laboratory creep test apparatus - uc drc home

72
Laboratory Creep Test Apparatus A thesis submitted to the Faculty of the Mechanical Engineering Technology Program of the University of Cincinnati in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical Engineering Technology at the College of Engineering & Applied Science by ANDREW HOLL Bachelor of Science University of Cincinnati May 2012 Faculty Advisor: Prof. Amir Salehpour

Upload: others

Post on 06-Dec-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laboratory creep test apparatus - UC DRC Home

Laboratory Creep Test Apparatus

A thesis submitted to the Faculty of the Mechanical Engineering Technology Program

of the University of Cincinnati in partial fulfillment of the

requirements for the degree of

Bachelor of Science

in Mechanical Engineering Technology at the College of Engineering & Applied Science

by

ANDREW HOLL

Bachelor of Science University of Cincinnati

May 2012

Faculty Advisor: Prof. Amir Salehpour

Page 2: Laboratory creep test apparatus - UC DRC Home

i

ACKNOWLEDGEMENTS I would like to thank: My grandparents Mary and Paul McClain for their support with school. My parents Mike and Sara Holl for their support in completing this project. Andrew Morency for his assistance with welding and finding odd parts. Dan Baker of Jade Tool Co. Inc. for working with me on the CNC fabrication. Raymond A. Merkle of Mar-Test Inc. for showing me their creep test machines. James Clemmons for donating his time for CNC machining.

TABLE OF CONTENTS ACKNOWLEDGEMENTS ....................................................................................................... I

TABLE OF CONTENTS ........................................................................................................... I

LIST OF FIGURES ................................................................................................................ III

LIST OF TABLES .................................................................................................................. III

ABSTRACT ............................................................................................................................ III

PROBLEM DEFINITION ........................................................................................................ 1

EXISTING TECHNOLOGY .................................................................................................... 1

PROJECT OBJECTIVES ......................................................................................................... 3

COMPONENT DECOMPOSITION OF CREEP TEST APPARATUS.................................. 4

LOADING SYSTEM................................................................................................................ 4 WEIGHTS ............................................................................................................................................................ 4 COMPOUND LEVER ARM ..................................................................................................................................... 4 SHOULDER LINKAGE ........................................................................................................................................... 5

OVEN ....................................................................................................................................... 5 HEATING ELEMENT ............................................................................................................................................. 5 THERMOCOUPLE ................................................................................................................................................. 6

MEASUREMENT & DATA COLLECTION .......................................................................... 8 DIAL INDICATOR ................................................................................................................................................. 8 EXTENSOMETER .................................................................................................................................................. 8 DATA RECORDING .............................................................................................................................................. 8

FRAME ..................................................................................................................................... 9 VIBRATION RESISTANCE ...................................................................................................................................... 9 LEVER ARM ENCLOSURE ..................................................................................................................................... 9

MECHANICAL ANALYSIS ................................................................................................. 10 BENDING STRESS .............................................................................................................................................. 10 LEVER ARMS ..................................................................................................................................................... 11

Page 3: Laboratory creep test apparatus - UC DRC Home

ii

BUDGET & FABRICATION ................................................................................................ 12 PROJECT EXPENSES ........................................................................................................................................... 12 MATERIALS ...................................................................................................................................................... 13 FABRICATION .................................................................................................................................................... 13

TESTING RESULTS.............................................................................................................. 13 TEMPERATURE ................................................................................................................................................. 13 LOADING .......................................................................................................................................................... 13 ELONGATION .................................................................................................................................................... 13 DATA RECORDING ............................................................................................................................................. 13 PROOF OF DESIGN ............................................................................................................................................. 14

RECOMMENDATIONS ........................................................................................................ 15 ELECTRONICS ................................................................................................................................................... 15 OVEN ................................................................................................................................................................ 15 LOADING .......................................................................................................................................................... 15

WORKS CITED ..................................................................................................................... 16

APPENDIX A – RESEARCH ................................................................................................ 17

APPENDIX B – CONCEPTS AND SKETCHES .................................................................. 24 LOADING CONCEPT SKETCHES ......................................................................................................................... 24 MEASUREMENT CONCEPT SKETCHES ................................................................................................................. 26 DEVICE ARCHITECTURE .................................................................................................................................... 27

APPENDIX C – CONTROL ELECTRONICS ...................................................................... 28 BLOCK DIAGRAM OF CONTROLLER FUNCTIONS ................................................................................................. 28 MICROCONTROLLER OVERVIEW ........................................................................................................................ 28 ARDUINO PROGRAM ......................................................................................................................................... 29 LABVIEW INTERFACE ....................................................................................................................................... 31 ELECTRONICS SCHEMATIC ................................................................................................................................ 32 ELECTRONICS CIRCUIT BOARD .......................................................................................................................... 32 TEMPERATURE READING .................................................................................................................................. 33

APPENDIX D – MECHANICAL ANALYSIS ..................................................................... 34 FREE BODY DIAGRAM........................................................................................................................................ 34 STATIC ANALYSIS ............................................................................................................................................. 35 INERTIAL PROPERTIES ....................................................................................................................................... 35 BENDING ANALYSIS .......................................................................................................................................... 36 SUMMARY OF MECHANICAL ANALYSIS ............................................................................................................. 37 SHEAR STRESS ................................................................................................................................................... 37 FINITE ELEMENT ANALYSIS ............................................................................................................................... 38

APPENDIX E – COSTS ......................................................................................................... 39

APPENDIX F – TEST DATA ................................................................................................ 40

APPENDIX G – PART PRINTS ............................................................................................ 41

Page 4: Laboratory creep test apparatus - UC DRC Home

iii

LIST OF FIGURES Figure 1 - Stages of Creep ........................................................................................................ 1 Figure 2 - Model C .................................................................................................................... 1 Figure 3 - Model M3 ................................................................................................................. 1 Figure 4 - US Patent No. 3,010,307 .......................................................................................... 2 Figure 5 - Component Decomposition ...................................................................................... 4 Figure 6 - Shoulder Linkages .................................................................................................... 5 Figure 7 - Oven and Insulation ................................................................................................. 6 Figure 8 - Thermocouple Interface ........................................................................................... 6 Figure 9 - Controller Architecture ............................................................................................ 8 Figure 10 - Reference points for mechanical analysis ............................................................ 11 Figure 11 – Finite Element Analysis ...................................................................................... 12 Figure 12 – First test results .................................................................................................... 14

