    - I

    h

    b

    u 02

    da

    u

    0

    C

    In

    0

    c

    U

    c

    C

    rl

    0 c

    N

    0

    0

    d

    i

    'i

    26

  • 3

    Lime as a Phosphorus P r e c i p i t a n t

    Calcium i o n r e a c t s w i t h phosphate i o n i n the presence o f hydroxy l

    i o n t o f o r m hydroxyapat i te . Th is m a t e r i a l has a v a r i a b l e composition,

    b u t an approximate equat ion f o r i t s format ion can be w r i t t e n as fo l lows,

    assuminq i n t h i s case t h a t the phosphate present i s HPO

    3HP04'- +5Ca2+ +40H-q-wCa5(OH) (P04) + 3H20. .The r e a c t i o n i s pH

    dependent. The s o l u b i l i t y o f hydroxyapat i te i s so low, however, t h a t

    even a t a pH as low as 9.0, a l a r g e f r a c t i o n o f t h e phosphorus can be

    * removed. I n l ime t reatment o f wastewater, t h e opera t ing pH may be

    2- 4

    removal p red ica ted on the a b i l i t y

    r a t h e r than on phosphorus

    Al though i t i s poss ib

    t o o b t a i n good suspended s o l i d s

    removal.

    e t o c a l c u l a t e an approximate 1 me dose f o r

    phosphorus removal, t h i s i s g e n e r a l l y n o t necessary. I n c o n t r a s t t o

    i r o n and aluminum s a l t s , the l ime dose i s l a r g e l y determined by o t h e r

    r e a c t i o n s t h a t take p lace when pH of wastewater i s ra ised . Only i n

    w a t e r s o f very low b icarbonate a l k a l i n i t y would the phosphate pre-

    c i p i t a t i o n r e a c t i o n consume a l a r g e f r a c t i o n o f the l i m e added.

    Test i n t h e Chemical Lab Using A l p (S04)3 and CaO

    Red gent

    1 . Aluminum S u l f a t e S o l u t i o n

    A12 (S04)3 18 H20

    20 gm i n one 1 i t e r water

    The concent ra t ion 20,000 ppm/l

    Every 1 m l of the s o l u t i o n = 20 ppm

    27

  • I

    2 . Cal c i um Oxide Solution

    CaO

    20 gin I n one l i t e r water

    The concentration 20,000 ppm/l

    Every 1 m l o f the solution = 20 ppm

    3 . Polyelectrolyte o r polymer

    We used WT 2700 a s flocculation aids

    0.1 gm in one l i t e r water

    * T h p concentration 100 ppn/l

    Every 1 nl o f the solution 0.1 ppm

    NOTE:

    TEST No. 1

    The figures i n the t e s t are the average figures f o r several t e s t s

    -~ Sample of the laundry wastewater 100 m l

    Temp 5 2 O C

    pH 1 1 . 5

    Turbidity 430 FTU

    Adding

    18 ml CaO 20,000 ppm/liter

    3 ml A 1 2 (S04)3 20,000 ppm/ l i t e r

    2 ml WT 2700 500 p p m / l i t e r

    Results: Turbidty 0.75 FTU

    pH 11.4

    Hardened 500 ppm

    Friday, A u g u s t 1 , 1975

    TEST No. 2_

    Sample of the laundry wastewater 100 m l

    Adding 1 - 1 2 ml CaO 20.000 ppm/l i ter --

    28

  • 2 - 2 m l A12(S04)

    3- 2 m l WT 2700 500 p p m / l i t e r

    20,000 ppm/l i t e r 3

    Results: T u r b i d i t y o f t he water a f t e r t rea tment 2.25 FTU

    pH 11.25

    Hardness 400

    lu'e t r i e d t o use l e s s amount of CaO f o r t reatment t o lower the f i g u r e of

    t he hardness. The amount o f t he sample c o n s t x t 100 m l laundry waste-

    w a t e r and the pH o f the sample 11.7 the temperature o f the sample 25OC

    the t u r b i d i t y o f t he sample 300 FTU and we used 1 ppm of WT 2700 s o l u t i o n

    I n the sample.

