l6 neutrino

26
1 2004, Torino Aram Kotzinian  Neutrino Scattering  Neutrino interactions  Neutrino-electron scattering  Neutrino-nucleon quasi-elastic scattering  Neutrino-nucleon deep inelastic scattering Variables Charged current Quark content of nucleons Sum rules  Neutral current

Upload: raatkali

Post on 09-Apr-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 1/26

12004, Torino Aram Kotzinian

 Neutrino Scattering

 Neutrino interactions

 Neutrino-electron scattering

 Neutrino-nucleon quasi-elastic scattering

 Neutrino-nucleon deep inelastic scattering

Variables

Charged current

Quark content of nucleons

Sum rules

 Neutral current

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 2/26

22004, Torino Aram Kotzinian

NeutrinoNeutrino--electron scatteringelectron scattering

Tree level Feynman diagrams:

0 Z 

eR  eR 

e

e

eR 

eR 

e

e

p ee ee R R 

Eff ective Hamiltonian:

? A? A _ ae g  g eG

 AV ee F  ))1(1()1(2

55 K K R K K R  Q Q!

(through a Fierz transf ormation)

? A? A ? A? A _ ae g  g eeeG

 H   AV eeee F 

eff   )()1()1()1(

2

5555 K K R K K R R K K K K R  Q Q

 Q Q!

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 3/26

32004, Torino Aram Kotzinian

Only charged current:

 QR 

eR e

 Q

p QR R  Q ee

)()(2)()( 2  L ABin E me p p s e Q Q R R !!

22)()( QR  Q p pqt  !!

)(

)(

)()(

)()(

)()()( LABin

 pe p

 p pe p y

 Q

 Q

 Q

 Q

 QR 

 QR

)()(2)( 2

22

22

 LABin

q

 s

dy

ed e

W CC 

 Q Q R 

T T 

R W }

Inelasticity variable (0<y<1)

243

2

10104.0)( cm

MeV 

 E  sGe F 

¹¹ º

 ¸©©ª

¨v!!

T R  QTotal cross-section:

(cross-section proportional to energy!)

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 4/26

42004, Torino Aram Kotzinian

Only neutral current:

p ee Q Q R R )()(

¼¼½

»

¬¬-

«¹

 º

 ¸©ª

¨

24

2

2

22

22

)1(sinsin2

1)( y

q

 s

dy

ed W W 

 NC UU

R W  Q

0 Z 

 QR 

)(

e

 QR 

)(

e

¼¼½

»

¬¬-

« ¹ º ¸©

ª¨

W W 

 Z 

 Z  F  NC  y

q

 s

dy

ed UU

T R W  Q 42

22

22

22

sin)1(sin2

1)(

ee g ee g e g  g e  R L AV )1()1()( 555 K K K K K K  Q Q Q

W  AV  Lg  g  g  U2sin

2

1)(

2

1!!

W  AV  g  g  g  U2sin)(2

1!!

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 5/26

52004, Torino Aram Kotzinian

Only neutral current (total cross-section):

2434

2

2

2

101015.0sin

31sin

21)( cm

 M eV 

 E 

 se W W  F 

 NC  ¹¹ º

 ¸©©ª

¨!

¼¼½

»

¬¬-

«

¹ º ¸©ª̈ ! R  Q UUT R W 

2434

2

2

2

101014.0sinsin

2

1

3

1)( cm

 M eV 

 E  se W W 

 F 

 NC  ¹¹ º

 ¸©©ª

¨!

¼¼½

»

¬¬-

«¹

 º

 ¸©ª

¨ ! R  Q UU

T R W 

Can obtain value of sin2 UW

f rom neutrino electron

scattering (CHARM II):

0059.00058.02324.0sin 2 ss!W U

p ee Q Q R R )()(

)1(22  ym E  ee !5

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 6/26

62004, Torino Aram Kotzinian

Back to (charged and neutral currents)

Then:

p ee ee R R 

W W  AV  L g  g  g  UU

22

sin2

1

1sin2

1

)11(2

1

!!!W  AV  g  g  g  U2sin))1(1(

2

1!!

¼¼½

»

¬¬-

«¹

 º

 ¸©ª

¨!

24

2

2

2

1sinsin2

1)( y

 sG

dy

ed 

W W 

 F e UUT 

This cross-section is a consequence of  the inter f erence of  the

charged and neutral current diagrams.

2434

2

2

2

10109.0sin

3

1sin

2

1)( cm

 M eV 

 E  se W W 

 F 

e ¹¹ º

 ¸©©ª

¨!