LIST OF TABLES Table 1 – Limits of Temperature Readings…………………………………………………. 7 Table 2 - Loading conditions………………………………………………………………... 11 Table 3 – Cost Estimate……………………………………………………………………... 12

ABSTRACT At high temperatures, stresses imposed on metal components produce a continuously increasing strain even if they are below the yield point, and result in a phenomenon known as creep. In order to measure creep, an apparatus is required that can maintain a sample at a constant temperature, apply a constant load to that sample, and measure its elongation over time An apparatus to measure this phenomenon is desired by the Mechanical Engineering Technology department of the University of Cincinnati. Based on existing technology and US patents, an apparatus that can meet these requirements was designed and built by the author. The completed apparatus is able to measure the elongation of a sample under load at a constant elevated temperature.

Page 5: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

1

PROBLEM DEFINITION

At high temperatures, stresses imposed on metal components produce a continuously increasing strain even if they are below the yield point, and result in a phenomenon known as creep. During stage 1 (or primary creep), deformation occurs and resistance to creep increases until the next stage. During stage 2 (or secondary creep), the ratio between strain and time is constant. This is sometimes called steady-state creep. During stage 3, (or tertiary creep), a reduction in cross-sectional area occurs. These three stages are shown in Figure 1.

Figure 1 - Stages of Creep The University of Cincinnati’s Victory Parkway campus lacked the ability to test this creep phenomenon. The goal of this project was to design and build a laboratory creep test apparatus for use in the labs of the Mechanical Engineering Technology department at the University of Cincinnati.

EXISTING TECHNOLOGY Figure 2 depicts the Instron Model C creep test apparatus, a good example of a simple tensile creep testing machine. Weight is loaded on one side of a lever arm; the opposite end is attached to the material sample. The lever arm multiplies the force of the weights and applies a constant tensile load to the material sample. However, this device

does not have the ability to heat the sample in a controlled atmosphere or to record the collected data electronically. The lever arm is exposed, leading to the possibility of the test being disturbed and rendered inaccurate.

Figure 2 - Model C Figure 3 - Model M3

Page 6: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

2

Figure 3 depicts the Instron model M3 is a more sophisticated tensile creep testing apparatus than the model C previously discussed. It uses the same lever arm loading principle, but does not leave the lever arm exposed. More importantly, it is able to maintain a controlled atmosphere around the sample. It does not record the deformation of the sample with a personal computer. The total cost of the machine is $74,101.

Figure 4, taken from a US patent dated November 28, 1961 details a mechanism for measuring the deformation of the sample under tensile creep without having to have the measurement apparatus inside the controlled atmosphere. This is extremely useful because most modern measurement devices cannot withstand an 800° F environment. It also uses the same lever arm loading system as the Instron devices discussed previously. It does not record test data electronically, requiring the test to be constantly monitored.

Figure 4 - US Patent No. 3,010,307

Page 7: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

3

PROJECT OBJECTIVES The new creep apparatus must be able to maintain a constant load on a 6-inch long sample at 800° F for an extended period of time. It must measure the deformation of the sample and output this data to a personal computer to be recorded using an embedded microcontroller. A PC interface will also control test parameters. Further, it must be durable enough to function in the learning environment of a laboratory classroom. It must also be reliable enough to be counted on for availability during a scheduled lab time. Finally, ATSM testing standards need to be applied and met wherever possible.

Page 8: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

4

COMPONENT DECOMPOSITION OF CREEP TEST APPARATUS To structure the design of the apparatus, the author has broken down the different components that will compose the machine. There are four primary systems that make up the device: loading, oven, measurement and support frame. A visual depiction of this division and further details on each primary component is depicted in Figure 5.

Figure 5 - Component Decomposition

LOADING SYSTEM WEIGHTS The weights used to apply a load to the sample are light enough for one person to lift. The apparatus is designed to use a 225 Newton weight, which is equal to about fifty pounds. COMPOUND LEVER ARM Of the three loading concepts considered, the compound lever arm was chosen for its relative simplicity and large mechanical advantage. Sketches of the loading concepts are found on pages 21-22 (Appendix B). A mechanical advantage of twenty gives a force of 4,500 N with a 225N weight.

Creep Test Apparatus

Loading Oven Measurement Frame

• Heating element

• Insulation • Pulse-width

modulation • Thermocouple

• Dial indicator • Extensometer • Data

recording

• Vibration-resistant

• Lever arm enclosure

• Weight • Compound

lever arm • Shoulder

linkage

Page 9: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

5

SHOULDER LINKAGE The sample of material to be tested for its creep properties is mounted axially to the load using a shoulder coupling. The bending strain must be less than 10% of the axial strain (1). Having the interface between the upper and lower heads and their corresponding linkages as a smooth spherical surface minimizes the non-axial loading of the sample. Figure 6 shows an implementation of this concept.

Figure 6 - Shoulder Linkages

OVEN HEATING ELEMENT The ceramic insulation has an embedded heating element. It is controlled using pulse-width modulation by way of the imbedded microcontroller. The required temperature is 800 °F, while the design temperature is 1000 °F. The general design of the oven and insulation and heater is shown in Figure 7.

Page 10: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

6

Figure 7 - Oven and Insulation THERMOCOUPLE The oven temperature is measured with a type J thermocouple. The voltage from the thermocouple is fed into an analog input on the microcontroller. The resulting value from the analog to digital conversion is between 207 and 1023. The LabView interface converts this value into a temperature. The thermocouple measures the temperature difference between the cold-junction and the tip of the probe. Because of this property, the temperature of the cold-junction needs to be added to the result of the temperature calculation. The cold-junction temperature is assumed to be at room temperature, so the LabView interface asks for this value. Figure 8 shows how the thermocouple is installed.

Figure 8 - Thermocouple Interface The relationship between the probe transmitter voltage, thermocouple voltage, and digital value is linear. Their minimum and maximum values are used to compute a linear relationship between the two and are shown in Table 1.