    TEST No. 7

    5 m l A12(S04)3 20,000 ppm

    10 m l CaO 20,000 ppm 200 ppm

    pH a f t e r A12(S04)3 11.2 pH a f t e r CaO 11.9

    Resul ts: The water a f t e r t reatment: T u r b i d i t y : 12 Hardness: 460 ppm Ca03

    TEST No. 2

    6 m l Alz(S04)

    - 20,000 ppm 3

    8 m l CaO 20,000 ppm 160 ppm pH a f t e r A1 (S04)3 10.4 pH a f t e r CaO 12 RESULTS: T6e water a f t e r t rea tment

    Turbi d i t y 9.2 Hardness 450

    TEST No. 3 -- 8 m l A12 (S04)3

    6 m l CaO 20,000 120 ppm

    pH a f t e r A12 (S04)3 9.8 ph a f t e r CaO

    Resul ts: The water a f t e r t r e a t m n t

    T u r b i d i t y 8.00 Hardness 390

    20,000 ppm

    11.9

    29

  • TEST No. 4

    10 m l A12(S04)3 ZC,OOO ppm

    2 ml CaO 20,000 ppm 40 ppm

    pH a f t e r A12(S04)3 8.2 pH a f t e r CaO 10.5

    Results: The water a f t e r treatment

    Turbidity Hardness 300 TES- No. 5

    1 3 m l A12(S04)3 20,000 ppm

    1 m l C a O 4,000 = ppm

    Results: The water a f t e r treatment

    Turbidity 5.5 Hardness 150 ppm as CaC03 (See F i g . 5)

    Concl usi on

    1 . By using Ferric chloride i n the treatment process f o r the laundry waste-

    water we must use a small amount of base, usually sodium hydroxide t h a t means

    we shall use three chemical compounds ( 1 ) Ferric chloride, ( 2 ) Sodium hydroxide,

    a n d ( 3 ) WT-2700 as a flocculation a i d . T h a t means the cos t soes up by u s i n g

    more chemical compound and complicates the design o f the treatment

    p l a n t .

    2. By using a l u m i n u m su l f a t e and lime we watched the hardness go up by u s i n g

    very small amount of lime (CaO) and also more chemical compound may be

    complicates the design of treatment plant.

    3 . The best method o f treatment laundry wastewater i s by using aluminum

    su l f a t e only t o lower the cost by using one chemical compound and simplifying

    the design of treatment plant.

    We r u n another t e s t i n the chemical lab by using A l ~ ( S 0 4 ) ~ only:

    The amount of the sample constant i n every t e s t = 100 m l wastewater and the

    pH of the sample 11.7 and the amount of WT-2700 which added t o the samples

    constant 10 m l 100 ppm/l fo r every sample.

    30

  • I

    \ :*

    I

    __ . .

    .- .-- ,

    31

    ... __

    __

    .. . ._. . .___..

    ---.-..-

    -A

    ,.

    . , . ,

    3

    3

    4

    n

    3

    n

    N 4

    C

    VI b

    0

    VI hl

  • I TEST No. 1

    6 ml A12(S04)3 20,000 ppm

    6 x 20 = 120 ppm

    1200 ppm/l

    The f l o c t o o bad pH = 10.4

    TEST No. 2

    8 ml A12(S04)3 20,000 ppm

    * 160 ppm = 1600 ppm/l

    The f l o c bad pH = 8.5

    -- TEST No. 3 10 10 ml A12(S04)3 20,000 ppm

    = 200 ppm

    = 2000 ppm/l

    The f l o c medium pH = 7.2

    TEST No. 4

    13 ml A12(S04)3 20,000 ppm

    = 260 ppm

    = 2600 ppm/l

    pH = 6.0

    T u r b i d i t y 7.00 FTU

    Hardness = 60 ppm/l

    CaC03

    Very good f loccula t ion See F i g No. 6

    32

  • u 0 4.-

    W

    -_

    -

    a nt

    Pa

    . - .. i

    I

  • P

    The teriiperature e f f e c t o f t h e coagulatdon

    The constant amounts are: ( 1 ) The sample o f raw water 100 m l ; ( 2 ) the

    amount o f A1 (S04)

    and (3 ) t h e amount o f WT-2700 constant 10 ml 20,000 ppm

    TEST No. 1

    The temperature 25OC

    which added t o the wastewater 100 m l cons%ant 260 ppm; 2 3

    --

    The t u r b i d i t y 0.75 FTU

    Very good f 1 occul a ti on

    TEST No. 2

    The temperature 35OC

    The t u r b i d i t y 1.1 FTU

    TEST No. 3

    TP,o tanperature 45OC

    The t u r b i d i t y 1.2 FTU

    TEYT No. 4

    The temperature 55OC

    The t u r b i d i t y 3.0 FTU

    TEST No. 5

    The temperature 65OC

    The t u r b i d i t y 4.2 FTU

    TEST No. 6

    The temperature 75OC

    -

    The t u r b i d i t y 22 FTU

    Bad f l o c c u l a t i o n . (See Fig. No. 7)

    .e*. . '..,.E

  • I

    IJ

    30

    c

    ud

    I

    nw

    1 I I c

    .- . .-- --

    I

    .. .