¼¼½

»

¬¬-

«¹

 º

 ¸©ª

¨ ! R UUT 

R W 

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 7/26

72004, Torino Aram Kotzinian

Neutrino pair production:

Then:

eeee R R  p

¼¼½

»

¬¬-

«¹

 º

 ¸©ª

¨!p

4

1sin2

2

1

12)(

2

2

2

W  F 

ee

 see U

T R R W 

Contribution f rom both W and Z graphs.

e

e

eR 

eR  Z 

e

e

eR 

eR 

Only neutral current contribution to:  Q Q R R  p

ee

¼¼½

»

¬¬-

«¹

 º ¸

©ª¨ !p

4

1sin2

2

1

12)(

2

2

2

W  F  sG

ee UT 

R R  Q Q

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 8/26

82004, Torino Aram Kotzinian

NeutrinoNeutrino--electron scatteringelectron scattering Summary neutrino electron scattering processes:

p ee  Q Q R R 

¼½

»¬-

« W W 

 F  sGUU

T 422

2

sin3

41sin2

4

Process Total cross-section

p ee  Q Q R R 

p ee ee R R 

ee R  QR  Q p

p ee ee R R 

eeee R R  p

 Q Q R R  p ee

¼½

»¬-

« W W 

 F  sGUU

T 422

2

sin41sin23

1

4

¼

½

»¬

-

« W W  F s

UU

422

2

sin

3

41sin2

4

¼½

»¬-

« W W 

 F  sGUU

T 422

2

sin41sin23

1

4

 sG F 

2

¼½»¬

-« W W 

 F  sG UUT 42

2

sin4sin221

12

¼½

»¬-

« W W 

 F  sGUU

T 42

2

sin4sin22

1

12

)()(2 frame LABthein E m s e QR !

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 9/26

92004, Torino Aram Kotzinian

 Neutrino-nucleon quasi-elastic scattering

Quasi-elastic neutrino-nucleon scattering reactions (small q2

):

 QR 

 pn

 Q

 pn p  QR 

 Q

!! n H  p M  eff   ,,

 QR  Q

 p p p

 Q Q R R )()(

n p p  QR  Q

 QR 

n

 Q

0 Z 

 QR 

)(

 p p

 QR 

)(

 factor  formv ctor q F V  !)( 2

 factor  formvector axial q F  A )( 2

)(975.0cos ang l eC abbiboC  !U

? A ? AnqqG

V  5225 )()()1(2

K K R K K  QU

 Q Q Q

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 10/26

102004, Torino Aram Kotzinian

 Ne tri - cle asi-elastic scatteri

F r l w e er y e tri s ( E 

R <<m

 N ):

.73.1)( s!! A A F 

? A22

22

)0(3)0(cos

)()(  AV C  F 

ee F  F  E G

 pn !!T 

UR W R W 

2

2

42

101075.9 cm

 M e ¹¹ º

 ¸©©ª

¨v} R 

Form f actors introduced since proton, neutron not elementary.

Depend on vector and axial weak charges of  the proton and neutron.

Two hypotheses:

- Conservation of Vector Current (CVC):

- Partial conservation of Axial Current (PC AC):

22

2

1/1

)(

)( qqV 

!

1)0( !V  F 

22

2

65.1/1

)()(

q

 F q F  A

 A

!

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 11/26

112004, Torino Aram Kotzinian

Inelastic neutrino-nucleon scattering

Since parity is not conserved in weak interactions, there are

more structure functions for weak processes, like neutrino

scattering, than for electromagnetic processes, like electron

scattering.Again the variables x = Q2 /2 M R  and  y = R /  E can be used.

R  Q nucleon p Q

Parton model is used to make predictions for deep inelasticneutrino-nucleon scattering. 

 Neutrino beams from pion and kaon decays, dominated by

muon neutrinos are used to study this process.

 Q nucleon p Q

  

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 12/26

122004, Torino Aram Kotzinian

Weak structure functions

General form for the neutrino-nucleon deep inelastic scatteringcross-section, neglecting lepton masses and corrections of the

order of  M  /  E :

 

d W R ,R 

d  xdy! F 

2 M  E 

T 1 y  F 2

R  N  y2 x F 1

R  N  m y y2

2

¨ª©  ¸

 º¹ x F 3

R  N «

-¬»

½¼

The functions  F 1

,  F 2

and  F 3

are the functions of Q2 and R . In the scaling

limit they are the functions of  x only.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 13/26

132004, Torino Aram Kotzinian

Scaling behaviour 

Compilation of the

data on structure

functions in deepinelastic neutrino

scattering (1983)

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 14/26

142004, Torino Aram Kotzinian

 Neutrino proton CC scattering:

= number of u-quarks in proton between x and x+dx

Some of the quarks are from sea: 

For proton (uud):

 X  p p p dp )()( QR  Q

? A´´ ! 00 2)()()(dx xu xudx xu

Scattering off quarks:

dx xu )(

)()()( x x xS V 

! )()()( x x xS V 

!