Page 11: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

7

Table 1 – Limits of Temperature Readings

Minimum Maximum

Thermocouple Voltage (mV) -0.896 29.534 Probe Transmitter (V) 1 5 Analog to Digital Values 207 1023

The relationship between the thermocouple voltage and the temperature difference between the cold-junction temperature and the probe is non-linear. An equation for type J thermocouples is available from the National Institute of Standards and Technology. Both functions that are used are shown in Appendix C.

Page 12: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

8

MEASUREMENT & DATA COLLECTION DIAL INDICATOR A dial indicator will be used to measure the elongation of the sample. The indicator has a range of one inch, a resolution of .00005 inches, and will interface directly with the internal microcontroller. EXTENSOMETER An extensometer will be attached on one end directly to the sample in the oven, while the other end is located outside of the oven. Elongation will be measured outside of the oven using the dial indicator. Of the extensometer concepts in Appendix B, the axial method was chosen for its 1:1 ratio of movement to measurement and its reliability. DATA RECORDING The embedded microcontroller controls the duty percentage of the heater based on the difference between the set temperature and current temperature. The controller architecture is shown below in Figure 9.

Figure 9 - Controller Architecture

Ardiuno Microcontroller

Dial Indicator (Quadrature Wave)

Thermocouple Heating Element

(PWM)

Temperature and Elongation Data

Personal Computer

Page 13: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

9

FRAME VIBRATION RESISTANCE The base of the apparatus uses vibration dampening feet to minimize error. The feet are individually adjustable, enabling the device to be leveled. LEVER ARM ENCLOSURE The critical points of the lever arms, the fulcrums, are enclosed with the fulcrum support. The remaining exposure of the lever arms does not compromise its accuracy.

Page 14: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

10

MECHANICAL ANALYSIS BENDING STRESS

The maximum bending stress, calculated here in Equations 1 and 2, is an order of magnitude less than the yield strength of alloy steel, giving a large safety factor. The calculations for the loading conditions of the lever arm system are located in Appendix D. A summary of their results is shown in Table 2. Figure 10 labels the lever points for reference. The calculated loading conditions are used in the following finite element analysis of the support framework, Figure 11.

Equation 2 - DEF Bending Stress

Equation 1 - Bar ABC Bending Stress

Page 15: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

11

LEVER ARMS

Figure 10 - Reference points for mechanical analysis Table 2 - Loading conditions

Point Load (N) Load (lbf)A -2,250 -506B 2,475 556C -225 -50.6D -2,250 -506E 4,500 1012F -2,250 -506

Page 16: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

12

Figure 11 – Finite Element Analysis The results show the maximum Von Mises Stress is 97.61 MPa, giving a minimum safety factor of 2.56 with alloy steel.

BUDGET & FABRICATION

PROJECT EXPENSES The most expensive components are the main heating element and oven insulation combination and the dial indicator. The oven insulation is an off-the-shelf part to minimize cost. The dial indicator has no display or interface buttons; it simply outputs the measurement to the microcontroller. A total cost estimate is shown in Table 3. Table 3 – Cost Estimate

Component Vendor Quantity Price ea. TotalDial Indicator Chicago Dial Indicator 1 304.24$ 304.24$ Microcontroller Digikey 1 26.56$ 26.56$ Cylindrical Heater Omega Engineering 1 223.25$ 223.25$ Thermocouple Omega Engineering 2 19.00$ 38.00$ Materials Online Metals - 462.39$ Materials Metal Supermarket - 101.70$ Components McMaster-Carr - 225.64$ Electronics Digikey - 167.97$ Enclosure Mouser 1 21.99$ 21.99$

Component Total 1,571.74$

Page 17: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

13

MATERIALS The metal components that will be at an elevated temperature are made of 316 stainless steel to minimize corrosion and thermal stress when heated. The fulcrums are made of 4130 alloy steel for its wear resistance. All other metal components are made of mild steel. FABRICATION The majority of fabrication was performed by Jade Tool Co. Inc. in Xenia, Ohio at the designer’s expense. Additional machining was donated by Beta Industries in Vandalia, OH. The remainder was fabricated in the University of Cincinnati’s Victoria Parkway campus machine shop. The entire apparatus uses all mechanical fasteners except the point at which the main support tube meets the base.

TESTING RESULTS TEMPERATURE The temperature control was successfully tested and maintained the temperature sample at 1000 °F for over an hour. This is 200 °F higher than the temperature requirement of 800 °F. LOADING The lever arm system functions with a mechanical advantage of approximately 20:1. The movement of the arms is smooth and loss to friction is negligible. ELONGATION The extensometer accurately measures the relative movement of the sample. The movement of the extensometer is purely axial due to the tight tolerances of the extensometer parts. The movement of the clamps and the movement of the dial indicator are nearly identical. DATA RECORDING The temperature of the sample and elongation distance are sent to the personal computer by way of a USB connection. LabView is used to set the temperature and record relevant data. An XY plot of elongation over time is produced. The data can also be exported to a spreadsheet program.

Page 18: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

14

PROOF OF DESIGN A manually recorded test produced a curve showing primary and the beginning of secondary creep. An aluminum sample that is normally used with the Tinius Olsen tensile testing machine, located in the material testing lab at the Victory Parkway campus, was used for this test. A load of 13 kg was applied to the sample, creating a load of approximately 2550 N. The sample was tested in an elevated temperature atmosphere of 250 °C. The 13 kg weight was applied after the sample had been heating for approximately fifteen minutes. A graph of the results is shown in Figure 12.

Figure 12 – First test results The curve shows primary creep for the first ten minutes, then the beginning of secondary creep after ten minutes. Since the device was not calibrated when this test was performed, the curve may not correspond to the known creep rate of the material. Longer heating is also required to ensure the core of the material is at the test temperature. This verification is intended to show that the apparatus is capable of measuring creep.

Page 19: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

15

RECOMMENDATIONS ELECTRONICS The circuit board could be re-designed to better accept the temperature sensor. A sensor to detect when the weight has reached the base, indicating the sample has ruptured, would be useful feature. The ability for the microcontroller to record data is present in the electronics design, but it is not implemented in the software program. OVEN Two half cylinders forming the oven would make loading the sample easier, but each half cylinder costs about the same as one whole cylinder. The wiring to the oven should be less exposed. The entire oven assembly would be improved with a sheet metal enclosure filled with insulation. LOADING To reduce the cost of the apparatus, threaded couplings are used to load the sample. A coupling to accept shouldered samples was designed but not fabricated. The shouldered coupling is easier to work with than the threaded coupling because the sample is simply placed in the coupling and closed. The threaded coupling must be turned while preventing the coupling links from rotating, which has proven to be somewhat difficult.