    . __ - . -

    - - . ..

    . -

    I I

    I 35

    I t 4 I

  • I I

    FINAL COIKLUS ION

    1 . 3y u s i q A 1 (S04) t o t r e a t laundry wastewater the r e su l t s a re very good in b o t h f l kcu la? inn and c l ea r tu rb id i ty .

    2 . Tuesday, 21 October 1975, by u s i n g Aluminum Sulfate w1t.h polyelectrolyte WT-2700. The r e su l t s of this t e s t were excel lent .

    The final t e s t was r u n . i n the quartermaster laundry p i lo t plant on

    3 . The optimum dosage o f the amount of A 1 (S04) was fixed t o obtain good flocculation and was found the good f?occulition a t range 5.5 pH - 6.5 pH. 4 . the range 25-35C with flow turb id i ty .

    The b e s t degree Centigrade t o r u n good treatment of the wastewater i s

    36

  • The ideal sand f i l t e r .

    PORI: S I Z E graded Cross section through ideal f i l t e r unif

    from coarse to fine from top t o bottom. ' o m l y

    I n designing a dual media bed, i t is desirable t o have the coal

    ( spec i f ic gravity about 1.6) as coarse as i s consistent w i t h solids removal

    t o prevent surface blinding b u t have the sand ( spec i f ic gravity about 2 .6)

    as f ine as possible t o provide maximum solids removal. However, i f the

    sand i s too f ine i n re la t ion t o the coal, the former will actually r i se

    above the t o p o f the coal d u r i n g the f i r s t backwash and remain there

    when the f i l t e r I s returned to service.

    Experience has shown t h a t i t is n o t feasible t o use s i l i c a sand

    smaller t h a n about 0.4 mn because smaller sand would require coal small

    enough t o resu l t i n unacceptably high head loss a t ra tes above g p m l f t 2 .

    38

  • I .-

    The problem of keeping a very f ine medium a t the bottom of the f i l t e r

    i s overcome by us ing a t h i r d , very heavy 1 garnet, spec i f ic gravity of

    about 4.2, o r ilmenite ( spec i f ic gravity of about 4.5) very f ine material

    beneath the coal and sand.

    refers more accurately t o the pore space rather than to the media par t ic les

    themselves.

    Actually, the term Itcoarsc-to-finet' f i l t e r

    A typical mixed-media f i l t e r has a pa r t i c l e s i ze gradation which

    decreases from about 2 mm a t the top to a b o u t 0.15 mn a t the bottom.

    The uniform decrease i n pore space w i t h f i l t e r depth allows the en t i r e

    f i l t e r depth t o be u t i l i zed fo r f loc removal and storage.

    how par t ic les o f the d i f fe ren t media a re actual11 mixed throughout the

    bed. A t a71 points i n the bed there i s some of each component, b u t the

    percentage of each changes w l t h bed depth.

    efficiency of f i l t r a t i o n i n the direction of the flow.

    Figure 1 shows

    There i s steadi1.y increasing

    39

  • Removal o f t h e p o o r l y f l o c c u l a t e d s o l i d s normal ly found i n a

    t r i c k l i n g f i l t e r e f f l u e n t can be improved by us ing sma l le r media than would

    be used f o r removal o f a c t i v a t e d sludge e f f l u e n t suspended so l i ds . P i l o t

    t e x t s o f va r ious media designs can be more than j u s t i f i e d by improved

    p l a n t performance i n most cases.

    Table 1. I l l u s t r a t l o n o f va ry ing media design f o r var ious types o f floc removal.

    Size:

    One of t h e key f a c t o r s i n c o n s t r u c t i n g a s a t i s f a c t o r y mixed media bed i s

    the c a r e f u l c o n t r o l o f t h e s i z e d i s t r i b u t i o n of each component medium.