)()( x xS 

! )()( xd  xd S 

!

? A´´ !!1

0

1

01)()()( dx xd  xd dx xd 

R W R W   Q Q E mG

dy

qd 

dy

qd  q F CC CC 

22)()(

!!

22

2)()( y

 E mG

dy

qd 

dy

qd  q F CC CC !!

R W R W  ¡   ¡   

Ucos1

2

11 !

d

! E 

 E  ywith

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 15/26

152004, Torino Aram Kotzinian

Scattering off proton:

? A ? A_ a22

)1()()()()(2)(

 y xc xu x s xd  x ME G

dxdy

 pd  F CC 

R W  Q

? A)()()()(2)(2 xc x s xu xd  x x F p !R 

? A ? A_ a)()()()()(2)(

2

2

 x s xd  y xc xu x E 

d  xd  y

 pd  F  !

T R  Q

Structure f unctions:

Callan-Gross relationship:

? A)()()()()(3 xc x s xu xd  x x x F  p !R 

)()(2 21  x F  x x F  !

? A)()()()(2)(2 x s xd  xc xu x x F p !R 

? A)()()()(2)( x s x xc x x x x F  !¢   

Neutron (isospin symmetry):

? A)()()()(2)(2 xc x s xd  xu x x F  n !R 

)()()()(2)(3 xc x s xd  xu x x xF  n !R 

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 16/26

162004, Torino Aram Kotzinian

Scattering off isoscalar target (equal number neutrons and protons):

 _ a2

2

)()()(

)(

 y xq xq x

 ME G

 x y

 N d  F CC 

! T 

R W   Q

c sd uq | c sd uq |

? A)()()(2 xq xq x x F 

!R 

? A)()()()()(3 xc x s xq xq x x x F  N  !R 

)()(2)()()(3 xc x xq xq x x xF  N  !R 

 _ a)())(()(

2

2

 xq y xq x M  E G

d  xdy

d  F CC 

!T 

R W   Q

Total cross-section:

GeV cmQQG

 E  N  F 

CC /1067.0

3

1/)( 238

2v¼½

»¬-« R W  Q

GeV cQQG

 E  N F 

£ £  

/1034.03

1/)( 238

2

v!¼½»

¬-« !

T W  Q

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 17/26

172004, Torino Aram Kotzinian

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 18/26

182004, Torino Aram Kotzinian

R ise of mean q2 with energy

Mean q2 was found to be linear function in neutrino (antineutrino) energy.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 19/26

192004, Torino Aram Kotzinian

Quark content of nucleons from CC cross-sections

Define:

Experimental values from y distribution of cross-sections yields:

If 

.,)(1

0etcd uU  ´

03.015.0 s! QQ

Q03.000.0 s!

QQ

S 01.016.0 s!

QQ

S Q

)(495.0

)(

)(

mea s r ed  N 

 N 

r  CC 

CC 

!| R 

19.03

13

}

! r 

Q

Q

33.0}! QQQV 08.0}!! QQQ

S S 

49.0)(1

2 }!´ QQd  x x F ¤  

Quarks and antiquarks carry 49% of proton momentum, valencequarks only 33% and sea quarks only 16%.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 20/26

202004, Torino Aram Kotzinian

Some details

 Note that for right-handed incident anti-neutrinos the term changes

sign. Note also that the term is orthogonal to the asymmetric hadronic

term that is proportional to since q = l ± l¶ and gives zerowhen dotted into

where both signs for the last term appear in the literature.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 21/26

212004, Torino Aram Kotzinian

To obtain these expressions we have used

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 22/26

222004, Torino Aram Kotzinian

Finally we can put the pieces together to obtain the corresponding cross

sections(in the limit )

We recognize this to be similar to the EM result but with replacements

, an extra factor of 4 and the (new) term.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 23/26

232004, Torino Aram Kotzinian

We now consider the scaling limit

Substituting in terms of the scaling variables

we find the result

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 24/26

242004, Torino Aram Kotzinian

For scattering on structureless fermions/antifermions (e.g ., point

 particle quarks) we have

Thus measures the difference  between quarks and antiquarks.

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 25/26

252004, Torino Aram Kotzinian

For elastic neutrino scattering from quark and antiquark we have:

and

Working the details out explicitly in terms of the parton momentum and

mass, we find

Thus for pointlike quarks we have

8/8/2019 l6 Neutrino

http://slidepdf.com/reader/full/l6-neutrino 26/26

262004, Torino Aram Kotzinian

Gross-Llewellyn-Smith (2 names) sum rule

In terms of the parton distributions in the proton we have

Thus we have

and hence