Page 20: Laboratory creep test apparatus - UC DRC Home

CREEP TEST APPARATUS ANDREW HOLL

16

WORKS CITED 1. ASTM International. Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. E139. 2. Caldwell, Laura. Course Documents by Professor Laura Caldwell. [Online] July 2007. [Cited: August 16, 2007.] http://homepages.uc.edu/~caldwelm/Courses/SrSeminar/overview.docx . 3. Boresi, Arthur P. and Schmidt, Richard J. Advanced Mechanics of Materials (6th Edition). s.l. : John Wiley & Sons, 2003. 4. Sumner, G. and Livesey, V. B. Techniques for High Temperature Fatigue Testing. Essex : Elsevier Applied Science Publishers Ltd., 1985. 0-85334-314-4. 5. Instron. Model C Stress-Rupture Testing System. Creep and Stress Rupture Testers. [Online] 2010. [Cited: October 13, 2011.] www.instron.us. 6. —. Model M3 Creep and Stress Rupture Systems. Creep and Stress Rupture Testers. [Online] 2010. www.instron.us. 7. Schwegler, Roy F. Creep Testing Machine.US Patent 3,010,307 November 28, 1961. 8. Arpad Nadai, John Boyd. Accelerated Creep Testing Apparatus. US Patent 2,154,280, April 11, 1939. 9. Merkle, Raymond A. Personal Interview. Vice President of Compliance and Technical Director. November 17, 2011. 10. Omega Engineering. Omega.com. [Online] [Cited: Febuary 21, 2012.] www.omega.com. 11. ASTM International. Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics. D2990. 12. —. Standard Guide for Use of Thermocouples in Creep and Stress-Rupture Testing to 1800°F in Air. E633. 13. —. Standard Test Methods for Tension Testing of Metallic Materials. E8. 14. National Institute of Standards and Technology. NIST ITS-90 Thermocouple Database. NIST Standard Reference Database 60, Version 2.0 (Web Version) . [Online] January 4, 2012. [Cited: June 1, 2012.] http://srdata.nist.gov/its90/main/. 15. Salehpour, Amir. Personal Interview. September 28, 2011.

Page 21: Laboratory creep test apparatus - UC DRC Home

Appendix A 17

APPENDIX A – RESEARCH

Highlights of project research interview with Professor Salehpour on September 28, 2011 • The oven should be able to reach 800° F • Should be able to test a sample that is 6” high • It will test plastics and metals with low melting temperatures • The device will be used in our labs

Highlights of project research interview with Raymond A Merkle, Vice President - Compliance, Technical Director of Martest Inc. November 17, 2011

• Temperature Probes should not be directly heated per ASTM • Deformation can be measured using extensometer and dial indicator or LVDT • Tensile creep is the most common type of creep test • Samples are threaded on both ends and are held by a threaded coupling

Page 22: Laboratory creep test apparatus - UC DRC Home

Appendix A 18

The model C lever arm machine is designed specifically for long-term stress-rupture test applications that involve maintaining constant loads for extended periods of time. Through the mechanical advantage of the lever arm loading system, constant loads may be maintained with a high degree of accuracy and can be configured for wither room temperature or elevated temperature operation.

• Free standing load frame design required no special foundation.

• System includes vibration isolation with neoprene waffle pads under the weight pan and load frame feet to absorb shock and vibration

• Manual elevator up and down hand controls

• Test time module • Mounting for optional LVDT, SLVC

or other strain detection signal conditioner

Simplest system Does not record elongation over time Uses weight to maintain constant force Elevated temperature testing requires purchase of oven Exposed lever arm makes it more likely test can be disturbed Not very compact footprint Only tests creep under tension

http://www.instron.us/wa/library/streamFile2.aspx?sdoc=1259 10/13/11

Page 23: Laboratory creep test apparatus - UC DRC Home

Appendix A 19

The model M3 lever arm machine has been specifically designed for long-term creep and stress rupture test applications that involve maintaining constant loads for extended periods of time. Through the mechanical advantage of the lever arm loading system, constant loads may be maintained with a high degree of accuracy for long durations, using dead weights, without the continuous operation and dependency of a mechanically powered drive. The lever arm Creep and Stress Rupture machines are an economical alternative to traditional electromechanical or hydraulically loading universal testing machines which have higher initial purchase prices and greater long term operating costs. The model M3 may be configured for room temperature or elevated temperature operation. A variety of temperature rated test fixtures and extensometry for the measurement of elongation on creep test application are also available.

• Free standing load frame features a small footprint that optimizes laboratory floor space

• Design requires no special foundation

Good representation of desired scale and complexity Does not record elongation over time Uses weight to maintain constant force Requires purchase of additional fixtures and oven for elevated temperature operation Only tests creep under tension

http://www.instron.us/wa/product/Model-M3-Creep-Stress-Rupture-Tester.aspx 10/13/11

Page 24: Laboratory creep test apparatus - UC DRC Home

Appendix A 20

The present invention relates to an axial loading creep and rupture machine of the type wherein the test specimen is loaded by weights acting through a lever, and more particularly to such a machine in which the specimen is loaded in a controlled atmosphere under heat. In another aspect, the invention relates to a sealed mounting for transferring the motion of a lever through the surface of a plate having an aperture therin.