    Rarely i s t he s i z e d i s t r i b u t i o n o f commercial ly a v a i l a b l e m a t e r i a l s

    adequate f o r cons t ruc t i on o f a good mixed media f i l t e r . The comnon

    problem i s f a i l u r e t o remove excessive amounts o f f i n e m a t e r i a l s .

    f i n e s can be removed by p l a c i n g a m e d i m i n the f i l t e r , backwashing it,

    d r a i n i n g the f i l t e r and s k i n i n g the upper surface.

    repeated u n t i l f i e l d s ieve analyses i n d i c a t e an adequate p a r t i c l e s i z e

    d i s t r i b u t i o n has been obtained.

    repeated.

    -40 +80 = passing No. 40 and r e t a i n e d on No. 80 U.S. sieves.

    These

    The procedure i s

    A second medium i s added and the procedure

    The t h i r d medium i s then added and the e n t i r e procedure repeated.

    40

  • I

    Sometimes,

    discarded t o achieve the proper par t ic le s i ze dis t r ibut ion.

    20-30 percent of the materials may have,to be skimned and

    Use of Polymers as F i l t ra t ion Aids

    Polymers are h i g h molecular weight, water soluble compounds hhich

    can be used as primary coagulants, s e t t l i n g aids , o r f i l t r a t i o n aids.

    may be cat ionic , anionic, o r anionic in charge. Generally, the doses

    required fo r coagulation or as a s e t t l i ng a i d in conjunction w i t h another

    coagulant f a r exceed tha t needed as a f i l t r a t i o n aid. Typical doses when

    used as a s e t t l i ng aid are 0.1 - 2.0 mg/l while doses of l e s s t h a n 0.1 mg/l are often adequate t o serve as a f i l t r a t i o n aid. W k n used as a f i l t r a t i o n

    a id , the polymer i s added t o increase the s t rength of the chemical f loc and

    t o control the depth of penetration of f loc into the f i l t e r .

    They

    The polymer i s not added t o improve coagulation b u t rather t o strengthen

    the f l o c made up of prevlously coagulated material to minimize the

    prospects of shearlng f r ag i l e f loc , causing f i l t e r breakthrough. For maxi-

    mum effectiveness as a f i l t r a t i o n a id , the polymer should be added d i rec t ly

    t o the f i l t e r inf luent and not i n an upstream se t t l i ng basin or flocculator.

    However, i f polymers are used upstream as se t t l i ng a lds , i t may not be

    necessary to add any additional polymer as f i l t r a t i o n a i d .

    i l l u s t r a t e s the ef fec ts of polymers as f i l t e r a i d s . The condition

    represented by F igure 2A I l l u s t r a t e s the resu l t s of a f rag i le floc

    Figure 2

    steering and then penetrating the f i l t e r causing a premature term-

    i n a t i o n of i t s run due t o breakthrough Qf excessively high eff luent t u r b i d i t y .

    41

  • I

    I I

    FIGURE NO. 2

    E f f e c t of polymer8 a s filtration a i d 8

    42

  • I ,I,. . I . . , --- ' ' - ... . - . - -.- L___

    --.

    If the polymer i s t oo h igh (F igure ZB), t h e f l o c i s t oo s t rong t o pe rm i t

    pene t ra t i on i n t o the f i l t e r causing a r a p i d bu i l dup o f headloss i n the

    upper p o r t i o n c f the f i l t e r and a premature te rm ina t ion due t o e x e s s i v e

    headloss. The optimum polymer dose w i l l pe rm i t the te rmina l headloss

    t o be reached s imul taneously w i t h the f i r s t s ign o f i nc reas ing f i l t e r

    e f f l u e a t ttirSSCity (F igure 2C).

    Types of F i l t e r S t ruc tu res

    The g r a v i t y and pressure f i l t e r s t r u c t u r e s c o m n l y used i n water

    t reatment p l a n t s a r e r e a d i l y adaptable t o advanced wastewater t rea tment

    p l a n t f i l t r a t i o n .

    t reatment a p p l i c a t i o n s f o r the f o l l o w i n g reasons:

    Pressure f j l t e r s a r e o f ten advantageous i n waste

    1. I n many wastwat .er app l i ca t i ons , t he app l i ed s o l i d s l oad ing i s

    h igher and more v a r i a b l e than i n a water t reatment a p p l i c a t i o n . Thus i t

    i s d e s i r a b l e t o have h igher heads (up t o 20 ft.) a v a i l a b l e than p r a c t i c a l

    w i t h g r a v i t y f i l t e r designs t o p rov ide maximum opera t i ng f l e x i b i l i t y .