Good representation of the mechanisms that may be involved Intended to measure creep in a controlled atmosphere without having the measuring device itself in the chamber. The method used to measure creep when this patent was granted is out of date Only tests creep under tension Uses weight to maintain constant force

• Specimen rupture switch senses when the specimen fails and stops the timer

• 16:1 lever arm ratio • Adjustable counter-balance for

nulling load train mass • Hardened knife edges and v-blocks

for long life fulcrum points • Ability to heat sample up to 1200°C

R. F. Schwegler Patent #3,010,307 November 28, 1961

Page 25: Laboratory creep test apparatus - UC DRC Home

Appendix A 21

This graph shows the creep rates of a type of steel at 900 °F. It was used to determine the maximum force that the apparatus needs to apply to the sample Source: Advanced Mechanics of Materials by Arthur P. Boresi

Diagram illustrating the three stages of creep. Source: Wikipedia Creative Commons

Page 26: Laboratory creep test apparatus - UC DRC Home

Appendix A 22

Detail drawing of standard sample for tensile or creep testing. Source: ASTM E8

This shows a method for gripping a shouldered specimen

Source: ASTM E8

Installation of thermocouple to sample Source: ASTM E-633

Page 27: Laboratory creep test apparatus - UC DRC Home

Appendix A 23

Depiction of oven insulation with embedded heating element. Source: Omega Engineering

Page 28: Laboratory creep test apparatus - UC DRC Home

Appendix B 24

APPENDIX B – CONCEPTS AND SKETCHES LOADING CONCEPT SKETCHES

Loading Concept 1: Fixed Lever This is the loading system most frequently encountered in patents and existing products. It is the simplest way of applying a load to the sample, but it is limited by the maximum feasible length of the lever arm.

Loading Concept 2: Compound Pulley This concept requires pulleys as well as finding a wire with a balance between strength and flexibility. The complexity of those requirements makes this concept unattractive.

Page 29: Laboratory creep test apparatus - UC DRC Home

Appendix B 25

Loading Concept 3: Compound Lever This is the loading concept that was selected. It allows for a wide range of mechanical advantages and is simple to implement. A similar type of loading system is used in most Rockwell hardness testers. However, this concept applies a load upward on the sample while the Rockwell test applies a force downward. This is achieved by changing the lever closest to the sample from a first-class lever to a second-class lever.

Page 30: Laboratory creep test apparatus - UC DRC Home

Appendix B 26

MEASUREMENT CONCEPT SKETCHES

Measurement Concept 1: Radial Extensometry This method is very accurate, but is difficult to implement. The side of the oven wall has to have a section that is flexible for the rods to be able to move with the elongation of the rod. The movement of the extensometer outside of the oven is not necessarily a 1 to 1 correlation, which is an important consideration in this measurement concept.

Measurement Concept 2: Axial Extensometry This is the method that was used at Mar-Test. Set screws with conical points fix the extensometer to the sample. The elongation of the sample is measured at the bottom with a dial indicator.

Page 31: Laboratory creep test apparatus - UC DRC Home

Appendix B 27

DEVICE ARCHITECTURE

The overall architecture of the apparatus is similar to a Rockwell hardness tester.

Page 32: Laboratory creep test apparatus - UC DRC Home

Appendix C 28

APPENDIX C – CONTROL ELECTRONICS BLOCK DIAGRAM OF CONTROLLER FUNCTIONS

MICROCONTROLLER OVERVIEW

Arduino Uno Features: • Based on ATmega168 • 14 Digital I/O Pins • 6 Analog input pins • 3.35 – 12V Input Voltage • Open source hardware and

software

Ardiuno Microcontroller

Dial Indicator (Quadrature Wave)

Thermocouple Heating Element

(PWM)

Temperature and Elongation Data

Personal Computer

Page 33: Laboratory creep test apparatus - UC DRC Home

Appendix C 29

ARDUINO PROGRAM // Creep Test Apparatus Arduino Sketch // Andrew Holl 6.3.2012 // Setup dial indicator interface #include <Encoder.h> // Setup software-based PWM #include <SoftPWM.h> // Define encoder pins Encoder myDial(2, 3); // Define temperature control variables unsigned int temp = constrain(temp, 100, 1024); int tempDif = 0; unsigned int duty = constrain(duty, 0, 100); // Dial indicator value unsigned int dial = constrain(dial, 0, 30000); // Get an average value over 5 readings unsigned int dialAvg = constrain(dialAvg, 0, 30000); // Incoming Command int command = 0; int setTemp = 0; //Create delay without using delay command int Delay = 0; long previousMillis = 0; long interval = 10; void setup() { // start software based PWM SoftPWMBegin(); // Set initial PWM behavior SoftPWMSet(5, 0); // start serial port at 9600 bps: Serial.begin(9600); } void loop() { // Read dial indicator dial = myDial.read(); // Read and average thermocouple values temp = analogRead(0); // Compute difference between SetTemp and the temperature reading

Page 34: Laboratory creep test apparatus - UC DRC Home

Appendix C 30

// tempDif is positive when temp is lower then setTemp, meaning you want to increase duty // tempDif is negative when temp is higher than setTemp, meaning you want to lower duty tempDif = setTemp - temp; // SoftPWM // This sets the behavior of the heater // temp is much lower than set temp, set duty to maximum // heating up // This should be close to the duty required to maintain a // fairly constant temperature. Could be improved to account // for the temperature setting. if (tempDif > 5) { duty = 100; } // too hot else if (tempDif <= 0) { duty = 0; } // Set PWM duty cycle to calculated setting, in percent SoftPWMSetPercent(5, duty); // Delay section unsigned long currentMillis = millis(); if(currentMillis - previousMillis > interval) { previousMillis = currentMillis; if (Delay == 0){ Delay = 1; } // Send sensor values via serial at each delay multiple // The numbers are transmitted as raw data Serial.print(temp); Serial.print(' '); Serial.println(dial); } else Delay = 0; } void serialEvent() { if (Serial.available() > 0) { // Read incoming command command = Serial.parseInt(); // Set temperature setTemp = command; // Zero Dial myDial.write(0); } }

Page 35: Laboratory creep test apparatus - UC DRC Home

Appendix C 31

LABVIEW INTERFACE

Page 36: Laboratory creep test apparatus - UC DRC Home

Appendix C 32

ELECTRONICS SCHEMATIC

ELECTRONICS CIRCUIT BOARD

Page 37: Laboratory creep test apparatus - UC DRC Home

Appendix C 33

TEMPERATURE READING The relationship between the probe transmitter voltage, thermocouple voltage, and digital value is linear.

Min Max

Thermocouple Voltage (mV) -0.896 29.534 Probe Transmitter (V) 1 5 Analog to Digital Values 207 1023

The relationship between the thermocouple voltage and the temperature difference between the cold-junction temperature and the probe is non-linear.

𝐸 = (3.7291667 × 10−2)(𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝐷𝐷𝑉𝑉) − 8.615375

𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝐷𝐷𝑉𝑉 = − 26.8156(−𝐸 − 8.615375)

𝐸 = 𝑇ℎ𝑉𝑒𝑒𝑒𝑒𝑒𝑉𝑒𝐷𝑉 𝑉𝑒𝐷𝐷𝐷𝐷𝑉 (𝑒𝑉) 𝑇 = 𝑇𝑉𝑒𝑒𝑉𝑒𝐷𝐷𝑉𝑒𝑉 𝐷𝐷𝐷𝐷𝑉𝑒𝑉𝐷𝑒𝑉 (°𝐶)

𝐸 = .5038 × 10−1 × 𝑇 + .3047 × 10−4 × 𝑇2 − .8568 × 10−7 × 𝑇3 + .1323 × 10−9 × 𝑇4− .1705 × 10−12 × 𝑇5 + .2095 × 10−15 × 𝑇6 − .1254 × 10−18 × 𝑇7 + 1563× 10−22 × 𝑇8

𝑇 = 1.978 × 101 × 𝐸 − 2.001 × 10−1 × 𝐸2 + 1.037 × 10−2 × 𝐸3 − 2.550 × 10−4 × 𝐸4+ 3.585 × 10−6 × 𝐸5 − 5.344 × 10−8 × 𝐸6 + 5.100 × 10−10 × 𝐸7

Page 38: Laboratory creep test apparatus - UC DRC Home

Appendix D 34

APPENDIX D – MECHANICAL ANALYSIS FREE BODY DIAGRAM

Page 39: Laboratory creep test apparatus - UC DRC Home

Appendix D 35

STATIC ANALYSIS

𝛴𝐹𝑥 = 0 𝛴𝑀𝐵 = 0 = 500 𝑒𝑒 × 225 N + 50 mm × 𝐹𝐴

−500 𝑒𝑒 × 225 𝑁 = 50 𝑒𝑒 × 𝐹𝐴 𝐹𝐴 = −2,250 𝑁

𝛴𝐹𝑦 = 0 = −225 𝑁 + 𝐹𝐵 − 2,250 𝑁 𝐹𝐵 = 2,475 𝑁

𝛴𝐹𝑥 = 0 𝛴𝑀𝐹 = 0 = −2,250 𝑁 × 200 𝑒𝑒 + 𝐹𝐸 × 100 𝑒𝑒

𝐹𝐸 = 4,500 𝑁 𝛴𝐹𝑦 = 0 = 2,250 𝑁 − 4,500 𝑁 − 𝐹𝐹

𝐹𝐹 = −2,250 𝑁 INERTIAL PROPERTIES

𝐼 =1

12𝑏ℎ3 −

112

𝑏′ℎ′3

𝐼 =1

12(25.4 × 10−3 𝑒)(25.4 × 10−3 𝑒)3 −

112

(22.1 × 10−3 𝑒)(22.1 × 10−3 𝑒)3 𝐼 = 14.81 × 10−9 𝑒4 𝑆 = 8.575 × 103 𝑒3

Page 40: Laboratory creep test apparatus - UC DRC Home

Appendix D 36

BENDING ANALYSIS

Page 41: Laboratory creep test apparatus - UC DRC Home

Appendix D 37

SUMMARY OF MECHANICAL ANALYSIS

SHEAR STRESS

Shear Stress on Pivots

Shear Strength of Pivots

Point Load (N) Load (lbf)A -2,250 -506B 2,475 556C -225 -50.6D -2,250 -506E 4,500 1012F -2,250 -506

Page 42: Laboratory creep test apparatus - UC DRC Home

Appendix D 38

FINITE ELEMENT ANALYSIS

Von Mises Stress

Displacement

Page 43: Laboratory creep test apparatus - UC DRC Home

Appendix E 39

APPENDIX E – COSTS

Component Vendor Quantity Price ea. TotalDial Indicator Chicago Dial Indicator 1 304.24$ 304.24$ Microcontroller Digikey 1 26.56$ 26.56$ Cylindrical Heater Omega Engineering 1 223.25$ 223.25$ Thermocouple Omega Engineering 2 19.00$ 38.00$ Materials Online Metals - 462.39$ Materials Metal Supermarket - 101.70$ Components McMaster-Carr - 225.64$ Electronics Digikey - 167.97$ Enclosure Mouser 1 21.99$ 21.99$

Component Total 1,571.74$

Page 44: Laboratory creep test apparatus - UC DRC Home

Appendix F 40

APPENDIX F – TEST DATA

Time (min) Reading elongation 0 0 0.00000

1 21 0.00105 2 29 0.00145 3 35 0.00175 4 40 0.00200 5 44 0.00220 6 47 0.00235 7 50 0.00250 8 51 0.00255 9 52 0.00260

10 53 0.00265 11 53 0.00265 12 53 0.00265 13 53 0.00265 14 54 0.00270 15 54 0.00270 16 54 0.00270 17 54 0.00270 18 54 0.00270 19 55 0.00275 20 55 0.00275

0.000000.000500.001000.001500.002000.002500.00300

0 5 10 15 20 25

Elo

ngat

ion

(in)

Elapsed Time (min)

Verification of Creep Measurement

Page 45: Laboratory creep test apparatus - UC DRC Home

Appendix G 41

APPENDIX G – PART PRINTS

Page 46: Laboratory creep test apparatus - UC DRC Home

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTP

RO

DU

CE

D B

Y A

N A

UTO

DE

SK E

DU

CA

TIO

NAL

PR

OD

UC

T PR

OD

UC

ED

BY A

N AU

TOD

ESK

ED

UC

ATIO

NA

L PR

OD

UC

T1

1

2

2

3

3

4

4

A A

B B

C C

D D

FILE NAME

SHEET 1 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 CMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Assembly1 rv2.iam

PARTS LISTFILE NAMEQTYITEM

base1Asupport tube1Bhead lower1Chead upper V21Dsupport tube topper1Ebar 11Fbar 21Gbar linkage2Hcoupling link lower1Icoupling link upper1Jbase bar2Rdial indicator mount1Sdial indicator21Tdial indicator contact1USample, threaded1Vthreaded coupling2WOmega CRFC-36-115-C-A1Xfulcrum support r32YOven Support with locking pin1ZOven Support1AASupport Connector1ABlower clamp ref1ACtop clamp ref1ADtop ext bar2AFbottom ext bar2AGtop clamp end1AHbottom clamp end1AIOven Top1AX