    2. I n advanced waste t rea tment processes, the f i l t r a t i o n s tep i s

    t r e q u e n t l y fo l l owed by another u n i t process (carbon absorpt ion, ion

    exchange, e tc . ) . The e f f l u e n t f rom a pressure f i l t e r can be passed through

    a downstream process w i t h o u t hav ing t o pump the f i l t e r e f f l uen t , o f t e n

    e l i m i n a t i n g a pumping s tep which would be requ i red w i t h a g r a v i t y f i l t e r .

    3. All f i l t e r wash water must be t rea ted sewage app l i ca t i ons . The

    ab i 1 i ty t o operate t o h igher head losses w i t h a pressure fi 1 t e r reduces

    the amount o f wash water t o be recyc led.

    4 . Pressure f i l t e r systems a r e u s u a l l y less c o s t l y i n small and

    medium s ized p lan ts .

    43

    b

  • I

    A typical gravity f i l t e r section is shown i n Figure 3.

    areas usually do n o t exceed 800-1000 sq f t per f i l t e r unit.

    units may be combined i n onestructural ce l l .

    Gravity f i l t e r

    Two f i l t e r

    Pressure fi1tei.c IEY be either horizontal or vertical. The horizontal

    f i l t e r offers much larger f i l t e r area per u n i t and would normally be used

    when plant capacities exceed 1-1.5 mgd.

    A typical horizontal pressure f i l t e r vessel is shown

    kithough an 8 f t diameter vessel is shown, 10 f t diameters

    c o m n l y used w i t h lengths up to 60 ft.

    n F

    are

    gure 4 .

    also

    A typical vertical f i l t e r is shown i n Figure 5. Diameter u p to

    11 f t are comonly used w i t h working pressures up to 150 p s i g .

    44

  • Surface Wash

    . -Influent

    Backwash Wastewater

    -+, Filter E f f l u e n t

    Wash water s u p p l y

    FIGURE NO. 3 Cross section through a t y p i c a l gravity filter

  • 50 PSIG Pressure 1" coupl ing a i r 10" f lange i n f l u e n t

    backwesh waste Y )

    r e l e a s e -' Vessel

    d

    10" Flange e f f l u e n t *.' and backwash

    12" x 16" Ifanhole on v e r t i c a l p o f tank 2" Filter drain

    ELEVATIOFI

    !

    I ' e 1 2 " x 16" Manhole

    rt

    e

    Grnvel

    SECTIOii

    FIGURE N O . 4 TYPICAL PRESSUCE FILTER

    46

  • 7

    A t y p i c a l vert ica l pressure f i l t e r with cement grout f i l l i n the bottom head, p ipe headers, and lateral underdrnins, grave l aupporting bed and f i l t e r sands

    -

    FIGURE NO. 5

    47

  • Headloss (FT)

    2

    4

    G

    8

    10

    12

    14

    16

    16

    20

    22

    24

    26

    28

    30

    - I i I !

    ! I

    I

    I

    I

    I I

    I

    I

    - ._ -- _ - .--- - ..- I

    Headloss distribution i n nixed media f i l t c r applied to activated sludge e f f l u e n t

    FIGURE 6

    4c

  • i !

    j l i l i 1 : I !

    E i REFERENCES

    1 . Advanced Wastewater Treatment, Russell L. Culp, Gordo? L . C u l p .

    2 . 1974 Annual Book o f ASTt.1 Standards.

    3 . Process design manual f o r Phosphorus Removal for US Environmental Pro tec t ion Agency Technology Transfer by Black, Vcatch Consulting Engineers, Oct. 1971.

    49

  • FESA DISTRIBUTION

    US M i 1 i t a r y Academy ATTN: Dept o f Mechanics ATTN: L i b r a r y West Po in t , NY 10996

    Chief o f Engineers ATTN: DAEN-ASI-L ( 2 ) ATTN: DAEII-FEB ATTN: DAEfl-FEP ATTN: DAEN-FEU ATTN: DAEN-FEZ-A ATTN: DAEN-MCZ-S APTI4: DAEN-MCE-U ATTN: DAEt4-MCZ-E ATTN: DAEN-RDL Dept o f t h e Army WASH, DC 20314