F

G

E

Y

H

D

AA

AX

X

Z

AB

V

W

J

I

C

R

A

AD

AC

AH

AI

U

T

AF

AG

B

YH

Assembly Exploded View and BOM

0.3:1

Page 47: Laboratory creep test apparatus - UC DRC Home

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTP

RO

DU

CE

D B

Y A

N A

UTO

DE

SK E

DU

CA

TIO

NAL

PR

OD

UC

T PR

OD

UC

ED

BY A

N AU

TOD

ESK

ED

UC

ATIO

NA

L PR

OD

UC

T1

1

2

2

3

3

4

4

A A

B B

C C

D D

FILE NAME

SHEET 2 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 CMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Assembly1 rv2.iam

PARTS LISTPART NUMBERQTYITEM

base1Asupport tube1Bhead lower1Chead upper V21Dsupport tube topper1Ebar 11Fbar 21Gbar linkage2Hcoupling link lower1Icoupling link upper1Jbase bar2Rdial indicator mount1Sdial indicator21Tdial indicator contact1USample, threaded1Vthreaded coupling2WOmega CRFC-36-115-C-A1Xfulcrum support r32YOven Support with locking pin1ZOven Support1AASupport Connector1ABlower clamp ref1ACtop clamp ref1ADtop ext bar2AFbottom ext bar2AGtop clamp end1AHbottom clamp end1AIOven Top1AX

FY

E

B

A

R

J

AX

X

AA

Z

H

D

W

V

AD

AC

AH

AI

U

T

S

W

I

C

AG

AF

Assembly View

0.3:1

Page 48: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 3 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

base.ipt

Load-1

n.27 THRUv n.44 x .25

4X

n.27 THRUv n.44 x .25

6X

FARSIDE

6.00.728

15.75

n2.60

3.937

2.502.50.502X

15.252X

2.000n - .000.003+

jn.010

b .001 AB

c .001A

b .001 A BC

.394

n2.950

j .001 C A B

j .005 C A B

1:4 STEEL

c .001

f .001 A

7.874

18" KEYWAY

.394

Page 49: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 4 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

support tube.ipt

Load-2

n.250 THRU3X

EVENLY SPACED

25.00

2.000n - .0058.0040-

u .005A

1:4 4130 STEEL

b .001 AB

f .001 A

.30

f .001 B

jn.001 A B

Page 50: Laboratory creep test apparatus - UC DRC Home

SECTION A-ASCALE 1 : 1

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CE

D B

Y A

N A

UTO

DE

SK

ED

UC

ATI

ON

AL

PR

OD

UC

T PRO

DU

CE

D BY

AN

AU

TOD

ES

K E

DU

CA

TION

AL P

RO

DU

CT

1

1

2

2

A A

B B

FILE NAME

SHEET 5 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

support tube topper.ipt

Load-3

A A

n3.97n.20 THRU

v n.38 x .19

4X

FARSIDE

.7712X

(FOR SLOTS AND HOLES)

.984

.984

.4002X

n.250 x 2.003X

EVENLY SPACED

1.36 TYP

1.36 TYP

1.181

.591

.1182X

2.000n - .000.003+

c .001A

b .001 AB

j .005 C A B

j .010 A B

f .001 A

.295

b .001 AC

FULL STEEL

Page 51: Laboratory creep test apparatus - UC DRC Home

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTP

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

ED

UC

ATIO

NA

L P

RO

DU

CT P

RO

DU

CED

BY

AN

AU

TOD

ES

K E

DU

CA

TION

AL P

RO

DU

CT

1

1

2

2

A A

B B

FILE NAME

SHEET 6 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

fulcrum support r3.ipt

Load-4

.3947.87

2.36

6.30

2.36

n4.50

n4.50

10-24 UNC - 2B x 1.002X QTY: 2

1.181

5.118

1.181

7.087

.875n + .004.000+

2X

jn.001 A B C

c .001A

b .001 AB

b .001 A BC

f .001 C

.197 2.165

jn.010 A B C

1:2 1018 STEEL

Page 52: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 7 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bar 1.ipt

Load-5

23.231.00

1.00.79

n.5002X

THRU

n.25 THRU

21.85

1.18

.38

1.968519.6850

1:4 STEEL

Page 53: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 8 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bar 2.ipt

Load-6

.50

3.9370 3.9370

1.00

1.00

n.5003X

THRU

1:2 STEEL

Page 54: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 9 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bar linkage.ipt

Load-7

1.38

5.31 3.937

n.502X

.39

n1.38

QTY: 2FULL STEEL

Page 55: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 10 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

head upper.ipt

Load-8

n2.95

1.102 - .00.05+

2.540

n.984

3.047 2.756

1.772

1.969

R2.362S

1.1250 - .0010.0005-

2X

.38 x.502X

THRU

jn.002 C A B

n1.57

d .001 A B

un.001A

b .005 AB

f .002 A BC

f .001 C

jn.010 C A B

1:2 4130 STEEL

Page 56: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 11 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

coupling link upper.ipt

Load-9

3/4-10 UNC - 2A

3.00

.75n1.339

R2.362S

.394

n.08

10.303

12.175

un.001A

b .005 AB d .001 A B

1:2 316 STAINLESS

Page 57: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 12 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

threaded coupling.ipt

Load-10

3/4-10 UNC - 2B

n1.575

3.000

QTY: 2

un.001A fn.005 A

FULL 316 STAINLESS

Page 58: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 13 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

coupling link lower.ipt

Load-11

7.744

.394

3/4-10 UNC - 2A

3.00

.750

R2.362S

n.08

n1.339

9.616

un.001A

b .005 AB

d .001 A B

1:2 316 STAINLESS

Page 59: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 14 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

head lower.ipt

Load-12

n2.95

n.984

R2.362S

3.031

n2.244 x 1.18

2.597n1/4-20 UNC - 2B x .79

6X

EVENLY SPACED

1.97

jn.010 A B

c .001A

b .001 AB

d .001 B A

FULL 4130 STEEL

Page 60: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 15 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Oven Support fixed.ipt