    D i r e c t o r , USA-WES ATTN: L i b r L r y P.O. Box 63'1 Vicksburg, MS 39181

    Ccmmander, TRADOC Of f i ce o f t h e Engineer ATTt l : ATEN

    Ft . Monroe, VA 23651 ATTN: ATEN-FE-U

    US A r m y Engr D i s t , New York

    26 Federal Plaza New York, NY 10007

    ATTN: N A N E N - E

    USA Engr C"st , Ba l t imore ATTk': Ch I f, Engr D i v P 0. Box 1715 Bal t imore, MD 21203

    USA Engr D i s t , Char leston ATTN: Chief , Engr D i v P.0, Box 919 Charleston, S C 29402

    USA Engr D i s t , Savannah ATTN : Chi c f , SltSAS-L P.O. Box 889 Savannah, CA 31402

    USA Engr D i s t D e t r o i t P.O. Box 1027 D e t r o i t , M I 48231

    USA Engr D i s t Kansas City ATTN: Chief, Engr D i v 700 Federal O f f i c e B ldg 601 E. 1 2 t h S t Kansas City, MO 64106

    USA Engr D i s t , Omaha ATTN: Chief, Engr D i v 7413 USOP and Courthouse 215 N. 1 7 t h S t Omaha, NM 68102

    USA Engr D i s t , F o r t N o r t h ATTN: Chief, SWFED-D ATTN: Ch ie f , SWFED-CIA/MR P.O. Box 17300 F o r t Worth, TX 76102

    USA Engr D i s t , Sacramento ATTN: Chief, SPKED-D 650 C a p i t o l M a l l Sacramento, CA 95814

    USA Engr D i s t , F a r East ATTN: Chief, Engr D i v APO San Franciscb, CA 96301

    USA Engr D i s t , Japan APO San Francisco, CA 96343

    USA Engr Div, Eurone European Div , Corps o f Engineers APO New York, NY 09757

    USA Engr Div, N o r t h A t l a n t i c ATTN: Chief, NADEN-T 90 Church St New York, NY 10007

    USA Engr D iv , South A t l a n t i c ATTN: Chief, SAEN-TE 510 T i t l e Bldg 30 P r y o r S t , SW A t l a n t a , GA 30303

  • USA Engr Dist , Mobile ATTN : Chief , SAMEN-C P , C L R?x 2288 Mobi l e , A L 36601

    U S A En!lr. Sisi, i o u ; s v ; l l r A T I N : Chief , Engr Div F.0 BClX 59 Ltcuisv-:\le, KY 40201

    U55 Eligr Dist, Norfolk A 5 ; i : Chi c f , NAOEN-D 103 F r o n t S t r e e t Uorfo lk , VA 23510

    UC, i inqr D i v , Missouri River ATT1.I: Chief, Engr Div r.0. Box 103 Downtown Station C.riaha, NU 68101

    USI: EncJr D i v , South Pacif ic A X i ; : Ct,ief, SPDED-TG G X Sarisome S t , Rm 1216 Sari Fr;;ncisco, CA $4111

    A F Civil Eiigr Center/XRL T.;r.:ia11 AFB, FL 32401

    N t i L r i 1 F a c i l i t i e s Engr Comand A 1714: Code 04 2% S t u v a l l S t A:cxdndria, V A 22332

    l;..fense \)ocuinentation Center A T T N : TCA ( 1 2 ) Critnercn S t a t ion A 1 oxandria, \ A 22314

    Coi:rrlan*.ler and Di rec tor USA Cold Regions Research Engineering

    Hanovcr, NH 03755 Laboratory

    USA Engr D i v , Huntsvil le ATTN: Chief, HNDED-ME P.O. Box 1600 Wcst Stat ion Huntsville, AL 35807

    USA Engr Div , Ohio River ATTN: ChieF, E n g r D i v P.O. B s x 1159 Cincinnati, OH 45201

    USA Engr Div, North Central ATTN: Chief, E n g r D i v 536 S. Clark S t Chicago, IL 60605

    USA Enpr Div , Southwestern ATTN: Chi ef , SWDED-TM Main Tower Bldg, 1200 Kain S t Dallas, TX 75202

    USA Engr D i v , Pacif ic Ocean ATTN: Chief, E n g r Div APO San Francisco, CA 96558

    F ORS CO M AITN: AFEN

    F t . McPherson, GA 30330 ATTN: A f tN-FE

    Officer i n Charge C i vi1 Engineering Laboratory Naval Construction Battalion Center ATTN: Library (Code L O U ) Port Hueneme!, CA 93043

    Commander and G i rector USA Construction Engineering Research Laboratory

    P , O . Box 4005 Champaigfi, IL 61820

    c