OVEN-1

n5.91

n2.79

n3.15 THRU

2.000n + .0000.0045+

.74

.384

5.125n - .00.05+

jn.005 B A

c .005A b .005 A

B

3.937

1:2 ALUMINUM

NOTE:THREE (3) REQUIREDTHIS PART IS SIMILAR TO (2) OTHER OVEN SUPPORTS

Page 61: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 16 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Oven Support with locking pin.ipt

OVEN-2

2.835

3.937

1.102

n5.91

n2.79

2.000n + .0000.0045+

n.53 THRU5/8-11 UNC - 2B x 1.18

n3.15 THRUc .005A

5.125n - .00.05+

bn.005 AB

jn.005 B A

jn.010 B A

j .010 B A

.384

1:2 ALUMINUM

NOTE:SIMILAR TO FIXED OVEN SUPPORT

.354

1/4-20 UNC - 2B

Page 62: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 17 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Oven Support.ipt

OVEN-3

3.937

2.835

1.102

n5.91

n3.15

n2.79

2.000n + .0000.0045+

5/8-11 UNC - 2B LH

.74

c .005A 5.125n - .00

.05+

b .005 AB

j .010 B A

jn.005 B A

NOTE:(1) LEFT HAND THREADIS SIMILAR TO FIXED OVEN SUPPORT

1:2 ALUMINUM

Page 63: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 18 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Support Connector.ipt

OVEN-4

8.17 n.625

5/8-11 UNC - 2A LH

.75 TYP

un.050

1:2 ALUMINUM

5/8-11 UNC - 2A

NOTE(1) LH THREAD

Page 64: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 19 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bottom clamp ref.ipt

EXT-1

2.64`.05

120° TYP

.39`.05

1/4-20 UNC - 2B3X

n.125 x .635v n.28 x .15

2X

4-40 UNC - 2B x .192X

n.98

.2500n - .0000.0014+

4X

(H9)

2.76

c .010A

f .010 A

b .001 AB

jn.005 A B C

jn.005 A B C

jn.005 B A C

jn.01 A B C

.9284X

.4334X

jn.01 B A C

b .010 AC

25°

a .010 C

FULL 316 STAINLESS

Page 65: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 20 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

top clamp.ipt

EXT-2

n2.76

2.64`.05

25° TYP

120° TYP

.39`.05

.2500n - .0000.0014+

2X

THRU

(H9)

n.125 x .635v n.28 x .15

2X

1/4-20 UNC - 2B3X n.98

c .010A

f .010 A

bn.001 AB

jn.005 A B C

jn.005 A B C

jn.005 B A C

jn.01 A B C

.9282X .433

2X

4-40 UNC - 2B x .192X

jn.010 B A C b .010 AC

a .010 C

FULL 316 STAINLESS

Page 66: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 21 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bottom end.ipt

EXT-3

n2.76

n.98

1.339n

2.64`.05

.39`.05

n.1250 x .64v n.28

2X

8-32 UNC - 2B THRU3X

.2500n - .0000.0014+

2X

(H9)

jn.005 A B C

jn.005 A B C

jn.010 B A C

25°

jn.005 B A C

c .010A

f .010 A

bn.001 AB

.9282X

.4332X

4-40 UNC - 2B x .192X

20°

jn.010 B A Cb .010 AC

a .010 C

120° TYP

FULL 316 STAINLESS

Page 67: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 22 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

top end.ipt

EXT-4

n2.76

2.64`.05

n.98

.502X

.942X

.2500n - .0000.0014+

4X

THRU

(H9)

n.1250 x .64v n.28

2X

4-40 UNC - 2B x .192X

.39`.05

8-32 UNC - 2B THRU2X

.9284X

.4334X

c .010A

f .010 A

bn.001 AB

jn.005 B A C

jn.010 B A C

jn.005 A B C

25°

jn.005 A B C

jn.010 B A C

f .010 C

a .010 C

FULL 316 STAINLESS

b .001 AC

Page 68: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 23 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

top ext bar.ipt

EXT-5

8.46

.2500n - .0025.0016-

(c9)

8.071

QTY: 2

n.1252X

jn.005 A B

c .010A f .010 A

un.005B

316 STAINLESS1:2

Page 69: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 24 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

bottom ext bar.ipt

EXT-6

8.27

7.874

.2500n - .0025.0016-

(c9)

n.1252X

QTY: 2

un.005B

jn.005 A B

c .010A

316 STAINLESS1:2

f .010 A

Page 70: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 25 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

dial indicator mount.ipt

EXT-7

1.50

.75

1.00 .50

.50 .50

n.6875 x .51n.27 THRUv n.51

n.18 THRUv n.31 x .16

2X

.375

FULL 304 STAINLESS

c .0005A

b .0005 AB

f .005 B

jn.0005 A B CD

jn.010 A B C

jn.010 D

b .010 A BC

Page 71: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 26 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

dial indicator contact.ipt

EXT-8

2.85

1.77

1.339n

.866n `.005

n.79

FULL R

.20

n.177 THRU3X

304 STAINLESSFULL

c .001A

f .001 A

b .002 AB

j .010 A B

(18°)

80°

120° TYP

Page 72: Laboratory creep test apparatus - UC DRC Home

PR

OD

UC

ED

BY

AN

AU

TOD

ES

K E

DU

CA

TIO

NA

L P

RO

DU

CT P

RO

DU

CE

D B

Y A

N A

UTO

DE

SK

EDU

CA

TION

AL PR

OD

UC

T1

1

2

2

A A

B B

FILE NAME

SHEET 27 OF 27 ANDREW HOLLDRAWN

SCALE

SIZE

TITLE

3/13/2012 AMATERIAL

TOLERANCES.X .XX .XXX .XXXX

± .010± .005± .001± .0005

3RD ANGLE PROJECTION POSITION AND FORM TOLERANCE SYMBOLS ARE PER ASME Y14.5-2009

Sample, threaded.ipt

SAMPLE

1.00

6.00

n.75 MIN

.500

3/4-10 UNC - 2A

QTY REQUIRED (4)(2) ALUMINUM(2) STEEL

1:2